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This paper proposes the use of Markov Chain Monte-Carlo (MCMC) simulation methods for equalizing a satellite communication
system. The main difficulties encountered are the nonlinear distorsions caused by the amplifier stage in the satellite. Several
processing methods manage to take into account the nonlinearity of the system but they require the knowledge of a training/learning
input sequence for updating the parameters of the equalizer. Blind equalization methods also exist but they require a Volterra
modelization of the system. The aim of the paper is also to blindly restore the emitted message. To reach the goal, we adopt
a Bayesian point of view. We jointly use the prior knowledge on the emitted symbols, and the information available from the
received signal. This is done by considering the posterior distribution of the input sequence and the parameters of the model.
Such a distribution is very difficult to study and thus motivates the implementation of MCMC methods. The presentation of the
method is cut into two parts. The first part solves the problem for a simplified model; the second part deals with the complete
model, and a part of the solution uses the algorithm developed for the simplified model. The algorithms are illustrated and their
performance is evaluated using bit error rate versus signal-to-noise ratio curves.
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1. INTRODUCTION

The importance of telecommunication since the last decade
leads to use satellites for transmitting the information. The
main drawback of this transmission method is the attenu-
ation of the signal due to its trip through the atmosphere.
Therefore, one of the aims of the satellite is to “re-amplify” the
signal before sending it back to Earth. The lack of space and
energy available on the satellite leads to use TWT (Traveling
Wave Tube) amplifiers for realising this stage of transmission
[1]. Unfortunately, these kinds of amplifiers are intrinsically
nonlinear and thus imply complex processing methods for
realizing the equalization.

Neural networks inspired methods for modeling and
equalizing these communication systems have been success-
fully implemented [2, 3, 4]. A Volterra identification cou-
pled with a Viterbi receiver has also been studied in [5].
However, these methods need a learning (or training) input
sequence for setting the parameters of the equalization al-

gorithm. Some of the recently proposed methods perform
successfully the equalization of nonlinear communication
channels without the help of such a known input sequence.
However, some of these blind methods require special as-
sumptions on the emitted signals, Gaussian and circular com-
plex random noise in [6] for instance.

Many recent blind methods perform the identification [7]
or the equalization [8, 9, 10] of nonlinear communication
channels under very general assumptions: they just require
that the system can be approached by a finite Volterra filter.
Such a modelization is possible for the identification of the
model considered here but it does not lead to efficient results
for the equalization: it seems that the channel is not reversible
by a Volterra filter.

Moreover, all these methods do not take fully into account
the prior knowledge available on the emitted signal and on
the parametric form of the TWT amplifier [1].

This motivates the approach proposed here where a
Bayesian framework is considered leading to the estimation
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F1GURE 1: Satellite communication channel.

of the posterior distribution of the transmitted sequence.
This distribution is hardly computable due to the nonlin-
earity of the model; but Markov chain simulation methods
and Monte-Carlo estimation methods enable to build a for-
mal blind equalization algorithm for the considered system.
Our aim in this paper is thus to present such an algorithm
and its performances on simulated data.

The paper is organized as follows: a brief description of
the model is given in Section 2. Considering a simpler model
leads to a first Monte-Carlo estimation method of the in-
put sequence. This is described in Section 3. In Section 4, the
complete model is considered, and we show how to restore the
emitted symbols using a Gibbs sampler. This algorithm uses
the algorithm specifically designed for the simpler model.
Section 5 is devoted to simulations and to the study of the
performance of the approach. We conclude the paper by dis-
cussing some advantages and drawbacks of the algorithm,
and some perspectives of the method.

2. MODELING THE SYSTEM

The model used in the paper is a common model in com-
munication using a satellite [4]. This model is depicted in
Figure 1. The emitted message is a sequence (Sx)1<k<n Of 1
symbols generated at a rate T that passes through an emis-
sion filter. For simplicity, we assume that the amplitude of the
sequence is constant. The symbols are coded using a known
constellation with a known number of states. In this paper,
we work with a 4-QAM coding scheme. Thus, the emitted se-
quence can be written sy = A exp(i¢y) where the phase sam-
ples (k) 1<k<n are independently and identically distributed
(i.i.d.) from the distribution

bk ~ Uirja3m/a,s5m/4,7m/4) s (1)

where Ug denotes the uniform distribution on a set Q.
Note already that the method developed here could easily be
adapted to PSK modulations. However, some modifications
should be done to handle general QAM modulations to take
into account that the amplitude A is explicitly dependent on
bk-

The emitted signal is distorted by the trip through the
atmosphere; this is modeled by an additive i.i.d. complex,
circular Gaussian noise signal Ny (t)
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FiGure 2: Amplitude gain A(v) for (cxg,Ba) = (1.96,0.99)
(straight) and (&g, Ba) = (2.15,1.15) (dashed).
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Figure 3: Phase wrapping ®(v) for (xp,Bp) = (2.53,2.81)
(straight) and (xp, Bp) = (4,9.1) (dashed).

Nyp(t) ~ Nee(0,02) (2)

with variance o2 which practically provides a signal-to-noise
ratio (SNR) around 15 dB (the amplitude A is set at the trans-
mitter stage on Earth to reach at least such an SNR).

The signal is then amplified by the satellite and sent back
to Earth. This stage is mainly performed by a traveling-wave
tube amplifier (TWTA) which can be modeled by the follow-
ing amplitude gain and phase wrapping [1]:

KagV

A(r) = W’ (3)
__opr?
®(r) = 1 e (4)

where ¥ denotes the input signal amplitude and &g, Ba, &p,
and B, are the coefficients of the TWTA model. The functions
A(r) and ®(7) are drawn in Figures 2 and 3 for two different
couples of (&, B) found in [1, Table I]. It is clear that this
system may not be reversible but only the “amplificative” part
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FiGure 4: Simplified communication system.
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of the amplitude gain (located over the dotted line in Figure 2)
will be considered. It means that for a given output amplitude,
the corresponding input amplitude is the smallest one, from
which the input phase is also deduced from (4).

Note that the TWT amplifier lies between two IIR linear
filters performing the task of multiplexing. The emission filter
and the multiplexing filters are modeled by 4-pole Chebychev
filters.

The transmission of the signal back to Earth is much
less powerful than the previous one because of straight tech-
nical constraints of the satellite. Thus, the influence of the
atmospheric propagation medium is usually modeled by a
linear multipath fading channel [11]. Finally, the signal is
additively corrupted by a complex, circular white Gaussian
noise Ngown (1)

Nown (t) ~ Ncc(0,03). (5)

The signal received is denoted as z(t), and the goal is to re-
cover the emitted symbol sequence based on the only knowl-
edge of signal z(t) and the type of constellation. Since the
problem is difficult, we begin by studying the simpler model
depicted in Figure 4. In this model, we focus on the nonlin-
earity, and we thus omit the linear filters and the multipath
fading channel (downlink transmission). The only perturba-
tions considered are the uplink and downlink noises, and of
course the effect of the TWTA. The equalization of this simple
model is the aim of the following section.

3. RECOVERING THE SYMBOLS: A MONTE-CARLO
ESTIMATION METHOD

Given a sequence of samples (z(jTs))1<j<m of the received
signal, where T; stands for the sampling period at the receiver
stage, the aim is to estimate the emitted symbol sequence
(¢pk)1<k<n. This problem is not trivial even for known pa-
rameters of the TWT amplifier. The effect of the nonlinear
TWTA on a constellation of a 4-QAM distributed symbol
sequence corrupted by additive noise (SNR = 10dB) is de-
picted in Figure 5. It appears that the TWTA tends to render
the “squared” 4-QAM distributions more circular. A kind of
rotating phase effect is also noticeable implying thus a com-
plex processing for taking into account its influence.

The first estimation to address is the recovering of the
symbol duration T. This can be achieved by usual processing
methods such as the study of the autocorrelation function
of the received signal z(t) for instance, assuming that the
sampling period Ty is short enough and a relatively low inter-
symbol interference.
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FiGUure 5: Constellation of the above sequence passed through a
TWT amplifier with g = 2, Ba = 1, &p = 4,and B, = 9.1.
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FIGURE 6: Autocorrelation coefficients of the received sequence
(z(jTs))1<j<m plotted versus delay lags in T units (dashed curve for
the real part of the sequence, dash-dotted one for its imaginary part)
for uplink SNR = 10dB, downlink SNR = 5dB, o = 2, B4 = 1,
&p =4 and B, = 9.1. The number of samples per symbol p = 10
can be estimated as the first zero of the function.

For instance, the autocorrelation function of a received
sequence (z(jTs))1<j<m is depicted in Figure 6 for an uplink
SNR equal to 10 dB and a downlink SNR equal to 5 dB. This
enables us to recover the correct number of observation sam-
ples per symbol denoted as p. Given the symbol period T, or
the number p = T/T;, and assuming a perfect sampling at
the receiver system (i.e., that p is an integer), a first estimation
can be performed by a Bayesian approach using the posterior
distribution of (¢x)1<k<n. From Bayes formula and the in-
stantaneous characteristic of the system, this distribution for
a single symbol ¢y is given by

p(¢k|(Z(st))15jsmap-Ayo'u,O-d) (6)
kp

< I

J=(k-1)p+1

p(z(jTs) Ik, A, 0w, 04) X p(Pr).  (7)
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The prior distribution p (¢ ) is known and given by (1); the
main problem is in the calculation of the likelihood

p(z(jTy) | Py, A, Ou, 04). (8)

By marginalizing with respect to y (jTs) (denoted as y from
now on, for simplifying notations), expression (8) can be
written

| peGm) vidnA 0w 00dy
yecC

| peutyduaono) O
yecC

X p(y|¢klA! Ou, O-d)dy,

where we have used Bayes formula. From (5), the first prob-
ability density function in the integral in (9) reduces to

(_ |z<st>2—y|2)_ (10)

1
T _ 1
p(z(GT) |y, 0a) oy &P p=

The second density in the integral in (9) is obtained by
marginalizing with respect to x(jTs) (denoted as x); this
yields

p(yld)ksA! O-M1O-d)

=J Cv(y,x|<i>k,A,0u,0d)dx

xe (11)
OCJ p(ix, br, A, ou, 04)

xeC

X p(x|pk, A, ou, 04)dx.

As y is entirely determined by x from the formal identity
v = TWT(x) (see (3) and (4)), the first distribution in the
integral in (11) is given by

p(yIx, dr, A, ou,04) = p(¥Ix) = 6(y — TWT(x)), (12)

where 6 (-) stands for the usual Dirac distribution. From (2),
the second distribution in (11) reduces to

_ i) |2
1 eXp(_Ix Aexp (i) ) (13)

A =
p(x|dk, A, oy) pp o2

Finally, the likelihood (8) is proportional to
| pEUTIITWIR), 0)p (xl i A, au)dx. (14)
xe

This integral cannot be evaluated analytically. Therefore, in
order to proceed, we must use some numerical approxima-
tions. This leads to the use of Monte-Carlo methods for per-
forming a numerical estimation. The expression (14) can be
viewed as

E {exp (—012|z<jn> - TWT<x>|2) } (15)
d

0
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Figure 7: Computation of the log of (17) versus the number of
samples N.

where
x ~ Nec(Aexp(ipy), o). (16)

Thus, considering a sequence (xy);<p<y 1.i.d. drawn from
distribution (16), the computation of

1 & 1. . ,
N[é exp (—%%IZ(JTS) —TWT(xp)I ) (17)

gives a good approximation of (15) for sufficiently large N
[12]. In practice, few dozens of samples x; enable us to get a
good estimation of (15) and thus of (8). Figure 7 depicts the
quantities (17) for a fixed observation sample z(jT;) and for
all possible emitted symbols ¢y € {1r/4,377/4,51/4, 710 /4}
(with k(p — 1) + 1 < j < kp). The parameters of the model
weresetto A = 0.5, g = 2, Ba = 1, xp = 4,and B, = 9.1
and the signal-to-noise ratios to SNRy, = 10dB (o, = 0.11)
and SNRyown = 5dB (04 = 0.32). It clearly appears that only
one of the four possible emitted symbols gives a significantly
higher numerical estimation of the likelihood. The posterior
distribution for ¢y can thus be approximated by

P p(Pilz(jTs),p, A, Ou, 04)
T 3x10710

n 4x1077

L 0.99

o 1x1075

The estimated emitted symbol is thus chosen as the one max-
imazing the estimated posterior distribution. Thus, a max-
imum a posteriori estimation method can be implemented
for realizing the equalization in the case of known TWTA
parameters.

We have performed simulations of this method in order
to quantify its performances. Figure 8 shows the bit-error-
rate (BER) between the emitted symbol sequence (¢px)1<k<n
and its estimated (g )1 <x<n computed from the method de-
scribed above for various downlink SNR and number of sam-
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FiGUure 8: BER versus downlink SNR (in dB) computed with the
Monte-Carlo estimation method of the posterior distribution pro-
posed in Section 3, for p = 4 (straight) and p = 2 (dashed).

ples per symbol. Given these parameters, the BER of the pro-
posed estimation method appears not to be strongly depen-
dent on the input amplitude A and on the TWTA parameters.
Thus, the simulations are run for sequences of a fixed ampli-
tude A = 0.3 processed by a TWT amplifier whose parame-
ters are set to Xz = 2, fa = 1, ®p = 4,and B, = 9.1 and the
Monte-Carlo estimations are computed from sequences (16)
of 200 samples. The uplink noise variance is also fixed such
as SNRp = 10 dB because in practical communication con-
texts, the emitting station on Earth manages to reach such an
SNR. The BER curves are computed by averaging the results
upon 50 realizations of the algorithm, run for the estimation
of sequences of 1,000 4-QAM symbols.

It appears that the BER strongly decreases as the parame-
ter p increases, for a fixed downlink SNR. The computation of
the probability density function of the posterior distribution
is highly dependent on the number of samples at disposal
for computing the product (7). Sampling at a rate of one
sample per symbol would drastically increase the BER as it
would render the estimation of (6) more sensitive to corrupt-
ing noise signals. On the contrary, a large number of samples
per symbol enables us to reduce considerably this influence
and thus to get a robust estimation of (6).

The study of the performances of this Monte-Carlo sim-
ulation method has shown its ability to give good estimations
of the emitted symbol sequence in the case of a simple TWTA
model. This motivates the choice of the Bayesian approach
and the estimation of the posterior distribution for process-
ing the equalization of the system in the case of unknown
TWTA parameters and noise levels.

4. EQUALIZATION WITH MCMC SIMULATION
METHODS

4.1. Introduction

If the parameters of the TWTA model described in Section 2
are unknown, the equalization of the communication system
described in Figure 1 is quite a nontrivial task. Several ap-

proaches, taking into account the nonlinearity of the system,
already exist (cf. Section 1).

The method described hereinafter is devoted to the blind
equalization of the channel described in Section 2 by using all
the prior knowledge available on the emitted signal and on the
parametric form of the nonlinearity. The aim is to estimate
jointly the emitted symbol sequence and the parameters of
the model. This estimation comes from the posterior distri-
bution of interest as exposed previously for the simple system
considered in Section 3. For unknown TWTA parameters, the
following posterior distribution is considered:

p ((br)1<k<n, A, Ou, &a, Ba, Xp, Bp, O'd|(Z(st))lsjsm)
(18)
which is very difficult to compute or simulate. A way for
studying it is to use Markov chain simulation methods [12,
13]. Their main principle is to draw iteratively a sequence of
samples

((qbk)lsksn:AaUuafxa,Ba, o‘paBrhO-d)]gﬂgN (19)

such that there exists an asymptotic invariant distribution
which is precisely the desired posterior distribution (18).

4.2. General algorithm

From the previous success of the Monte-Carlo estimation
method for the symbols described in Section 3 and due to
the discrete nature of the variables ()1 <k<n and the multi-
dimensionality of the variable to simulate, the Gibbs sampling
algorithm [12, 13] is chosen for the implementation and leads
to the simulation given in Scheme 1. The simulation steps are
described hereinafter.

4.3. Practical implementation

4.3.1 TWTA parameters, noise levels, and amplitude of

the emitted signal

From Bayes formula, the posterior distribution (18) is pro-
portional to the product of the likelihood

p((z(st))lsjsm| (Pr)1<k<n, A, Oy, Xa, Ba, &Xp, Bp, 04)
(20)
and the prior distribution

p((¢k)15k£n1A10u1 O(a;Baa(xpsBp:O-d)- (21)

Therefore, the simulation steps of the Gibbs sampling algo-
rithm will require the setting of proper prior distributions
for the variables (A, oy, ®a, Ba, ®p, Bp, 04). Unfortunately,
the likelihood (20) depends on these variables in an implicit
way thus rendering impossible the direct simulation of the
distributions (S1)—(S7) with a “simple” approach.

The solution proposed here is to use another stochas-
tic simulation method inside the Gibbs sampler for per-
forming these simulation steps. Hastings-Metropolis [12, 13]
algorithms are thus implemented for the simulation from
step (S1)—(S7). We express more precisely the simulation
scheme of the Hastings-Metropolis algorithm for sampling
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e initialize ((¢pr)k, A, Ou, &a,Ba, &p, Bp,0a)' according to prior distributions
e update £ — £ +1 by drawing
Af“ ~p(A|<(¢k>1<k<n,au,aa,ﬁa,ap,ﬁp,m (z(jTs))12j=m) (S1)
p(0ul AP, (1) 12k<ns ®ar Bas &p, Bpy 0a) !, (2(§Ts))12j2m) (S2)
"“~n(o< (A, 0) ", (D) 12kzns Bas Xp, By, 0) (Z(7T6)) 1j<m) (S3)
1~ p(Bal(A 0w, )Y, (i) 12k2ms Xp, By, 0a) !, (2(T6))12j2m) (S4)
(o 1(A, 0, 0, Ba) L, (D) 12k=n By 0a) ' (2(GTs)) 12j=m) (S5)
"“ ~ P (Byl(A, 0u, &, Ba, ) 4, (i) 12k=n, 02) Y, (2(GTs)) 12 j=m) (S6)
"’“ p(04l(A, 0u, da, Ba, &, Bp) L, (i) 12kzn) s (2(GTs))1j<m) (S7)
(Pr)1=k=n) " ~ p((Pr)12k=n (A, au,aa,ﬁu,ap,ﬁp,m“ (z(ﬂsmqw) (S8)

SCHEME 1

a random variable denoted as @ which is distributed from
p(01(z(jTs))1<j<m) for instance.

Atiteration £+ 1,a candidate 0, is chosen for 0Y+1, drawn
from a candidate distribution p (- |6?). This distribution is
usually one of the following two types:

0. ~ N (0%, 02),
GC ~ U[Gminyemax]'

(22)
(23)

The distribution (22) enables to scan the variable space “little
by little.” One of the drawback of this type of candidate dis-
tribution is that it is more sensitive to the “stuck” phenomena
arising at the local maxima areas of the probability density
function. On the contrary, the type of distribution (23) en-
ables to scan theoretically the variable space in its globality
even if practically only the candidates drawn in the neigh-
borhood of the local maxima areas of the probability density
function are accepted. However, these two types of candidate
distribution have the advantage of reducing the complexity
of the computation of the acceptance rate (see hereinafter).

Then, given a candidate, an acceptation/rejection process-
ing is implemented in Scheme 2.

» generate u ~ Ujo,1]
e if u <, then set 0! =9,
otherwise set 0%+ = ¢

SCHEME 2
The acceptance rate is defined by « = min{1, AC} where

PO 1(z(JT))1<j<m)pe(0¢10c)
pe(0:100)p(0(z(FTS))1<j<m)

pc(9'€|9c)
PC(QC\QE).

AC =

. (24)
l_[ p(z(GT)10c)pp(Oc)

L P(z2(T)00)py (00

If a candidate distribution of type (22) has been chosen, a

symmetrical relation p, (0410.) = pc(0,10%) holds. If a can-
didate distribution of type (23) has been chosen, the following
holds:

) = pc(9c|9{7)-

= pc(eg) = (25)

pe(0°10c) pe(Oc

Thus the ratio above can be simplified. The distribution p, (+)

denotes the prior distribution of the variable 8. Without any

other assumptions on parameter 0, this prior distribution will

be assumed to be of the form (23) and thus simplifies also the

expression of AC. Finally, the acceptance rate reduces to the
formula

p(Z(JTs”ec)

26

H P(Z(JTs)|9”) (26)

and thus can be computed by Monte-Carlo estimations of
likelihood quantities (8) described in Section 3. The same
simulation schemes hold for the simulation steps (S1)—(S7).

Practically, upper and lower estimations of the parameter
0 are roughly computed at the beginning of the algorithm,
leading to the consideration of prior and candidate distribu-
tions of type (23). For instance, the variable o, is supposed to
be valued in an interval such that the uplink SNR lies between
10 dB and 15 dB, oy is also supposed to be valued in an inter-
val such that the downlink SNR lies between 0 dB and 10 dB
and the prior distribution for the amplitude of the emitted
symbols is given by

A~ Uj0.1,091- (27)

The uniform priors for (g, Ba, p, Bp) are settled according
to [1, Table I].

4.3.2 Emitted symbol sequence

As in Section 3, the simulation step (S8) for the symbol se-
quence ((¢)k)1§k5n)'€*1 is performed by a similar Monte-
Carlo method. The main difference is that it is adapted here
to the simulation of
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FIGURE 9: Frequency gain of the emission filter (straight), estimation
of the power spectrum of the 4-QAM symbol sequence (dashed) and
of its associated filtered sequence (dash-dotted) for p = 10.

p(¢k|((¢t)l£t<k1Al Ou, wyo_d)€+1!

(28)
((¢t)k<tsn)g, (Z(st))lsjsm)

o« [pGTI((Po)1<tks A, Ouy @, 00) L,
j=1 (29)

b1 (POr<r=n)?) X p(Pr)

as the emission and multiplexing stages have to be taken into
account for a more realistic modeling. These processing stages
are modeled by linear IIR filters (see Sections 2 and 5 for fur-
ther details) and therefore imply the appearance of memory
in the channel. The simulation step (S8) is thus modified from
the method exposed in Section 3 in order to estimate the full
posterior distribution of the symbol ¢, conditionally to the
whole sequence of the observation samples (z(jTs))1<j<m.

However, taking fully into consideration that the memory
of the system in this simulation step is not compulsory as the
filters do not dramatically affect the posterior distribution
with strong inter-symbol interference.

For instance, the frequency gain of the emission filter
(which has the lowest cut-off frequency of the three IIR fil-
ters, see Section 5) is represented in Figure 9 with power spec-
trum estimations of a 4-QAM sequence and of its associated
filtered sequence. It shows that the emitted signal has mostly
anarrow band in the frequency domain and that the emission
filter does not affect drastically the symbol sequence as we can
observe in the time domain in Figure 10, where samples of
the real part of this 4-QAM sequence and of its associated fil-
tered sequence are represented. Therefore, the computation
of (28) does not seem to require all the observation samples
for estimating the value of the probability density function
of the posterior distribution for the emitted symbols. Thus,
Monte-Carlo estimations of (A.1) have been computed by
considering the linear filters for a 4-QAM emission sequence
of 100 symbols with 10 samples per symbol and parameters
of the system set to A = 0.5, SNRyp = 10 dB, SNRgown = 5 dB
with the same TWTA parameters as for the numerical experi-
ments in Section 3. These quantities are studied as a function

-0.5 T T T T

T T T T T
0 20 40 60 80 100 120 140 160 180 200

FIGURE 10: Some samples of the real part of the 4-QAM symbol
sequence (dashed) and of its associated filtered sequence (straight).
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FiGUure 11: Monte-Carlo estimations of (A.1) versus observation
samples with ¢s50 = /4, considering known symbols ¢r+50
(straight) and random symbols ¢-50 (dashed).

of a single symbol and are represented in Figures 11 and 12
for the 50th symbol and various observation samples z(jT;).
It appears firstly that the posterior distribution as a func-
tion of ¢ 50 does not depend on the other symbols ¢y.50: the
straight and dashed curves are oscillating around 0.25 for two
values of ¢59 and for almost all the observation samples. The
variance of these oscillations is of course smaller for exact
symbols ¢x-50 but in both cases, only the observation sam-
ples roughly located between the 490th and the 510th samples
appear to be relevant for computing the posterior distribu-
tion of ¢50. In the simple instantaneous model described in
Section 3, the 491th to the 500th samples had been consid-
ered, the delay of the relevant samples attended here comes
from the lag indebted by the linear filters.
As a conclusion, the estimation of the posterior distribu-
tion of the symbol sequence will be implemented by consid-
ering only the samples

(Z(j];))(k—l)p+1+quskp+q (30)
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For k=1 to n do
— For r € {1,3,5,7} do
* compute numerical approximations of

PUT)(@012tak A 0w, 0,00 i = TF, (bo)kerzn) )

for j=(k—-1)p+1+q to kp +q with the Monte-Carlo approximation (17)

x estimate (28) for ¢ =" with the formula

kp+a

pr= I

p(z(Ts) I ((be)1<t<k, A, Ou, W, O—d)tbrla bx = %s ((¢t)k<tsn)'[))
J=(k-D)p+1+q

and the previous numerical estimations
— compute the values of the cumulative probability density function
of the distribution (28)

py = Zssrsc(13571 Ps
.
2sel1,3,5,7) Ps

— end do for r
draw u ~ Ujo1]

set pitl =T
end do for k

find 79 as the smallest integer in {1,3,5,7} such as u < py,

SCHEME 3
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FiGure 12: Monte-Carlo estimations of (A.1) versus observation
samples with ¢so = 571/4, considering known symbols ¢i=50
(straight) and random symbols ¢x50 (dashed).

for the kth symbol with a given delay lag g. The setting of
this lag will be explained in more details in Section 5. The
simulation of step (S8) thus follows Scheme 3.

5. NUMERICAL EXPERIMENTS

The communication model considered for the numerical ex-
periments is described in Section 2 and depicted in Figure 1.
It is completed from the simple model used in Section 3 de-
scribed in Figure 4 by adding emission and multiplexing IIR
filters. These ones are modeled by 4-pole Chebychev filters
with specific 3 dB bandwidths: 1.66/T, 2/T, and 3.3/T, re-

spectively (see [3, 4, 14]). The downlink transmission model
is also completed by a multipath fading channel (cf. [4, 11])
considering one reflected path of 10 dB attenuation.

The equalization method presented in Section 4 was run
on simulated data. 50 realizations of 1,000 4-QAM symbols
were processed for each given downlink SNR. The parameters
of the system were set to A = 0.5, SNR, = 10dB, &z = 2,
Ba =1, xp = 4,and B, = 9.1. For each realization, 100 it-
erations of the Gibbs sampling algorithm were run and the
estimations from the posterior distribution were taken from
the last 50 iterations. Of course, the convergence of the global
Markov chain for all the variables to simulate may not be
completely reached after 50 iterations of the Gibbs sampling
algorithm but the simulation of the symbol sequence gives
always the same results after the first dozen iterations. This is
mainly due to the robustness of the Monte-Carlo estimation
method for the posterior distribution of the symbol sequence
described in Section 3. It appeared that these estimated poste-
rior probabilities do not depend too strongly on the emitted
signal amplitude and the TWTA parameters. This point is
discussed in the appendix.

Thus, the computation of the BER curves requires then
such a few iterations. As a counterpart, this robustness affects
the simulation of the emitted signal amplitude and the TWTA
parameters by slowing the mixing of the Gibbs sampling al-
gorithm as their acceptance rates for the Metropolis-Hastings
algorithm depend on the likelihood quantities (8) computed
also with the Monte-Carlo estimation method described in
Section 3. Each Monte-Carlo estimation (15) required in the
Gibbs sampling algorithm is computed from a sequence of
20 samples.
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10744 SO

FIGURE 13: BER versus downlink SNR (in dB) for the MCMC equal-
ization method for p = 8and g = 2 (straight),q = 3 (dashed),q = 4
(short dash-dotted), and g = 5 (long dash-dotted).
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Figure 14: BER versus downlink SNR (in dB) for the MCMC equal-
ization method for p = 12 and q = 3 (straight), g = 4 (dashed),
q = 5 (short dash-dotted), and g = 6 (long dash-dotted).

The performances of the MCMC equalization method are
studied in terms of bit error rates for various downlink SNR.
A first task to address is the setting of the delay lag g in the
simulation step (S8). Given a sampling rate of p = 8 samples
per symbol period, the BER curves for various delay lags g
are depicted in Figure 13. It appears that the lag performing
the best error rates for this particular number of samples per
symbol is g = 3. BER performances for g = 4 are also similar
to the ones for g = 3, but the performances are corrupted
if a lag greater than g = 4 is chosen. If we consider a larger
number of samples per symbol, for instance p = 12, the delay
lag minimizing the BER is g = 6 (cf. Figures 14 and 15).

Experimenting various even numbers of samples per
symbol p, we have observed that g = p/2 usually gives the
best BER performances. Thus, the memory of the channel
induced by the linear filters is compensated in the process-
ing method by a proper delay lag of the observation samples
q = p/2 for known symbol period.
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FIGURE 15: BER versus downlink SNR (in dB) for the MCMC equal-
ization method for p = 12 and q = 6 (straight), g = 7 (dashed),
and g = 8 (dash-dotted).
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FiGURE 16: BER versus downlink SNR (in dB) for the MCMC equal-
ization method for p = 12 and q = 6 (straight), and p = 8, and
q = 4 (dashed).

For this delay lag, we have run 100 simulations of
500 Gibbs sampling iterations each on 1,000 symbols se-
quences. The BER performances (averaged from the 400th
to the 500th Gibbs iterations and upon the realizations) for
p = 8 and p = 12 are depicted in Figure 16. It shows that
a large number of samples per symbol period enables to
increase the BER performances as it was the case for the
estimation Monte-Carlo method described in Section 3 (cf.
Figure 8).

Unfortunately, for this blind equalization method, pro-
cessing a large amount of samples increases drastically the
computing time as for each iteration of the Gibbs sam-
pling algorithm, the computation of an acceptance rate of
a Hastings-Metropolis algorithm requires the estimation of
likelihood quantities (8) by Monte-Carlo simulation methods
many times, in the order of twice the size of the observation
sequence.

Moreover, the estimation of the parameters (A, oy, g,
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Ba, ®p, Bp, 0a) requires a large number of Gibbs sampling
iterations in practice due to the robustness of the Monte-
Carlo estimation method of the likelihood quantities (8).
Therefore, if we are not interested by the “identification”
aspect of the processing method but more by the recovering
of the symbol sequence, a formal blind estimation method
can be built from the Monte-Carlo simulation method in
Section 3. A natural way for processing the blind case with-
out estimating the parameters is to use the posterior distribu-
tion of the emitted symbols by integrating out the parameters
(A, oy, ®a, Ba, Xp, Bp, 04), considered here as nuisance pa-
rameters. This approach is developed in the appendix.

6. CONCLUSION AND PERSPECTIVES

The blind equalization method presented here showed signif-
icant success when it was applied to a common TWTA satellite
communication system. Provided good synchronization and
estimation of the symbol rate, the MCMC simulation method
manages to reach appreciable bit error rates when appropriate
delay-lag have been settled for the estimation of the emitted
symbol sequence. This lag depends directly on the number of
samples per symbol and thus on the estimation of the symbol
period.

One of the drawbacks encountered is of course the high
demand in time-computing for the processing, especially for
the simulation steps of the Gibbs sampling algorithm con-
cerning the amplitude of the emitted signal, the noise levels
and the TWTA parameters. Indeed, for each of these steps
and at every iteration of the Gibbs sampler, the number of
Monte-Carlo simulations of (15) is of the order of the length
of the observation sequence.

Another drawback, but which can also be viewed as an
advantage, is the robustness of the Monte-Carlo estimation
method of the likelihood (8) for variable parameters (ampli-
tude of the emitted signal, the noise levels, and the TWTA
parameters). This tends to slow the mixing property of the
Gibbs sampling algorithm. It is then difficult to get precise
estimations of the amplitude of the emitted signal, the noise
levels and the TWTA parameters with the MCMC equaliza-
tion described previously but the uniform prior distributions
set for these parameters are sufficient for running the Gibbs
sampling algorithm for a few dozens iterations and for reach-
ing an appreciable BER with the estimated symbol sequence
from the posterior distribution.

The algorithm will have to be run on real data for com-
paring its performances to other equalization methods. The
method proposed in this paper could also be extended for
solving the equalization problem without knowing the sym-
bol period T by including the parameter p as a component
of the variable of the posterior distribution (18). Then, the
MCMC implementation would require the use of model se-
lection simulation methods (cf. [15] for a review) for drawing
samples from a random variable whose dimension also has
to be estimated. These kinds of general approaches could also
be applied to the estimation of the modulation type and of
the transmission system from sets of different classes of para-
metric models.
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FiGure A.1 Computation of (17) versus the number of samples N.

APPENDIX

BUILDING A MONTE-CARLO SIMULATION METHOD
FOR THE BLIND CASE

We consider the simplified model depicted in Figure 4
and try to estimate the emitted symbol sequence con-
sidering that the parameters of the transmission channel
(A, oy, &a, Ba, &p, Bp, 04) are unknown.

Although the estimation method proposed in Section 3 is
robust for these parameters (for some parameters fixed in a
neighborhood of the real values, the estimation (17) remains
efficient), it could be very inefficient for some arbitrary fixed
values. For instance, if we consider the same computation of
the likelihood quantities for a fixed observation sample as in
Section 3 (Figure 7) but using the parameters set to A = 0.1,
&g = Ba = &y = Bp = 1,and 0y, = 04 = 0.5, then the
Monte-Carlo estimation method would lead to inexploitable
results. The estimation of the expectation (15) is depicted
in Figure A.1 and the posterior distribution of ¢ can be
approximated by

br p(bilz(jTs), p, A, Ou, 04)
3% 0.19

= 0.28

5

2 0.29

7

o 0.23

A natural approach would be then to consider a maximum a
posteriori estimation from the distribution
(Pl (z(jTs)1<j<m, P) (A1)

which can be computed by marginalizing with respect to the
unknown parameters

Jp((l)ksA, Ou, ®a, Ba, &p, Bp, 0al(z(jTs))1<j<m, p)

X d(A, oy, Xa, Ba, O(paBp, 04)
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= Jp(¢k|(z(st))1sjsma P, A, Ou, &a, Ba, &p, Bp, Ta)

X p(A’ Oy, D(a,Ba: O‘p, Bl]! O-d)d(Av Oy, O(a:Baa O(ps Bp: O-d)
(A.2)

This integral can be approximated with a Monte-Carlo
scheme by generating a sequence (A, 0y, Xa, Ba, %p, Bp, 0a)¢
from the prior distribution p (A, ou, &a, Ba, ®p, Bp, 0a) for
1 < £ < N and computing

N

1 ,
Ng: p(¢k|(z(JTS))15jSM! (A.3)

—

P, AL Oy, Xg.p, Ba,€: &Xp 05 Bp,l’s Ud,€)-

A reasonable hypothesis for the prior distribution is to assume
the parameters independent and uniformly distributed from

A~ Uy,
ou ~ Upo,051,
&a ~ Upo,2.51,
Ba ~ Uo,1.21, (A.4)
&p ~ U411,
By ~ U0,9.21,
od ~ U0,0.71,

where the support of the distributions are chosen from prac-
tical considerations: the amplificative part of Figure 2 for A,
bounds computed from maximum admissible values for A
and uplink and downlink SNR for ¢, and 04 and maximum
values for (xa, Ba, ®p, Bp) found in the tables in [1] for de-
scribing various kinds of TWT amplifiers.

For each sample (A, o, ®a, Ba, Xp, Bp, 0d) ¢, the quan-
tity to compute in (A.3) is

p(¢k|(z(jTS))15jSma plA—E’ O-M,—l}! o‘a,—y’ ﬁa,—l}! o‘p,—% Bp,—% O-d,—l})
o l’((Z(st))lgjska,P,A{),
Outr a s Ba,ts Xp.04 Bp.or Ta0) X p(Pi)
kp

< I

p(z(jTo) Pk, p, Ay,
j=(k=1)p+1

Outs Ka s Ba,ts Xp 02 Bp.tr Ta,0) X p(Pr).
(A.5)

From the formulae (8), (15),and (17) developed in Section 3,
the likelihood expression in the product (A.5) can be com-
puted from the following Monte-Carlo approximation:

N.
1 & 1
Ny

1 .
Lexp |~ 12T ~ TWT(x) 12 |, (A6)
X g=1 O-d,t’ g,

d,l

where (x4)1<4<n, Is a sequence drawn i.i.d. from distri-
bution N¢c(Apexp (i), (T;ig).

The Monte-Carlo estimations of (A.1) are much im-
proved by this approach by averaging over all possible values
of the parameters than by fixing arbitrary values for them,
even for raw estimations of (A.6) by sampling one x for every
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FiGure A.2: Computation of (A.1) versus the number of samples N
(Nx =1).

sample (A, Oy, Qa, Ba, ®p, Bp, 0a)¢- These averaged estima-
tions for a fixed observation sample as in Section 3 (Figure 7)
are depicted in Figure A.2 and the estimation for the posterior
distribution of ¢y is then given by

Pk p(Pilz(jT))
us 0.01

3

n 0.13

5

x 0.81

o 0.02

This Monte-Carlo simulation method thus gives a way to per-
form the blind equalization of the simple channel depicted
in Figure 4. However, in a realistic case, the whole transmis-
sion chain (cf. Figure 1) has to be considered and also the
convergence of this Monte-Carlo method has to be clearly
established.
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