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The issue of controlling that data processing in an experiment results not affected by the presence of outliers is relevant for
statistical control and learning studies. Learning schemes should thus be tested for their capacity of handling outliers in the
observed training set so to achieve reliable estimates with respect to the crucial bias and variance aspects. We describe possible
ways of endowing neural networks with statistically robust properties by defining feasible error criteria. It is convenient to cast
neural nets in state space representations and apply both Kalman filter and stochastic approximation procedures in order to suggest
statistically robustified solutions for on-line learning.
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1. INTRODUCTION

This work represents, to our knowledge, one of the few at-
tempts done to endow artificial neural networks learning
schemes with statistical robustness properties. It is of great
interest to realize why the statistical robustness field has not
found a wide ground of applications outside statistics, given
the fact that more and more applications of algorithms pro-
posed by researchers in different fields are similar in the data
sets they use and the goals of the analysis, usually prediction,
one example being the very popular time series competitions.

In many cases of empirical work dealing with a modelling
experiment, one often finds out from the diagnostic checks
run on the observed data that there is enough evidence for
not relying on the convenient Gaussian probability distribu-
tion which characterize the disturbances driving the stochas-
tic processes and thus their observed realizations. This fact
may be due to the presence of outliers, occurring with small
probability,or because of a particular nature of the data gener-
ating process underlying the data, like in financial time series.
Simply ignoring the deviations from the Gaussian distribu-
tion is one way of conducting inference, which is feasible
when these deviations are mild. But a stronger evidence for
rejecting normality should bring the researcher to consider
more robust statistical learning procedures, suitable to deliver
more reliable parameter estimates and model predictions.

In Section 2, we briefly present some well-known
algorithms and their relations, starting from the stochastic
approximation scheme. In Section 3, the likelihood-based
standard inference and related quasi-likelihood ideas are
presented, while in Section 4 the above framework is
robustified with the definition of M-estimators. In Section 5,

some examples of useful M-estimation applications are
introduced, and together with the loss functions the cor-
respondent influence functions are given. Section 6 is for
the conclusions and the appendix shows how to analytically
and efficiently compute first and second derivatives of the
likelihood function, whose usage is required in some of the
algorithms which were presented.

2. STOCHASTIC APPROXIMATION

In this section, we introduce one of the most famous sta-
tistical algorithms. Then, we show its relations with other
well-known numerical and learning schemes. Both on-line,
that is, recursive, and off-line, that is, batch, procedures are
designed and compared.A state space representation is then in-
troduced for casting the neural networks learning algorithms
into an on-line, through a Kalman filter, parameter estima-
tion scheme. Modified versions of these procedures are given
to include relevant features coming from high-order statistics
information. If it is true that the systemswhere our procedure
operate are produced with the aim of delivering forecasts for
future values of the variables characterizing the system dy-
namics, it also seems that from a statistical viewpoint and in
order to make optimal predictions, model identification and
estimation aspects must be considered.

Robust procedures allow us to look at the important as-
pects mentioned above without being trapped in the para-
metric constraints which often limit the analyst because they
do not reflect the possible departures from the context where
phenomena are measured or observed. We start by consider-
ing a nonlinear function f(Xt, θ), where f : Rk ×Θ → R, Xt
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is a k × 1 random input vector and θ ∈ Θ ⊂ Rp represents
the vector of unknown parameters. We may use this setup for
forecasting the random variable yt through a single hidden
layer feedforward network structure

f(X,θ) = α0 +
q∑
j=1

αjF
(
X′βj

)
, (1)

where θ = (α′, β′)′ represents the weight vector and F :
R → R is a bounded and continuosly differentiable acti-
vation function localized at the hidden layers. At the out-
put level we set an identity matrix. One can clearly see that
f(X,θ) is an approximation of the objective function here
defined at time t as the conditional expectation of the de-
pendent variable y with respect to the input vector, that
is, g(Xt) = E(yt/Xt). Thus, in this nonlinear least square
frame we seek a solution θ∗ to the problem minθ[E([yt −
f(Xt, θ)]2)], or, equivalently, to the first-order conditions
equation E(∇θf (Xt, θ)[yt − f(Xt, θ)]) = 0, with∇θ repre-
senting the gradient k×1 vector calculated with respect to θ.
The Robbins-Monro (RM) stochastic approximation (SA) al-
gorithm of [1] stores the current approximation valueXt and
approximates the objective function locally and linearly via
its gradient. It can also be adapted for a nonlinear regression

θ̂t+1 = θ̂t + δt∇θf
(
Xt, θ̂t

)[
yt − f

(
Xt, θ̂t

)]
. (2)

Since this recursion is equivalent to that of a stochastic gra-
dient method, it generalizes the well-known backpropagation
(BP) algorithm [2], popular in neural network learning
theory, by allowing for a time varying learning rate.

In batch identification algorithms the prediction error
is the building block for the chosen optimization criterion,
that is, LossN(θ) = (1/N)

∑N
t=1 ε

′
tθεtθ , where εtθ = yt −

ŷtθ . Learning schemes seek to minimize the loss function
via iterations according to the negative gradient direction,
that is, the steepest descent algorithm, or a Gauss-Newton
search direction. Alternatively, we could find the prediction
error εt at each step, in a recursive fashion. In [3], some
modifications to the RM algorithm are presented in order to
speed up the convergence rate; by inserting a Gauss-Newton
step at each updating stage one obtains a modified Robbins-
Monro algorithm

θ̂t+1 = θ̂t + δtL̂−1
t+1∇θf

(
Xt, θ̂t

)[
yt − f

(
Xt, θ̂t

)]
,

L̂t+1 = L̂t + δt
[∇θf

(
Xt, θ̂t

)′∇θf
(
Xt, θ̂t

)− L̂t
]
,

(3)

where now we define Ξ = ((vecL)′, θ′)′ as the new aug-
mented parameter vector.

The approximation to E(yt/Xt) is only locally optimal,
but it is nevertheless important to relax the usually retained
i.i.d. (independently and identically distributed) assumption
about the stochastic process generating the data. Thus, both
batch and recursive algorithms converge to a local minimum
with probability one, that is, θ̂t → θ∗ local minimum of
limt E[yt − f(xt, θ)]2; so does the BP algorithm therefore.

Artificial neural networks can be cast in a state space rep-
resentation and, as in the case of SA algorithms, this is a way

to allow for a generalized BP to learn how to approximate
nonlinear functions in a time series setup. By considering a
k-layered feedforward network structure [4]

ikj =
Nk−1∑
l=1

θk−1,k
lj ok−1

l + βkj , (4)

where the input of the jth node in the kth layer is given by
the sum of the product of the connection weight θ with the
output and a bias parameter β, and the output is a function
of the input through F : R → R, okj = F(ikj ), we have an
extension of the previous trivial system. From

θk−1,k
lj (t + 1) = θk−1,k

lj (t)− δεkj (t)o
k−1
l (t), (5)

where δ is the learning rate and εkj = (okj − yk
j )F

1(ikj ), with
F1 first derivative of the output function, we can rewrite in a
more compact fashion the network, that is, in vectorial state
space form as

Θt+1 = Θt +Gξt, yt = Ot
(
Θt
)+ ηt, (6)

where ηt is the output error, Gξt is equal to the correction
term of the BP recursion (6), with the matrix G which sepa-
rates in a convenient way the deterministic components from
the purely random ones [4], and with only ξt characterized
by pure erratic behavior. The Ot(Θt) term is written in this
way to stress its “state dependence,” but it could be reported
otherwise as Ot,Θt .

In order to understand how in fact the Kalman filter algo-
rithm relates to the BP expressed in this reformatted neural
net setup, we consider a functional mapping that links in-
put and output layers encompassing the hidden layers, that
is, yi = h(θ,xi) + vi, at the generic time i. Here we have
the input xi entering the function h, which also depends on
the weight parameters θ that includes the input-to-hidden,
hidden-to-hidden and hidden-to-output multi-layers con-
nections; we can represent them in a compact vectorial ex-
pression with θ = [W ′

(1);W
′
(2); . . . ;W ′

(N)] for N − 1 hidden
layers available; vi is a disturbance.

A simple linearization of h(·) about θi helps to under-
stand the various relations we are trying to enlighten, in the
sense that it gives the matrix expressionHi = ∂h(θi, xi)/∂θi,
where ∂θi = ∂θ|θ=θi ; clearly, the stepwhich is required before
is h(θ,xi) ≈ h(θi, xi) + HT

i (θ − θi). Thus, we can rewrite
a new linearized observation equation ẏi = H

′
iθ + vi, which

allows for the following weighted least squares criterion func-
tion to be minimized, LSc = (1/k)

∑k
i=1 αi[ẏi −H′

iθ]
2.

The off-line solution of the minimization problem is
θi+1 = [

∑k
i=1 αiHiH′

i]
−1
∑k
i=1 αiHiẏi. If the term in the

squared parenthesis of this equation is defined as the co-
variance matrix Si, a recursive equation can be derived, that
is, Si = Si−1 + αiHiHT

i . From the off-line estimate θi+1

given above, we can recover a recursive equation expressed
by θi+1 = S−1

i (Si−1θi +αiHiẏi); by substituting the expres-
sions given before for ẏi and Si−1, we get the recursion

θi+1 = θi +αiS−1
i Hi

[
yi − h

(
θi, xi

)]
. (7)
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We can recognize the SA update rule reported in the modified
RM algorithm, given a particular choice of the matrix Si and
withHi=∇θf (·,·).Without the Si matrix in the above recursive
least squares step, we are left back to the generalized delta rule
or BP algorithm. The matrix Hi can be expressed in terms of
theweights of theneural net; inparticular,given thedefinition
of this matrix, we have the following expression for it:

Hi =
[(

∂ŷ′i |θi
∂W ′

(1)

)′
;

(
∂ŷ′i |θi
∂W ′

(2)

)′
; . . . ;

(
∂ŷ′i |θi
∂W ′

(N)

)′]′
. (8)

In this framework we can then apply the extended Kalman fil-
ter (EKF) [5, 6] and/or the iterated Kalman filter (IKF) [7]. By
including more terms in the Taylor series expansions we can
obtain second-order extended Kalman filters, when ht(xt)
can be linearized about the updated conditional mean esti-
mate x̂t/t . The EKF algorithm is given by

x̂+ = x̂− +K
(
y − h

(
x̂−
))
, P+ = (I −KH)P,

H = h1(x̂−), K = PH′(HPH′ + R)−1,
(9)

where P is the a priori value of the covariance matrix of esti-
mation uncertainty, that is, from the system dynamic model,
and R stands for the error covariance for the measurement
equation. Given x̂ = x̂−, we can obtain a more accurate al-
gorithm, the IKF, as follows:

xit+1 = x̂ +Kit
(
y − h

(
xit
)−Hit

(
x̂ − xit

))
,

Pit+1 =
(
I −KitHit

)
Pit,

Hit = h1(xit),
Kit = PitH′

it
(
HitPitH′

it + R
)−1.

(10)

The IKF algorithm is indeed an application of the Gauss-
Newton (GN) method [7]. It is common in statistics and
econometrics to work with estimators that aim at minimizing
sums of squared residuals like S(θ) = ∑

t ε2
t , whose Gradi-

ent is v(θ) = ∂S(θ)/∂θ = 2
∑
(∂εt/∂θ)εt and whose Hes-

sian is V(θ) = ∂2S(θ)/∂θ∂θ′ = 2
∑
[(∂εt/∂θ)(∂εt/∂θ′) −

(∂2εt/∂θ∂θ′)εt]. Several schemes are able of iteratively find-
ing a solution to the initial minimization problem [8]. The
most general one is the Newton-Raphson (NR)method,which
is given by

θ∗ = θ̂ −
[∑(

∂εt
∂θ

∂εt
∂θ′

− ∂2εt
∂θ∂θ′

εt
)]−1∑ ∂εt

∂θ
εt. (11)

Since the term involving second derivatives is usually small
when compared to the first derivatives product term, the
GN scheme approximates the above iterative solution and
presents a formula that is identical to NR, apart from the
term with second derivatives.

3. LIKELIHOOD-BASED INFERENCE

Once a neural network architecture is cast in a state space
representation, the most important aspect is that from the
Kalman filter algorithm and its variants we straightforwardly

obtain the likelihood function through the prediction error
decomposition (PED) of [9]. The likelihood function for the
whole time series, when temporally dependent observations
are considered, is obtained by the joint conditional proba-
bility density function, that is, L(y,θ) = ΠNt=1p(yt/Yt−1)
(by considering Yt−1 the set of observations up to and
including yt−1).

Since the innovation or prediction error computed by the
filter is ηt = yt − E(yt/Yt−1) and var(ηt) = Dt , when the
observations are normally distributed the likelihood function
can be expressed in terms of the innovations. Therefore, the
PED likelihood function, in the general multivariate form, is

logL = −c − 1
2

N∑
t=1

log
∣∣Dt

∣∣− 1
2

N∑
t=1

η′tD
−1
t ηt (12)

with c = (KN/2) log 2π ,ηt ak×1 vector andN observations.
Note that under Gaussianity the filter delivers an optimal
minimum mean squared solution for the estimation problem;
under hypotheses different from the Gaussian, the filter gives
only a minimum mean square linear solution and the values
which are computed are Quasi maximum likelihood (QML)
estimates, less efficient but consistent (and therefore useful to
start a recursive or multi-step procedure).

For the case we study here, the solution is therefore sub-
optimal and close to the optimal one according to the ac-
curacy of the approximation involved. From the likelihood
function as given by (12), we can calculate its derivatives ei-
ther analytically or numerically, and in both caseswe can leave
the filter to compute these quantities together with the other
ones representing the core of the algorithm. For instance, the
ith element of the Score vector ∂ logL/∂θi is given by (see
[10] and the appendix for more details)

−1
2

∑
t

[
tr
[(
D−1
t
∂Dt

∂θi

)(
I−D−1

t ηtη′t
)]− ∂η′t

∂θi
D−1
t ηt

]
, (13)

therefore, requiring the evaluation of the k × k matrices
of derivatives ∂Dt/∂θi and the k × 1 vector of derivatives
∂ηt/∂θi, for i = 1, . . . , p and t = 1, . . . , N. These deriva-
tives may be computed through p additional passes of the
Kalman filter; if we consider a new run of the filter with
θ = [θ1 · · ·θi + δi · · ·θp], we obtain a new set of innova-
tions η(i)t and variances D(i)

t and the numerical approxima-
tions of the derivatives are δ−1

i [η(i)t −ηt] and δ−1
i [D(i)

t −Dt].
However, for large complex networks, computations become
heavy.

If we denote with θ̂ our maximum likelihood estimate
for θ and IM(θ) represents the Fisher information matrix∫
(∂ logL/∂θ)2 dF such that lim(1/N)IM(θ) = I∗(θ), then

statistical theory says that under regularity conditions the√
N(θ̂ − θ) ∼ Gaussian(0, [I∗(θ)]−1) law goes through

asymptotically. Therefore, IM(θ) is a crucial quantity because
it gives an estimate of the asymptotic covariance matrix of
the maximum likelihood estimator.

In the state space filter setup the PED likelihood func-
tion yields an IM(θ) which depends on first derivatives only.
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With the Kalman filter we can calculate these first derivatives,
numerically or analytically, but always through parallel com-
putations with respect to the main algorithm, and then the
IM(θ) too, quite simply, given the structure of it once it is
derived through the prediction errors or innovations (see the
appendix).

One problem is to train a network to learn tasks such
as approximating an unknown complex function in a dif-
ferent fashion from the one implied by the backpropagation
paradigm, which depends from the gradient calculation and
therefore requires a precise derivation of it from the loss func-
tion. In order to compute the gradient, one can also find an
approximation based on the loss function L(·) values calcu-
lated at levels represented by “perturbed” parameters, that is,
θ̂k−1 ± εk∆k by simply adopting a finite difference method,
that is, one based on values like L̂+k − L̂−k /2εk∆kp , for all the
parameter vector components simultaneously perturbed.

It basically corresponds to what we have proposed above
with the Kalman filter numerical estimates; these estimates
are more efficient because they were obtained as a by-product
of the filter runs and, moreover, their computation comes
from the PED likelihood or quasi-likelihood function and
related derivatives,which benefits of the inherited asymptotic
properties of such estimates.

When accurate estimates are seeked, then the Berndt,
Hall, Hall, and Hausman (BHHH) algorithm, which suggests
the approximation of the Hessian by the well-known outer-
product formula, that is,

∑N
t=1(∂ logLt/∂θ)(∂ logLt/∂θ′), is

themost indicated choice we have in order to improve, at least
asymptotically, the efficiency of the initial GN or equivalently
IKF estimator θ̂ according to the recursion

θ∗ = θ̂ + λ
[ N∑
t=1

∂ logL′t
∂θ

∂ logLt
∂θ′

]−1 N∑
t=1

∂ logLt
∂θ

, (14)

where λ is a variable step length chosen so that the likelihood
function is maximized in a given direction.

4. ROBUST LIKELIHOOD SETUP

Robust methods represent a potential solution to the prob-
lem of finding a statistical inference tool that allows for a
more flexible model to be built so to represent system dy-
namics where the variables involved can deviate from fixed
assumptions about the probabilistic laws behind. The stan-
dard alternative of a fully parametric model has to rely on
given probabilistic assumptions, and it is usually convenient
to adopt the Gaussian laws to derive the random variables, at
the cost of completely misleading inference results in case of
deviations from the retained hypotheses.

As an alternative one could adopt a nonparametric setup,
where no assumptions are made about the probability laws
behind the variables, or a semi-parametric frame,where some
parametric assumptions are made for some variables in the
systems, but not for all of them, thus leaving some variables
to belong in a so-called infinite-dimensional space. In this
last case, some efficiency for the estimates is lost compared to
the parametric model, when the latter is the correct choice,

but the advantage is that consistent solutions are obtained in
those circumstances realistically far from being satisfied by
parametric assumptions.

We consider the fact that through the likelihood function
L(y,θ) we are able to characterize a taxonomy of models
only differentiated by the sample size and the dimension of
the parameter space where the optimization must be carried
out. A straightforward extension of this idea comes from con-
sidering the so-called M-estimators, that is, estimators of the
“maximum likelihood type,” as originally defined in the work
of [11, 12], for they depend on anunspecified functional form
involved in the objective function to be optimized.

Definition 1 (M-estimators). Any estimator θn defined by a
minimum problem such as

∑
i ρ(xi, θn) = min or, equiva-

lently, by the equation
∑
i ψ(xi, θn) = 0, with ρ an arbitrary

function and ψ its derivative.

Consider an i.i.d. sample x1, . . . , . . . xN with distribution
function F ∈ P, where P is the space of probability measures
and θ a statistics or linear functional. We introduce [11] the
following.

Definition 2 (influence function (IF)). For G = δx , where δx
is the unit point mass at x, and given 0 ≤ t ≤ 1, we have

IF(x, F, θ) = lim
t→0

θ
[
(1− t)F + tδx

]− θF
t

. (15)

This formula says that the IF quantifies the effect of an in-
finitesimal contamination on a statisticθ fromone additional
observation with value x and the sample size n → ∞ [12]. If
the above limit exists, IF is the derivative of the statistic at the
underlying distribution function F and, therefore, it is a fun-
damental quantitative robustness information because apart
from assessing the influence of individual data points on the
value of an estimate, thus measuring the asymptotic bias, it
also gives an explicit formula for the asymptotic variance of
the estimate, usually expressed as

∫
IF(x, F · θ)2F(dx), thus

describing its asymptotic properties. When ρ equals the like-
lihood function − log f(x, θ), we find the same likelihood-
based criteria as before.

The IF for M-estimators can be calculated, in summary,
as follows: one starts from the equation

∫
ψ(x, F, θ) = 0 and

replaces F with a contaminated distribution function, that is,
Ft = (1 − t)F + tG. Then one defines θ̇ = limt→0(θ(Ft) −
θ(F)/t) and differentiates the initial equation. After some
calculations the following relation is found:

IF∗(x, F, θ) = ψ(x, F, θ)
− ∫ (∂/∂θ)ψ(x, F, θ)F(dx) . (16)

Therefore, the influence function for M-estimators is pro-
portional to the functional ψ, or otherwise the score
function, in the likelihood setup. Moreover, one finds an
asymptotically efficient estimate only when IF(x, F, θ) =
(∂ logL/∂θ)(1/IM(θ)) and it can be shown [12] that the
asymptotic variance AV of the estimate is such that AV =
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∫
IF(x, F, θ)2 dF ≥ 1/IM(θ), the equality holding only for

IF ∝ (∂ logL/∂θ).

Definition 3 (one-step M-estimators). Estimators that solve
empirical moment equations like

∑
i ψ(xi, θn)/n = 0; for

Ψ = ∂E(ψ(x,θ)/∂θ)|θ=θ0 nonsingular, we have T(x) =
Ψ−1ψ(x,θ) and a final recursive step given by θ̃ = θ̂ +∑
i T̂ (xi, θ̂)/n.

In the likelihood framework, where one maximizes logL
or equivalently minimizes − logL, the NR iteration shown
before is effective; if instead of workingwith thematrix of sec-
ond derivatives one uses its expectation, the scoring method
is employed and thus the information matrix now appears
in the update step by simply multiplying the expectation by
minus one,

θ∗ = θ̂ + IM−1(θ̂)∂ logL
(
θ̂
)
. (17)

Alternatively, theBHHHalgorithm step given in (14) could be
used. For θ̂ consistently estimated in the above formulations,
with just one iteration an estimator with the same asymptotic
distribution as the ML estimator can be found; therefore,
asymptotically efficient estimates are achieved.

5. M-ESTIMATION APPROACH

Consider the choice of the following error criterion function,
in the light of the previously introduced M-estimation ap-
proach: En(θ̂) =

∑n
i=1 ρ(yi − ŷi), where ŷi is computed by

the net as a superposition of functions of the input x and the
weights θ, as explained before.

The ρ function is a statistically robust function if it satis-
fies certain properties. Basically, it has either to trim out the
abnormal data points or allow for a smoothly descending-to-
0 influence function, and still preserve efficiency in estimat-
ing the bulk of the observations distribution. It means that it
must be fully informative about the middle region of the data
distribution, that is, efficient at the Gaussian model, but also
able to account for the possible thick tails of the distribution.
Thus,ψ(·) = ρ′(·) is the IF to be analyzed and we require it
to be bounded and continuous. Some well-known functions
offer useful examples.

Example 4 (Huber’s minimax).

ρλ(x) =


x2

2λ
+ λ

2
|x| ≤ λ,

|x| |x| > λ,

ψλ(x) =


x
λ

when |x| ≤ λ,

sign(x) |x| > λ,

(18)

with λ appropriately chosen. One can also have a class of esti-
mators whose IF → 0 according to a prestablished threshold,
that is, x ≥ c;

Example 5 (Hampel’s skipped means).

ρ(x,α) =
x2 |x| < √α,
α otherwise,

ψ(x,α) =
2x |x| < √α,

0 otherwise.

(19)

Another robust class of estimators is shown in the follow-
ing example.

Example 6 (Lorentzian error functions).

ρ(x,σ) = log
(

1+ 1
2

(
x
σ

)2)
,

ψ(x,σ) = 2x
2σ2 + x2

,
(20)

where σ is a scale parameter that regulates the slope of the
error function shape and thus the degree of decay to zero
of the relative redescending IF. The correspondent criterion
error, for the scale parameter set at σ = 1, is called least
mean log squares in [13].

Instead of minimizing the ρ criterion function, we could
equivalently reason in terms of first-order conditions (FOC),
the equations expressed before through the function ψ. And
given that the system of equations that one obtains is nonlin-
ear, we must use the iterative techniques shown before to get
solutions. The one-step M-estimators are definitely useful in
these circumstances since they improve the efficiency of an
initial consistent estimator,which in learning problems could
be the backpropagation algorithm that runs for some epochs
and then is stopped based on a cross-validation method.

We can proceed and generalize the above framework in
the following way:

(a) by considering the FOC equation for the local solution
θ∗ we saw that we must find solution for an equation like
V(θ) = 0,whereV(θ) =∑i v(ei(θ̂)) =

∑
i(∇θf (xi, θ̂)[yi−

f(xi, θ̂)]), with ei(·) the residual computed at pattern i. It
would intuitively help, for robustness purposes, to embed the
influence function in this context; this step would allow us
to merge the M-estimation approach directly in the learning
paradigm [13]. Then,

(b) by simply using the chain rule one can decom-
pose the error criterion function first derivative such that
∂ Loss(ei(θ))/∂θ = (∂ Loss(ei(θ))/∂ei)(∂ei/∂θ) and thus
write the original expression equivalently as a function of
the influence function; here the IF is playing the role of the
weight or influence of the individual residuals on their own
first derivatives, that is,

∂ Loss
(
ei(θ)

)
∂θ

= ψi
∂ei(θ)
∂θ

. (21)

(c) We could extend this strategy by making it work in
a recursive fashion, by applying the same principles in the
Kalman filter setup; we can indeed exploit the fact that the
filter delivers a set of prediction errors, one at each run,
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and from them we can set a likelihood function equation
as in (12). This formula basically corresponds to a func-
tional which we can express in the following compact way:
Γ(θ̂k) = E[L(η, θk)], where η is the vector of prediction er-
rors, and thus we can come up with an empirical functional
like (1/n)

∑n
i=1 L(ηi, θk), after the filter’s runs. In the engi-

neering literature this is known as prediction error identifica-
tion criterion, where the model can also deal with misspecifi-
cation but still retain the asymptotic properties, in the same
spirit of the QML criterion [14].

(d) In order to exploit the IF in such a recursive frame-
work, we note that the same functional Γ numerically opti-
mized in the state space framework can be treated in a re-
cursive way when a SA algorithm is adapted to include it in
its updating step, that is, θ̂n+1 = θ̂n + anWn(ηn), where the
Wn term is going to modulate (or equivalently measure the
influence of) the impact of the likelihood prediction errors,
a sort of analog of the gain factor in the Kalman filter up-
date equation, as already shown in the previous part of this
work.

By just allowing for the Wn matrix to be decomposed
as in (21), we have the IF entering the update step. The
Wn is thus defined as the factorization between the ratio
of the first derivatives of the error (or loss) function com-
puted with respect to the prediction errors derivatives and
the ratio of the prediction errors derivatives calculated with
respect to the weights derivatives. In this way we are con-
sidering the influence of possible outliers in the data set
onto the prediction errors derivatives. When instead Wn
is a composition of a gradient function with a weight-
ing matrix, we are in the case of the modified RM of be-
fore, or equivalently the IKF. In the learning fashion we
interpret this step like a generalized BP algorithm where
the Wn can again be defined as the factorization described
before.

6. CONCLUSIONS

From the statistical inference perspective it is important to
have the possibility of adopting estimators that use likeli-
hood information in order to reach better asymptotic prop-
erties for the final estimates. Equivalently, for neural networks
learning processes, it would be ideal to be able to character-
ize the estimates not only in terms of consistency but also of
efficiency. Depending on the error function we may use the
information coming from the influence function, by letting
it to enter the recursive steps characterizing the Kalman fil-
ter or the stochastic approximation algorithms, and thus the
generalized backpropagation, so to modulate the impact of
deviations from the assumed model on the estimates or by
using it to correct for efficiency an initial robust estimate via
the one-step Newton-Raphson type formula.

APPENDIX

In (12) we derived the PED likelihood function equation,
logL =∑N

t=1 lt , where for univariate time series

lt = −1
2

log 2π − 1
2

log
∣∣Dt

∣∣− 1
2
η
′
tD

−1
t ηt. (22)

We differentiate lt with respect to the jth element of
the parameter vector θ (we use two rules for symmet-
ric matrices: (∂|X|/∂t) = |X| tr[X−1(∂X/∂t)], ∂X−1/∂t =
−X−1(∂X/∂t)X−1):

∂lt
∂θj

= −1
2

tr

[
D−1
t
∂Dt

∂θj

]

− 1
2

[
∂η′t
∂θj

D−1
t ηt − η′tD

−1
t

× ∂Dt

∂θj
D−1
t ηt + η′tD

−1
t
∂ηt
∂θj

]
.

(23)

We can take the trace of the terms appearing in the second
squared parenthesis and rewrite the expression as follows:

∂lt
∂θj

=−1
2

tr

[(
D−1
t
∂Dt

∂θj

)(
I −D−1

t ηtη′t
)]− (∂ηt

∂θj

)′
D−1
t ηt.

(24)
We now consider (24) and differentiate it with respect to the
r th element of the parameter vector θ, so that we obtain the
(jr)th element of IM(θ):

∂2lt
∂θj∂θr

= −1
2

tr

[
∂
(
D−1
t
(
∂Dt/∂θj

))
∂θr

][
I −D−1

t ηtη′t
]

− 1
2

tr

[
D−1
t
∂Dt

∂θj
D−1
t
∂Dt

∂θr
D−1
t ηtη′t

]

+ 1
2

tr

[
D−1
t
∂Dt

∂θj
D−1
t

(
∂ηt
∂θr

η′t + ηt
∂η′t
∂θr

)]

− ∂2η′t
∂θj∂θr

D−1
t ηt − ∂η′t

∂θj
∂D−1

t
∂θr

ηt

− ∂η′t
∂θj

D−1
t

∂ηt
∂θr

.

(25)

By applying the law of iterated expectations we take expecta-
tions in the above equations conditional on the information
available up to time t − 1; thus, with innovations involved,
many of these terms result 0 by definition, and we can find a
much simpler IMθ expression.We have that Ez[Ey/z(y/z)]=
Ey(y), or in other terms the random variable E(y/z) has the
same expectation as the y one; thus, when z represent pre-
vious observations, time series too are accounted for. In our
setup this means that since ηt = yt − ŷt = yt −Et−1(yt), we
can express the innovation derivatives as functions of the
last expression, that is, dependent on the Et−1(yt) factor
∂ηt/∂θj = −(∂/∂θj)Et−1(yt). Thus, Et−1((∂η′t/∂θj)ηt) =
(∂η′t/∂θj)Et−1(ηt) = 0, given that Et−1(ηt) = 0; it is
the case that Et−1((∂2η′t/∂θj∂θr )D

−1
t ηt) = (∂2η′t/∂θj∂θr )

×D−1
t Et−1(ηt) = 0, for the same reason of the previous case.

The first term in the first row of the master expression too
disappears, since Et−1(ηtη′t) = Dt and thus the last squared
parenthesis simplifies to 0. Then, we are left with a simplified
second term plus the very last one in the expression; all the
other terms drop out.
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Thus, the final expression for the (jr)th element of IM(θ)
is given by

IM(j,r)(θ) = 1
2

∑
t

tr
[
D−1
t
∂Dt

∂θj
D−1
t
∂Dt

∂θr

]

+ E
[∑

t

(
∂ηt
∂θj

)′
D−1
t

∂ηt
∂θr

]
,

(26)

where the
∑
t now appear by the definition

−E
[
∂2 logL
∂θj∂θr

]
= −E

[∑
t

∂2lt
∂θj∂θr

]
(27)

and the E left in the last term has, asymptotically, a negligible
impact on the argument’s order of magnitude.
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