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Estimating the position of mobile terminals is an important problem for cellular networks. This paper describes low cost methods
of locating mobile terminals in urban environments. These methods use data collected during propagation surveys of the network
area. It will be shown how the maximum likelihood estimate and minimum mean-square error estimators can be approximated
using survey data. Furthermore, the approximate solutions can provide low variance location estimates with low computational
cost compared to other methods.
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1. INTRODUCTION

The market for wireless networking services is undergoing
fast growth. This growth is expected to continue with the
proliferation of wireless data and digital multimedia devices.
There are several reasons for a network provider to estimate
the position of the mobile terminals in their network ranging
from emergency communications to resource allocation.

Assisting emergency communications is the most imme-
diate concern of cellular network operators with millions of
emergency 911 calls being made with cellular telephones ev-
ery year in the U.S. alone [1]. The FCC in the United States
has mandated that cellular network providers must be able
to provide an estimated location of terminals making E911
calls that is accurate to within 100 meters for 67% of calls for
network-based solutions [2, 3].

For proposed third and fourth generation cellular net-
works, it is envisioned that wireless networks will be required
to provide higher bandwidth multimedia data with strict
quality of service requirements [4]. It has been argued that
one method to provide these services is to use mobile terminal

location and prediction to allocate resources to the terminals
[5, 6]. Thus, mobile terminal location estimation will become
an integral part of wireless network control systems.

Several methods have been proposed in the literature for
the location of mobile terminals in wireless networks based
on Angle of Arrival (AoA), Time of Arrival (ToA), or Received
Signal Strength (RSS) measurements [7, 8]. Other options ex-
plored in the literature include adding GPS receiver hardware
to the mobile terminals [9]. GPS can offer very high precision
geo-location. This technology has the disadvantage that the
mobile terminals have to be modified to be located. Also un-
modified GPS does not work inside buildings or in outdoor
areas where buildings or hills can block the signal from the
GPS satellites [10]. Regions like this are quite common in the
heavy urban centers of greatest interest to cellular network
providers.

This paper will discuss the location of the mobile termi-
nals based on RSS measurements. From the RSS measure-
ments, the propagation path loss between the mobile termi-
nal and the fixed location base stations are calculated. From a
path loss measurement, it is possible to estimate the distance
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between the mobile terminal and a base station. If three or
more such estimates are available, a unique estimate of the
terminal’s position is possible via triangulation techniques.

The RSS location method has the advantages that it does
not require extra measurement hardware in the equipment,
does not require strict synchronization between base stations,
and can be used with all cellular network configurations with
minimal modifications [7].

The most popular method in the literature for using the
RSS based approach is to calculate the Maximum Likelihood
Estimate (MLE) of the mobile terminal location. The esti-
mated location, θ̂ = (x̂, ŷ), is the location value which maxi-
mizes fZ|θ(Z|θ̂), the conditional probability density function
of the measured path loss values, Z, given the location of the
mobile terminal, θ.

The distributions for the path loss values at all locations
in the network area are not known. Usually only median
path loss values at specific points in the propagation envi-
ronment are known. These values obtained from either com-
puter models [11], or field surveys of the network area taken
during the network planning stage [12]. The lack of closed
form equations for the densities of the path losses can make
direct use of the MLE difficult. At best, we can only estimate
the densities and calculate an approximate MLE location.

The MLE is optimal when the relationship between the
mean path loss values and location is linear, the deviation
from the mean is a Gaussian random variable and there is no
prior information about the parameters to be estimated, in
this case, mobile terminal location [13].

In the wireless environment, the relationship between
mean path loss value and location is rarely linear owing to
the main propagation path for the base station to mobile sig-
nal commonly being a signal reflected off of a building or
large geographic feature. The path loss is a function of the
mobile terminal’s position relative not only to the base sta-
tion but also with respect to large obstacles in the propagation
environment. There is switching between regions of different
propagation effects when the direct propagation paths be-
come obstructed for periods of time as the mobile terminal
moves amongst buildings and geographic features.

The handoff algorithm of the cellular network determines
which base station the mobile terminal communicates with.
This decision is based on measurements of the received signal
at the mobile terminal. The communicating base station is
probably the closest base station to the mobile terminal [14].
Thus, the handoff algorithm provides some prior statistical
information about the mobile terminal location.

The existence of prior information about mobile terminal
location changes the criterion of optimality so that estimators
other than the MLE can be considered. We propose the use of
the Minimum Mean Square Error (MMSE) type estimator,
which has the minimum mean-squared error of all location
estimators.

In Section 2, the approximate MLE and approximate
MMSE estimators will be described. A robust version of the
MMSE that can deal with lack of knowledge about the propa-
gation environment will also be described. Section 3 will de-
scribe the simulations used to evaluate the different location

methods. Section 4 will give the results of the application of
the estimation methods. Section 5 will give our conclusions.

2. ESTIMATION TECHNIQUE

The survey data can be described as a set of true locations,
θ1, θ2, . . . , θM , and path loss vectors Z1,Z2, . . . ,ZM , where Zj
is a vector of measured path loss values sampled when the
mobile terminal was at locationθj . The length of the Z vectors
is the number of base station path loss measurements used to
locate the mobile terminal. A minimum of three base stations
are required. The survey data sets are either obtained from
computer propagation models or field survey measurements.

The measured path loss values (in decibels) are mod-
eled as

Z = Z̄(θ)+V, (1)

where Z̄(θ) is the median path loss when the mobile termi-
nal is at location θ and V is the measurement error which
is assumed to be a zero mean Gaussian vector with a co-
variance matrix given by σ2 multiplied by the properly sized
unit matrix [15]. The function Z̄(θ) is an unknown nonlinear
function.

It is assumed that the influence of fast fading, or multipath
fading as it is sometimes called, is removed from the measure-
ments so that the Gaussian assumption for the measurement
noise is justified. The fast fading can be removed by use of
a time averaging filter if the mobile terminal is in motion so
that the fast fading magnitude is changing over time [16]. The
requirement for motion can be relaxed if some form of diver-
sity technique is being used to reduce the effect of fast fading
on the base station to mobile terminal radio link such as slow
frequency hopping as is proposed in the GSM standard [17],
or the use of transmitter diversity at the base stations as is
proposed for advanced IS-95/IS-2000 base stations [18].

The problem is then stated as estimating the location,
θ, of the mobile terminal from the measured path loss vec-
tor, Z, given a set of known locations, {θ1, θ2, . . . , θM}, that
produced path loss measurements, {Z1,Z2, . . . ,ZM}. It is as-
sumed that the known locations for the survey points and the
unknown location of the mobile terminal are drawn from
the same distribution. This assumption is valid because the
use of handoff information allows survey points for the cell
the mobile terminal is known to be residing in to be selected
for use by the location estimation algorithm. The estimated
location will be designated θ̂ with a subscript indicating the
algorithm used to calculate the location, where required.

The MLE for location is given by

θ̂MLE = arg(θ)maxfZ|Θ(Z|θ; P), (2)

where P is the assumed propagation environment model. Pre-
vious work on location has assumed that the propagation
environment P was Line of Sight (LoS), that is the shortest
distance straight line propagation paths between the mobile
terminals and base stations were unobstructed [7, 8]. This,
unfortunately, is rarely the case in the urban micro-cell case
where the LoS propagation path is often blocked by buildings.
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In this work, we use the survey data to compute an approxi-
mation for P that is used to improve the location estimate.

An approximation to the MLE can be calculated using

‖Z− Zj‖2 = min‖Z− Zi‖2 ∀i ∈ {1,2, . . . ,M}
−→ θ̂MLE ≈ θj,

(3)

where ‖ · ‖2 specifies the Euclidean distance. The approx-
imation improves as M → ∞. This estimator has two dis-
advantages. First, it can only return estimated locations at
positions of the survey points. Second, it makes limited use
of information from survey points other than the one with
the propagation path loss vector closest to that for the mobile
terminal. It is these disadvantages that motivates the search
for other location estimators.

The MMSE is given by θ̂MMSE = E[θ|Z] where E[·] des-
ignates the expectation operator [13]. If the mobile terminal
location is assumed to be uniformly distributed over the re-
gion of interest and the selection of base stations providing
path loss measurements is independent of the mobile termi-
nal location then the MMSE location estimate can be approx-
imated by

θ̂MMSE =
∫

S
θfθ|Z(θ|Z)dθ

=
∫
S θfZ|Θ(Z|θ)fΘ(θ)dθ∫
S fZ|Θ(Z|θ)fΘ(θ)dθ

≈
∑M
j=1 θjf̂Z|Θ(Z|θj)∑M
j=1 f̂Z|Θ(Z|θj)

,

(4)

where the conditional density is approximated by

f̂Z|Θ(Z|θj) =
1√

2πh2
exp

(
− [Z− Zj]T [Z− Zj]

2h2

)
. (5)

S is the region where the mobile terminal is known to be
residing, and h is a constant that determines the amount of
smoothing in the estimator. The density in (5) matches the
Gaussian density assumed for V in (1).

The region S would be determined by the handoff algo-
rithm of the cellular network. It has been shown elsewhere
that if Θ and Z are Gaussian and the number of survey points
is large, then the optimal value of h is given by [19]

h =
[

8d(d+ 2)(d+ 4)(2
√
π )d

(2d+ 1)Cd

]1/(d+4)

, (6)

where d is the number of base stations used to locate the
mobile terminal, and Cd is the volume of the hyper-sphere
holding the survey data set. In the simulations below, the
Euclidean distance is calculated from the measured path loss
vector for the mobile terminal to each of the survey point’s
path loss vectors. The maximum of these distances is taken
as the radius of the hyper-sphere containing all the survey
points, a, and the value of Cd is then calculated using

Cd =
adπd/2

Γ(d/2+ 1)
, (7)

where Γ(·) is the Gamma function whose definition is found
in any good calculus or probability textbook [20].

An equivalent way of thinking of this method is that the
conditional density is being estimated as being the sum of M
kernel functions, each of which has the form of the Gaussian
d-variate density function [21]. For this reason, we will call
the above estimator the Gaussian kernel estimator.

The Gaussian kernel estimator has the disadvantage that
it requires calculation of the h value for good performance,
while the MLE does not. More generalized weighting func-
tions have been investigated for location estimates of the
form

θ̂ =
∑N
j=1 θjw(Z,Zj)∑N
j=1w(Z,Zj)

, (8)

wherew(Z,Zj) is a user selected weighting function [21]. One
such estimator is the linear distance-based kernel estimator

w(Z,Zj) = Zmax − ‖Z− Zj‖2, (9)

with Zmax = max(‖Zj − Z‖2) for all j ∈ {1,2, . . . , N}. This
estimator is computationally less expensive than the Gaussian
kernel estimator since it does not involve the calculation of
an exponential for each survey point. In some cases, obtain-
ing the parameters for the hypersphere containing the survey
points to calculate the value of h for the Gaussian kernel
estimator can be costly.

A decision critical to the success of this technique is de-
termining the number of survey points to be taken, M . Too
small value for M will result in low accuracy while too large
value of M will result in an expensive survey process with
many of the survey points giving little benefit. The Cramer-
Rao bound for an estimator gives a lower bound on the
Mean-Square Error (MSE) of any unbiased estimator. The
Cramer-Rao lower bound can be used to get a bound on
the Root-Mean Squared Error (RMSE), the square root of
the mean-squared distance between the true locations and
estimated location of the mobile terminal. It will be shown
below how this bound on RMSE can be used to estimate a
good value for M .

The RMSE of the location estimates can be easily shown
to be larger than the mean distance error

Var
(√
X2 + Y 2

)
≥ 0,

E
[(√

X2 + Y 2
)2]

− E
[√
X2 + Y 2

]2
≥ 0,

E
[(√

X2 + Y 2
)2]

≥ E
[√
X2 + Y 2

]2
,

E[X2 + Y 2] ≥ E
[√
X2 + Y 2

]2
,

√
E[X2 + Y 2] ≥ E

[√
X2 + Y 2

]
.

(10)

In the inequalities above,X and Y are the x andy coordinate
errors, respectively. Since the distance, D, between the true
location and the estimated location of the mobile terminal is
always positive, its distribution must satisfy the well-known
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Markov inequality [20]

P[D ≥ a] ≤ E[D]
a

. (11)

We can then use the inequality between the RMSE and mean
distance error proven above to write

P[D ≥ a] ≤ E[D]
a

≤ RMSE
a

. (12)

Using (12), bounds on the probability that the estimated
location of the mobile terminal being some distance a from
the true location can be calculated

P[D < a] ≥ 1− RMSE
a

. (13)

Conversely, for a given probability,P , it is possible to calculate
a radius, a, such that the probability that the estimated loca-
tion is within distance a of the true location is of probability
P or higher

a = RMSE
1− P . (14)

Equation (14) shows how that survey points that are sepa-
rated by a distance much less than the RMSE cannot be differ-
entiated with high probability. Thus, the RMSE gives a rough
estimate of a good separation distance between survey points.
If we assume that the Cramer-Rao bound is sufficiently tight,
so that

E[D] ≤
√

Cramer-Rao bound ≤ RMSE, (15)

then the square root of the Cramer-Rao bound can be used in
place of the unknown RMSE in the relations above. The area
of the probability regions defined by (14) will be proportional
to the Cramer-Rao bound on the MSE. A first approximation
toM is then to divide the area of S by the Cramer-Rao bound.

A reasonable propagation model is assumed and the vari-
ance of the location estimate is calculated. An urban LoS
path loss model can be taken from [15] for micro-cell envi-
ronments. (See the appendix for how the Cramer-Rao bound
can be calculated from a path loss model.) The optimal value
ofM will be a factor of 2 to 10 times greater than the value cal-
culated using the LoS path loss Cramer-Rao bound because
of discontinuities in the propagation environment caused by
buildings or geographic features which result in Non Line of
Sight (NLoS) propagation. If NLoS propagation occurs be-
tween a mobile terminal and a given base station, it indicates
that a large geographic feature or building lies between the
mobile and base stations which gives some information about
the mobile’s location. Thus, NLoS propagation increases the
information in the path loss measurements, increasing the
optimal value of M .

It is possible to derive an estimator that is a compro-
mise between the MLE and approximate MMSE estimators.
The estimator given in (8) is used but only with the N sur-
vey points that have path loss vectors closest, as defined by
Euclidean distance, to the measured path loss vector for the
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Figure 1: Manhattan propagation environment.

mobile terminal. Obviously, when N = 1, this estimators will
give the approximate MLE result from (3).

3. DESCRIPTION OF SIMULATION

The location estimation methods were evaluated using sim-
ulations. A regular Manhattan street micro-cell model was
considered with dimensions and propagation characteristics
taken from [7]. The environment is shown in Figure 1. The
shaded areas are buildings. The origin of the coordinate sys-
tems is set at the central base station’s position.

When the Line of Sight (LoS) or shortest distance path
between the mobile terminal and base station is unobstructed
the median path loss is

Z̄(θ) = 10 log10


d(θ)a

(
1+ d(θ)

g

)b . (16)

The value d(θ) is the distance between the mobile terminal
and base station when the mobile terminal is at location θ.
The values of a andb are constants determining the exponent
of the path loss over distance. For the simulations described
below, a and b are set to be 2. g is called the breakpoint
distance and is a function of antennae height at the base
station and the radio frequency used. The value ofg is set to be
150 meters. These are typical values for urban environments
[11, 15].

When the mobile terminal is in the street and the LoS
path is blocked the median path loss is modeled by

Z̄(θ) = 10 log10

{
dc(θ)a

(
1+ dc(θ)

g

)b

× (dr (θ))a
[

1+ dr (θ)
g

]b}
,

(17)

where dc(θ) is defined as the distance from the base station
to the corner, and dr (θ) is defined as the distance from the
corner to the mobile terminal as shown in Figure 1.
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Figure 2: Building propagation distances.

The modeling of radio signal penetration inside of build-
ings is topic of much research in the propagation field [22,23].
Many factors such as internal layout of the building, construc-
tion materials in the buildings, and the height of the mobile
terminal above street level can all affect the path loss of the
radio signal. We use a simple in-building penetration model.
It is assumed that most interior walls inside of the building
are perpendicular to the outside walls causing radio propaga-
tion inside of the building to be mostly perpendicular to the
external walls. There is also a path loss factor added when the
angle of the incoming signal to the external wall is small. The
median path loss is modeled as [24]

Z̄(θ) = 10 log10

[
(S + d)a

(
1+ S + d

g

)b]

+We +
(

1− D
S

)2(
WGe +α(d− 2)

)
.

(18)

The distances are shown in Figure 2. The distance S is the
distance from the base station to a point on the external wall
where a propagation path to the mobile terminal perpendic-
ular to the wall exists. The distance d is the perpendicular
distance from the external wall of the building to the mo-
bile terminal. The distance D is the perpendicular distance
from building’s external wall to the base station. We is the
attenuation factor of the exterior wall when the signal path
is normal to the wall surface. WGe is an attenuation factor
associated with small grazing angles of radio signals. α gives
the attenuation factor for radio signals traveling through the
building. The values of these propagation constants are given
in Table 1.

Table 1: Building propagation constants.

Constant Value

We 10 dB

WGe 20 dB

α 0.6 dB/m

The in-building propagation equation above assumes that
a LoS propagation path exists from the base station to an ex-
ternal wall of the building in which the mobile terminal re-
sides. When this is not the case, it is assumed that the path loss

is so high that the mobile terminal and base station cannot
communicate. For cases where a LoS path exists to more than
one external wall of the mobile terminal’s building, when the
base station is located near a corner of the building, the path
loss is calculated for each of the walls with a LoS path and the
lowest path loss value is used.

The path loss vector Z for a simulated location estimation
trial is generated as follows. The median path loss is generated
for each of the five base stations using formula (16), (17), or
(18) depending on the relative location of the mobile termi-
nal and base station. An independently generated noise value
is then added to each path loss value. The noise value is sam-
pled from a Gaussian density with zero mean and a standard
deviation of 4 dB, a typical value for the long term fading in
urban environments [15]. The central base station and two
other base stations that have the lowest path loss values are
used to locate the mobile terminal and their path loss values
are placed in the measurement vector Z.

The diamond with the dashed boundary denotes the
boundaries of the region where the mobile terminal is placed
to evaluate the estimator performances. The mobile terminal
locations are sampled from a uniform distribution over this
region. This is the worst case distribution for cell location
when no other information is known about mobile terminal
location other than cell residency. The estimators are eval-
uated based on a survey set of 1000 points sampled from a
uniform distribution over the diamond shaped region.

Two sets of simulations are performed. The first set of
simulations evaluates the general performance of the location
estimator algorithms. The second set of simulations evaluates
the performance of each algorithm when the mobile terminal
is located at specific positions.

For the first set of simulations, a total of 10000 Monte-
Carlo runs are made to evaluate the performance of each of
the estimators. We evaluated the linear distance-based kernel
estimator with values of N ranging from 5 to 100 to see how
many points the linear distance-based estimator requires to
give good results.

In the second set of simulations, the mobile terminal is
placed at fixed locations and 10000 Monte-Carlo runs are
made. The average estimated location and variance of the
estimates are calculated. The difference between the average
estimated location and the true mobile terminal location is
an estimate of the bias of the estimation algorithm at that
point. The variances of the estimates of the x and y co-
ordinates are added together to get a single value giving an
indication of the magnitude of the variance of each of the
estimators.

4. SIMULATION RESULTS

The figure of merit used to evaluate each estimation method
is the Root Mean Squared Error (RMSE) which is the square
root of the mean squared distance from the true mobile
terminal location and estimated location. This value is es-
timated from the first set of simulations. The RMSE of the
MLE estimator is 75.1 meters while the RMSE of the approx-
imate MMSE estimator with the Gaussian kernel estimator is



Estimating Position of Mobile Terminals with Survey Data 63

0 10 20 30 40 50 60

N (Number of points used to estimate location)

50

52

54

56

58

60

62

64

R
M

SE
(m

)

Figure 3: Linear distance-based estimator RMSE.

52.0 meters, where h is calculated using (6). The RMSE for
the linear distance-based kernel estimator is a function of N,
the number of survey points used to estimate location. The
results are shown in Figure 3.

The linear distance-based estimator with the optimal
value of N gives a RMSE value almost as good as the Gaussian
kernel estimator. The RMSE penalty for using non-optimal
values of N is also fairly low. The worst case for a bad selec-
tion of N is RMSE performance equal to the MLE estimator.
For the simulation using this estimator below, we will use the
optimal value of N = 20.

When the mobile terminal is located at a position θ, the
estimated position, θ̂ is a function of the random measure-
ment noise vector, V and the estimator algorithm used. The
estimated position is, therefore, also a random vector. The
properties of the estimated position vector when the position
of the mobile terminal is fixed are investigated to show the
difference between the estimators.

It is well known that the MSE of an estimator has two
components: the bias term and the variance term [13]. There-
fore, the MSE when the mobile terminal is located at position
θ is given by

MSE(θ) = bias(θ)2 + variance(θ). (19)

The bias term, bias(θ), is the mean distance from the location
of the mobile terminal, θ, to the estimated location θ̂. The
variance term is the sum of the variances of the estimated x
coordinate and the estimated y coordinate [25].

Figures 4, 5, and 6 show contour plots of the mag-
nitude of the bias of the respective estimators. The ar-
eas for which the bias magnitude is graphed match the
region depicted in Figure 1. The plots show that all the
kernel estimators have similar bias magnitudes with the
Gaussian kernel having the lowest and the linear distance-
based kernel on average having the highest bias magni-
tude. The locations of highest bias are consistent between
all the estimators. This is a result of street locations and in-
building locations with median path loss vectors that are
close to each other causing the estimators to have diffi-
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Figure 4: Gaussian kernel estimator bias magnitude contour plot.
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Figure 5: MLE bias magnitude contour plot.
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Figure 6: Distance-based kernel estimator bias magnitude contour
plot.

culty differentiating mobile terminal position between these
locations.

Figures 7, 8, and 9 show plots of the variance of the esti-
mators for the upper right hand corner section of Figure 1.
It can be seen that for most locations the MLE has the high-
est variance and the Gaussian kernel estimator has the lowest
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Figure 7: Gaussian kernel estimator variance contour plot.
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Figure 8: MLE variance contour plot.
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Figure 9: Linear distance-based kernel estimator variance contour
plot.

variance, while the linear distance-based kernel’s estimator is
between the two.

This results agree with intuition that the linear distance-
based kernel estimator is a compromise between the Gaussian
kernel estimator and the MLE estimator. The MLE estimator
has the highest bias because of its limited use of informa-

tion from the survey set. Only the point with a measurement
closest to the mobile terminal’s measurement is used. The
Gaussian kernel estimator performs better because it uses
measurements from many survey points. This has an aver-
aging effect which reduces the variance of the location esti-
mate.

The kernel estimators deal with the LoS and NLoS propa-
gation on the street location well provided the mobile termi-
nal is located more than 50 meters from a base station. Close
to a base station, there is a significant bias toward the base
station location, as seen in the bias contour plots.

5. CONCLUSIONS

The results of this paper show that it is possible to get accurate
estimates of the position of mobile terminal location using
propagation path loss survey data of the mobile terminal en-
vironment. The MMSE location estimator is approximated
by integrating over an estimated density function generated
from a sum of kernel functions using survey data taken from
the propagation environment.

The Gaussian kernel estimator was shown to provide
lower RMSE than the MLE’s location estimate but it requires
the calculation of a smoothing parameterh. As well, an expo-
nential function needs to be evaluated for every survey point.

These problems can be alleviated by using a linear
distance-based kernel function. The kernel function requires
less computational resources than the Gaussian kernel and
can give RMSE values almost as good as the Gaussian kernel
estimator provided only the N survey points with path loss
closest to the measured path loss value of the mobile terminal
are used. It was shown that this estimator is relatively insen-
sitive to using values of N that are not equal to the optimal
value. The disadvantage of this estimator is that it has a larger
variance in estimated location position.

APPENDIX

CRAMER-RAO LOWER BOUND FOR LoS PROPAGATION
LOCATION

The Cramer-Rao lower bound is a commonly used technique
for obtaining a lower bound on the variance of an unbi-
ased estimator. It does not, by itself, give any information on
whether such an estimator exists or how to obtain it. The
bound is based upon the inverse of the Fisher information
matrix for the conditional density of the measurements given
the true value of the parameters to be estimated [13]. For our
case, the parameter,θ, is the location of mobile terminal. The
log-likelihood of the measurements given the location with
the LoS propagation described in (16) is

L = lnfZ|Θ(Z|θ)

= k
2

ln(2πσ2)

− 1
2σ2

k∑
j=1


zj − 10 log10


dja

(
1+ dj

g

)b



2

,

(A.1)
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where

dj =
√
(x − xj)2 + (y −yj)2 (A.2)

with (xj,yj) being the location of the jth base station. We
can then calculate

Lxx = E

[
∂2L
∂x2

]

= −
(

10
ln(10)σ

)2 k∑
j=1

[
ag + (a+ b)dj
dj2(g + dj)

]2

(x − xj)2,

Lyy = E

[
∂2L
∂y2

]

= −
(

10
ln(10)σ

)2 k∑
j=1

[
ag + (a+ b)dj
dj2(g + dj)

]2

(y −yj)2,

Lxy = E

[
∂2L
∂x∂y

]

= −
(

10
ln(10)σ

)2 k∑
j=1

[
ag+(a+b)dj
dj2(g + dj)

]2

(x−xj)(y−yj).

(A.3)

The Fisher information matrix is then

I(θ) =

−Lxx −Lxy
−Lxy −Lyy


 . (A.4)

From this the minimum variance of an unbiased estimated
position can be calculated from Var(x̂) ≥ I−1(θ)11 and
Var(ŷ) ≥ I−1(θ)22.
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