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We present a new methodology for the construction of high-rate channel modulation run-length-limited RLL(0, k) codes. Simple
modulation encoders and decoders are constructed, with low error propagation during decoding. They combine partial error
detection capability (PED) to boost the performance of a concatenated outer Error Correction Code (ECC) (Blaum, 1991).
Moreover, current systems are using low redundancy ECC, and the overall rate is mainly determined by the inner modulation code
rate, which critically is to be maintained high. Code rates Rc = N/(N + 1), for example, 16/17, 24/25 and higher are achievable,
with efficiency exceeding 0.94 and 0.96, respectively. The proposed fixed length block decodable codes, are generalized schemes of
the type N/(N + 1) (d = 0, k = [N/2]) for N ≥ 5.
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1. INTRODUCTION

New high-rate RLL block codes are proposed in this paper.
These are (d = 0, k) codes, where d and k denote, respec-
tively, the minimum and maximum run-length of zeros
between ones in an unprecoded channel data stream. There
are several RLL codes with or without enhanced error control
capabilities [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. The (d = 0, k/I)
RLL codes use gated-partition logic to achieve high rates
such as 8/9 [1] and 16/17 [2], while focusing on the k, I
(interleave) constraints. Their error detection capability is
limited to the codewords non-supported by the code, as well
as to the weak constraint of k, I violations. Furthermore,
the block mapping size grows exponentially with the user
data word length N. Concatenation of conventional RLL
codes with ECC can reduce the effectiveness of the ECC,
especially with a sliding block encoder/decoder subject to
error propagation [3]. The single-error correcting RLL codes
combine RLL with single-error correcting capability via an
increase of the codewords’ minimum distance dmin, but with
the adverse effect of a lower rate, such as 8/21, 8/28 [3], or
1/3 and 7/17 [4]. In [5], it was proposed that the Hamming
subcode block length is kept as large as possible to avoid
rate loss for a single-error correcting ECC/RLL code. In [6],
redundancy based on appended parity bits is used, or access
to channel-side information is possible and sufficiently long
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codewords are assumed, to construct high rate codes with
single error correction capability. Single error detecting
systematic RLL codes subject to rate loss are presented
in [7], using m parity check bits to produce rates of
RC = N/(N + 1 + m). Finally, in [8] the error detecting
modulation codes with 3–4 times larger block length than
conventional RLL of the same rate, alleviate the code rate
overhead due to the appended parity, but they increase the
system’s probability of error. In [8], code rate reduction is
avoided by choosing the odd or the even sequences only,
whichever provides sufficient number of codewords satisfy-
ing constraints d, k. Not all rates are feasible for every block
length due to insufficient number of available codewords,
and the obtained rates are lower than the conventional 8/9,
and 16/17 RLL codes.

The new RLL/PED codes utilize both parities. Hence, the
number of available codewords is increased sufficiently to
obtain RLL codes of the highest code rate N/(N + 1) for
any block length N + 1. Code rates as high as possible are
required to increase the linear recording density in band-
limited systems and avoid a larger bandwidth expansion fac-
tor Be ∼ RC−1. Low complexity high-rate constrained codes
were presented in [9] with smaller constraint k. The new
proposed codes are characterized by lower computational
complexity independent of the chosen blocklength N + 1.
They have an increased list of error-detection conditions
rather than just constraints pertaining to k only as in [1, 2].
The block mapping is designed so that any concatenation
of codewords c satisfy constraint k. The memoryless type
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Figure 1: The two-stage modulation encoder: (1) Convolutional
pre-encoding, (2) Post-encoding: block mapping via conditional bit
inversions, where V is the set of allN+1-bit sequences any concate-
nation of which satisfies constraint k.

of encoding/decoding bounds the decoding error propaga-
tion within a block’s length only. Very low error propagation
decoding is supported by the small number of manipulated
bits Q = 1,2 per codeword (Q = 8 in [9]).

In Section 2, the code construction methodology is pre-
sented, with a specific construction example. In Section 3, the
system performance is evaluated in relation to its capability
for detection of the dominant error events (EE) in high den-
sity partial response channels such as EPR4 and E2 PR4, and
analytical results are presented on the decoding error prop-
agation properties. Finally in Section 4, conclusions on the
new RLL constrained codes are drawn.

2. CODE CONSTRUCTION

2.1. The algorithm

We consider the set of all polynomials of degree N in
GF(2)[x]. Associate the data polynomial d(x) to each data-
word (d0, d1, . . . , dN−1) so that d(x) = d0 + d1x + · · · +
dN−1xN−1. Similarly, denote by c(x) = c0+c1x+· · ·+cNxN
and y(x) = y0 +y1x+ · · ·+yNxN , the codeword polyno-
mials of degree N, associated to the recorded (c0, c1, . . . , cN)
and restored (y0, y1, . . . , yN) codewords, respectively. En-
coding of d(x) into codeword c(x), is taking place in two
steps (Figure 1).

Component code 1, “pre-encoding”:1,2

b(x) = (1+ x)d(x) (overall parity [11]), (1)

where b(x) is the pre-encoded polynomial of degree N and

1Binary domain equivalent: [0 d 0] convolve 1⊕D−−−−−−−−−→ b(N+1-tuples of even
weight).

2Alternatively, the same high rate can be produced if a single parity bit is
appended at the end of the N-bit dataword d to produce the (N + 1)-bit b
of only odd or only even parity.
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Figure 2: The demodulation decoder.

even weight wb. If constraint k is violated by some concate-
nations of b, then post-encode:

Component code 2, “post-encoding”: add γ(x), to invert
Q preselected bits in codeword b so that all c concatenations
form k-constrained sequences

c(x) = b(x)+ γ(x),

γ(x)


= 0 if all b concatenations satisfy k,
≠ 0 if at least one concatenation of b violates k,

(2)

where c(x) is the final codeword polynomial of degree N
and even or odd weight wc , that is, γ(x) = 0 or γ(x) ≠ 0,
respectively.

Set IQ containsQ predetermined positions (odd number)
for bits bi of the pre-encoded codeword b(x). The set IQ is
a function of q critical bits partitioning b(x), and is chosen
so that constraint k is satisfied after manipulating Q bits bi
during the post-encoding stage. The post-encoding mapping
dimensionality is equal to 2q, where q out of N + 1 bits are
preselected to determine the change of an odd number of bits
Q ≥ 1, so that constraint k is satisfied. The changed parity
keeps track of the manipulated codewords c. Finally, the “ar-
bitrary” polynomial R(x) has the remaining terms of b(x)
which remain unchanged.

Table 1: The block mapping rules.

ξi 1 b̄i 0

ci b̄i 1 bi

During the post-encoding stage, two types of conditional
mappings are distinguished.

Type I. Odd number of bit inversions Q = 3,5, . . . (Q > 1)
IQ = {l,m, . . . , n︸ ︷︷ ︸

Q odd

}

ξl = ξm = · · · = ξn = 1 −→ γ(x) = xl + xm + · · · + xn︸ ︷︷ ︸
Q terms (odd num.)

,

Tables 1, 2
cl = b̄l, cm = b̄m, cn = b̄n.

(3)
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Table 2: The Encoding/Decoding equations.

Encoding Decoding

c(x) = (1+ x)d(x)︸ ︷︷ ︸
b(x) even weight

+∑i∈IQ ξix
i︸ ︷︷ ︸

γ(x)

d̂(x) = (1+ x)−1

{
y(x)+ (wy mod 2)

δ(x)︷ ︸︸ ︷∑
i∈IQ ζix

i

}
︸ ︷︷ ︸

b̂(x)

=∑N
i=0 bixi +

∑
i∈IQ ξix

i =∑i∈IQ (bi ⊕ ξi)xi + R(x), = (1+ x)−1
{∑

i∈IQ
{
yixi ⊕ (wy mod 2)ζixi

}+∑i∉IQ yix
i
}

where R(x) =∑i∉IQ bix
i, IQ

�= f(bm, . . . , bn︸ ︷︷ ︸
q

) =



(1+ x)−1

∑N
i=0 yixi = (1+ x)−1y(x) if wy even

(1+ x)−1
{∑

i∈IQ (yi ⊕ ζi)xi +
∑
i∉IQ yix

i
}

if wy odd

Table 3: Key code parameters.†

encoding: bi bi+(N/2) Encoder IQ = f(bi, bi+(N/2)) Encoding/Decoding Codeword

decoding: yi yi+(N/2) Decoder IQ = f(yi,yi+(N/2)) coefficient ξi/ζi Parity

0 0 Q = 3: {i, i+ (N/2), i+ (3N + 4)/4} 1/1 odd

0 1 Q = 1: {i− 1} b̄i−1/1 odd

1 0 Q = 1: {i+ (N/2)+ 1} b̄i+(N/2)+1/1 odd

1 1 ∅ 0/0 even

†For i = 0, . . . , N, cyclical shifts modulo(N + 1) of the k-constraint controlling bits within the codeword’s block, generate N + 1 equivalent
codes with respect to rate and constraint k.

Type II. One bit is set equal to 1 (Q = 1):

ξi = b̄i −→ γ(x) = b̄ixi
Tables 1, 2

ci = 1. (4)

Decoding (see Figure 2). (1) For all odd-weight codewords
reverse the inversions incurred during post-encoding:

b̂(x) = y(x)+ (wy mod 2)δ(x), (5)

where b̂ is the estimate of b,wy is the weight of the received
noise-distorted codeword y , and δ(x) is defined in Table 2.

(2) Divide by 1 + x to find an estimate of the used
word d:

d̂(x) = (1+ x)−1b̂(x). (6)

2.2. Construction example: 2-bit partitioning
N/(N + 1) (0, k = N/2) N = 8,16,24,32, . . .

We assume that the critical bits bi, bi+(N/2) (q = 2) partition
(index i can be shifted cyclically modulo(N + 1)) the pre-
encoded b = [∗∗bi∗ · · ·︸ ︷︷ ︸

N/2−1

∗bi+N/2∗ · · ·︸ ︷︷ ︸
N/2−2

∗], where ∗ repre-

sents a “don’t care condition (0 or 1). The samples controlling
constraint k are ci−1, ci, ci+[N/2], ci+[N/2]+1, ci+[(3N+4)/4].
The 2-bit state (bi bi+(N/2)) determines the post-encoding
rules and the parity of the generated codeword c. There-
fore only four mappings take place independent of the block
length N, whereas for the gated logic techniques [1, 2] the
mapping lookup-table grows exponentially with N. It is the
state (bi bi+(N/2)) that an odd number of bit inversions

is dependent upon, so that constraint k is satisfied for all
possible codeword concatenations. When there is no need for
post block mapping without violating the target constraint
k (allowed state), then the final codeword c preserves an
even weight. The state (yi yi+(N/2)) combined with y ’s par-
ity calculated by the decoder, determine the decoding rules
(see Figure 3). There are many alternative choices to the above
transformations with the same resulting k, that is, instead
of inverting sample bi+(3N+4)/4, any other bit can be used
within the 	bi+(N/2)+2 bi+N−1
 range, or instead of setting
bit ci+(N/2)+1 = 1, ci+(N/2)−1 could be set to 1, and so forth.

The existing coupling between constraint k and the block
length N, has implications on the phase detector updates in
the PLL, that is,very large block lengthsN yield relatively loose
constraint k unable to guarantee sufficiently frequent transi-
tions at the phase detector. However, typical block lengths of
N = 8,16,32, . . . yield practical k values. The target value for
the constraint k depends on the selected number of critical
and manipulated bits q and Q, respectively, as well as their
relative positions within the codeword. To produce a tighter
constraint k, such as k = N/3, a larger number of critical bits
(q > 2) and/or manipulated bits (Q > 3) should be used.

For the rate 16/17 andq = 2-bit or 5-bit partitioning, less
than 0.07% and 0.01%, respectively of the codewords c have
Hamming weight wc less than 4, and for more than 91% of
the codewords c, their Hamming weights wc range between
7 and 13 (see Figure 4). This type of Hamming weight dis-
tribution for the encoded symbols secures that the necessary
frequency of transitions is produced to update regularly the
phase detector in the timing recovery loop.
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2.3. Error control (PED)

Observing the signal space-partitioning by the encoding
rules, derives the error-detection equations. By complement-
ing the post-encoding rules described by (3), (4), and Table 2,
the produced illegal combinations of yi’s form the error de-
tecting conditions. Type II mapping performs error detection

under the following two three-bit conditions, while Type I
mapping eliminates the state bi = 0, bi+N/2 = 0 to form
one two-bit error detecting condition. These error detection
conditions capture both random and/or burst errors.

Table 4: Error Detection (∗ denotes a “don’t care” condition).

q=2 critical bits mapping onto the The derived error

detection eqns.

bi bi+N/2 final codeword c yi−1 yi yi+N/2 yi+N/2+1

0 1 Type II: ci−1 = 1 0 0 1 ∗

1 0 Type II: ci+N/2+1=1 ∗ 1 0 0

0 0 Type I: ci=ci+N/2=1 ∗ 0 0 ∗

2.4. Example code of rate 8/9

Assume the user dataword d = (01001000):
(1) Encoding: b(x) = (1+ x)d(x) → b = (011011000).

From Table 3, and for i = 2: ξ2 = ξ6 = ξ9 = 1, ξ1 = b̄1 = 0,
ξ7 = b̄7 = 1, b2 = 1, b6 = 0 ⇒ γ(x) = x7 ⇒ c(x) =
b(x)⊕ γ(x)→ c = (011011010) recorded codeworded.

(2) Decoding: y = c = (011011010) has odd parity and
y2 = 1,y6 = 0 ⇒ δ(x) = x7 ⇒ b̂ = y⊕δ = (011011000)⇒
d̂(x) = b̂(x)/(1+x)→ d̂ = (01001000) restored codeword.

(3) Error Control: we assume that in the presence of
excessive noise levels, the value of bit y7 is changed from
1 to 0, so that the erroneous codeword y = (011011000)
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Table 5: The single bit NRZ error e±1
i ; EPR4 16/17(0,8); d2

min = 4 EEs.‡

Composite error detecting patterns; ei = ci −yi; 1 ≤ i < 17

Type I error detection rules:

yi = 0 & yi+8 = 0
e1
i & yi+8 = 0

yi = 0 & e1
i+8


→ Pcmp = PEE/2

Type II error detection rules:

yi−1 = yi = 0 & yi+8 = 1

e1
i−1 & yi = 0 & yi+8 = 1

yi−1 = 0 & yi = 0 & e−1
i+8

yi−1 = 0 & e1
i & yi+8 = 1


→ Pcmp = PEE/4

yi = 1 & yi+8 = yi+9 = 0

e−1
i & yi+8 = 0 & yi+9 = 0

yi = 1 & e1
i+8 & yi+9 = 0

yi = 1 & yi+8 = 0 & e1
i+9


→ Pcmp = PEE/4

‡All operations on indices are mod (N + 1), that is, mod 17 in this case.

is received. From Tables 3 and 4: ξ7 = b̄7 ⇒ c7 = 1, since
y7 = 0 → y2 = 1, y6 = 0, y7 = 0 ⇒ An error is de-
tected. If instead y2 bit value is changed from 1 to 0, then the
received codeword y = (010011010), and from Tables 3
and 4: ξ2 = ξ6 = 1 and y2 = 0 ⇒ An error is detected.

3. PERFORMANCE EVALUATION

3.1. PED and the sequence detector’s dominant
error events

All symbol errors non-supported by the code are detectable.
This is not the case for channel bit errors fabricating valid
codewords c. The number of invalid codewords equals the
number of valid codewords therefore for independent bit
errors an equal probability (1/2) for detecting or miss-
ing an error is being produced. However, in systems using
sequence detectors or convolutional decoders (VA) there are
dominant error events. Among other random error patterns,
some of the sequence detector’s dominant minimum distance
EEs can be captured. Without loss of generality, we define
the NRZ error sequence e = c − y . Then the NRZ errors
ei = ci −yi and the corresponding detected bit values yi are
related by: if ei = 0 ⇒ yi = 0, or 1; if ei = 1 ⇒ yi = 0;
if ei = −1 ⇒ yi = 1. We assume in an EPR4 system the
d2

min = 4 EE with error sample vector [1 0 −1 1 0 −1], pro-
duced by the NRZ input error vector e1−11

i with first bit error
at position i:

e1−11
i

�= [ei = 1, ei+1 = −1, ei+2 = 1
]
, (7)

where the superscript denotes the NRZ error sequence
and the subscript denotes the first bit error position. The
detectable error patterns combine dmin EEs and conditions
on certain restored bits yj . Their probability of occurrence
Pcmp = 2−mPEE < PEE (probability of dmin EE), where
m = 1,2, . . . is the number of additional bits yj in the con-
dition. Tables 5 and 6, list the conditions under which the
single-bit and the tribit NRZ errors are captured to enhance
the hit/miss error ratio.

The new channel coding schemes become more powerful
when cascaded with an outer ECC code [12]. The decoder
observes the restored high-rate encoded binary sequences y
and based on the encoder’s list of constraints, it either decodes
a legitimate restored codewordy to the initial data word d̂, or
it generates erasure byte(s) y(L) after a constraint violation
is detected [12]. The location L of the erased symbol y(L)

is passed from the demodulation decoder to the outer ECC
decoder. Its error correcting capability is doubled by operat-
ing on the erased symbols (error symbols of known location)
produced by the PED scheme of the new RLL code.

3.2. Low error propagation decoding

The RLL/PED codes are better immuned to demodulator-
induced error bursts than conventional RLL [1, 2]. The
decoder’s feedback operation due to the polynomial divi-
sion, renders the system prone to error propagation, however
bounded by the block’s boundary. That feedback effect can
be eliminated if during pre-encoding, instead of multiplying
with 1 + x, a single parity bit is appended to form either
only even, or only odd pre-encoded codewords b. To further
reduce the decoding error propagation, the added parity bit
is dropped instead of performing division by 1+ x.

A channel bit error does not necessarily corrupt the whole
codeword, while this is not the case with conventional RLL
codes (see Table 7). The decoder’s error burst length B (in
bytes) depends on 2 properties of the EE: (1) its length L, and
(2) its starting point L1. If the critical bits are yi, yi+[N/2]
and the channel EE starts at a position L1 > i+ [N/2], then
the front part of the codeword is still decoded correctly: first
byte is saved for rates 16/17, 24/25, first and second bytes
for rate 32/33, and so forth. In general, the first [N/16] bytes
are uncorrupted.

In general, the tighter (looser) the target constraint k,
the larger (smaller) the number of critical and manipulated
bits needed q and Q, respectively, and therefore the higher
(lower) the decoding error propagation, while the smaller
(larger) the probability that a larger fraction of the codeword
will be uncorrupted.



186 EURASIP Journal on Applied Signal Processing

Table 6: The tribit-NRZ error e±1−11
i ; EPR4 16/17(0,8); d2

min = 4 EEs.#

Composite error detecting patterns; ei = ci −yi; 1 ≤ i < 17

Type I error detection rules

yi = yi+8 = 0

e1−11
i & yi+8 = 0

e1−11
i−2 & yi+8 = 0

e−11−1
i−1 & yi+8 = 0

yi = 0 & e1−11
i+6

yi = 0 & e1−11
i+8

yi = 0 & e−11−1
i+7



→ Pcmp = PEE/2

Type II error detection rules

yi−1 = yi = 0 & yi+8 = 1

e1−11
i−3 & yi = 0 & yi+8 = 1

e−11−1
i−1 & yi = 0 & yi+8 = 1

yi−1 = 0 & e−11−1
i−1 & yi+8 = 1

yi−1 = 0 & e1−11
i & yi+8 = 1

yi−1 = 0 & yi = 0 & e1−11
i+6

yi−1 = 0 & yi = 0 & e1−11
i+8

yi−1 = 0 & yi = 0 & e−11−1
i+7




→ Pcmp = PEE/4

yi = 1 & yi+8 = yi+9 = 0

e1−11
i−1 & yi+8 = 0 & yi+9 = 0

e−11−1
i & yi+8 = 0 & yi+9 = 0

e−11−1
i−2 & yi+8 = 0 & yi+9 = 0

yi = 1 & e1−11
i+6 & yi+9 = 0

yi = 1 & yi+8 = 0 & e1−11
i+9



→ Pcmp = PEE/4

#Note that the tribit generates the dominant dmin EE for E2 PR4 systems too.

Table 7: min length EE l, and max length error burst B (in bytes).

16/17 l B 24/25 l B
New/Conventional New/Conventional

1/1 2 1/1 3

6/2 3 8/2 4

10/2 4 14/2 6

3.3. Analytical performance evaluation for the
RS-RLL/PED concatenation

An analytical upper bound for the BER performance of the
RLL/PED and its coding gain over the conventional RLL
codes when they are concatenated with an outer ECC code, is
developed in this section. This coding gain is attributed to
its lower decoding error propagation and its PED capability.
EE types listed in Table 8, dominate the assumed PR chan-
nel with transfer function (1 − D2)(1 + D). Therefore, the
channel output BER is upper bounded by:

channel outp. BER: pb ≤
∑
d
KdQ(Rd snr),

where R = RRLLRECC = N − 2t
N + 1

,

RLL decode outp. BER: pRLL
b ≤

∑
d
Bavg
d KdQ(Rd snr),

(8)

where d is the EE distance, Kd is the multiplicity factor, and
Bavg
d is the average number of byte errors per EE of distance
d at the RLL decoded output derived from Table 8.

Table 8: RLL rate 16/17: Decoder Error Propagation.

[EE Type] (d) BRLL/PED
min − BRLL/PED

max /Bconv
min − Bconv

max

[1] (2) 1(94%)− 2(6%) / 2(100%)

[11] (2.4) 1(74%)− 2(26%) / 2(97%)− 4(3%)

[111],[101] (2), [1–11] (3.4) 1(59%)− 2(41%) / 2(91%)− 4(9%)

An ECC decoding failure occurs each time the number
of RLL decoded bytes in error per block exceeds its error
correcting capability t. Value equal to 1 is assigned to variable
Bi for a byte in error and 0 otherwise. Then the ECC failure
rate F can be evaluated as follows:

F = P
( N∑
i=1

Bi > t
)
=
N−t∑
i=1

(
N
t + i

)(
Perr

byte

)t+i(
P corr

byte

)N−t−i
,

Perr
byte = P

(
Bi = 1

) = k∑
i=1

(
k
i

)(
pRLL
b

)i(
1− pRLL

b

)k−i
,

P corr
byte = P

(
Bi = 0

) = 1− Perr
byte =

(
1− pRLL

b

)k
.

(9)
Depending on the application, the two ways of exploiting the
RS-RLL/PED gain are summarized in Table 9.

Analytical performance comparisons are shown in
Figure 5, between RLL/PED and conventional RLL [1, 2]. At
a BER = 1e − 10 (ECC decoded output), the RLL/PED and
the conventional RLL suffer, respectively, 1.5 dB and 0.6 dB
loss due to error propagation. Turning on the PED capability
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Table 9: ECC-RLL/PED concatenated system performance gain.

Design parameters kept constant RLL/PED advantage over RLL conventional

ECC Error Correcting capability t Lower RLL decoded BER (PED + lower B combined),

(same R, BW expansion, channel BER) Larger system margin (lower end BER)

End BER Smaller: overhead (t), BW expansion (lower channel BER), B

lower speed electronics (slower channel clock/sampling rate)

12 14 16 18 20 22 24
10−30

10−25

10−20

10−15

10−10

10−5

100

snr

B
E

R

RLL decod. outp. BER (PED off)
RLL decod. outp. BER (PED on)

RS Failure Rate (t=8 w/ RLL conv.)

channel BER conventiona @ 1.2814 GHz
channel BER PED off @ 1.1135 GHz
channel BER PED on @ 1.0581 GHz
RLL decod. outp. BER (convent.)

Figure 5: Performance comparison: RLL convent. versus RLL/PED; same end BER; different t, R, B.

an additional 0.3 dB is gained, to yield a 2 dB compound gain
which can be translated as an 18% clock speed savings (by
reducing the outer ECC required overhead).

4. CONCLUSIONS

A construction methodology for a new class of highly effi-
cient, low complexity, RLL/PED constrained codes has been
presented. The encoding, decoding, error control equations
and constraint k are expressed as simple functions of the
information block length N, so that a fixed rate-independent
endec architecture for encoder/decoder/error-control is
accomplished, to offer: (1) very high efficiency obtained at a
constant very low complexity, (2) rate adjustable codes. These
properties render the codes suitable for simple implementa-
tion requiring inexpensive endec circuitry. The decoder’s PED
capability indistinguishably captures some of the single drop-
in, dropout, bit-shifts as well as error bursts. The creation of
composite error control patterns, capable of capturing the
sequence detector’s dmin EEs, increases the probability of
error detection. The new codes obtain superior perfor-
mance for the concatenation of inner modulation/outer ECC
decoders: If the channel errors corrupt any of the q critical

bits, its PED capability generates erasure symbols and boosts
the ECC performance; if not, then due to the decoder’s lower
error propagation, most probably one or more bytes per block
are still decodable therefore relaxing the ECC redundancy
requirement.
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