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Information theoretic properties of flat fading channels with multiple antennas are investigated. Perfect channel knowledge at
the receiver is assumed. Expressions for maximum information rates and outage probabilities are derived. The advantages of
transmitter channel knowledge are determined and a critical threshold is found beyond which such channel knowledge gains very
little. Asymptotic expressions for the error exponent are found. For the case of transmit diversity closed form expressions for the
error exponent and cutoff rate are given. The use of orthogonal modulating signals is shown to be asymptotically optimal in terms
of information rate.
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1. INTRODUCTION

Wireless access to data networks such as the Internet is ex-
pected to be an area of rapid growth for mobile communi-
cations. High user densities will require very high speed low
delay links in order to support emerging Internet applica-
tions such as voice and video. Even in the low mobility in-
door environment, the deleterious effects of fading and the
need for very low transmit power combine to cause prob-
lems for radio transmissions. Regardless of advanced coding
techniques such as turbo-codes [1], channel capacity remains
an unmovable barrier (without yet considering inefficien-
cies introduced by higher layer network overheads). Without
changing the channel itself not much can be done. Fortu-
nately, increasing the number of antennas at both the base
and mobile stations accomplishes exactly that, resulting in
channels with higher capacity. Such systems can theoretically
increase capacity by up to a factor equaling the number of
transmit and receive antennas in the array [2, 3, 4, 5, 6].

Spatial diversity has been proposed for support of
very high rate data users within third generation wide-
band Code-Division Multiple Access (CDMA) systems such
as cdma2000 [7]. Using multiple antennas, these systems
achieve gains in link quality and therefore capacity. Clas-
sically, diversity has been exploited through the use of ei-
ther beam-steering (for antenna arrays with correlated el-
ements), or through diversity combining (for independent
antenna arrays) [8, 9]. Use of these array processing tech-
niques can achieve any combination of the following: (a) re-
duction of multiple access interference through the “nulling”
of strong interferers. Such techniques are complementary to
(and share the mathematical formulations of) multiple-user

receivers such as the decorrelator and MMSE filter [10]; (b)
mitigation of fading effects by averaging over the spatial
properties of the fading process. This is a dual of interleav-
ing techniques which average over the temporal properties
of the fading process; (c) increased link margins by simply
collecting more of the transmitted energy at the receiver.

Recently, it has been realized that coordinated use of di-
versity can be achieved through the use of space-time codes.
Rather than relying solely on array processing of uncoded
transmissions, forward error correction codes which add re-
dundancy in both the temporal and spatial domains are de-
signed specifically for channels with multiple transmit and
receive antennas. There are currently two main approaches
to realizing the capacity potential of these channels: coordi-
nated space-time codes and layered space-time codes.

Coordinated space-time block codes [11, 12, 13] and trel-
lis codes [14, 15, 16, 17, 18] are designed for coordinated use
in space and time. The data is encoded using multidimen-
sional codes that span the transmit array. Such codes are effi-
cient for small arrays, and can achieve within 3 dB of the 90%
outage capacity rate calculated in [3]. The other approach
uses layered space-time codes [19, 20, 21], where the chan-
nel is decomposed into parallel single-input, single-output
channels.

Increasing the number of antennas and using space-time
codes involves both a physical and computational complex-
ity/performance trade-off. Simple schemes such as multi-
carrier transmit diversity or array processing techniques,
such as maximum ratio combining may be easily imple-
mented. How is their performance limited, when compared
to powerful space-time codes?What is the advantage of chan-
nel knowledge at the transmitter? In this paper, we attempt
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to answer some of these questions from an information the-
oretic point of view. We do not consider the design of space-
time codes.

The paper is organized in the following way. The space-
time channelmodel, along with the Rayleigh fading statistical
model are introduced in Section 2.

Under the assumption of fast Rayleigh fading and per-
fect channel knowledge at the receiver, various channel ca-
pacity computations are carried out in Section 3.1. In partic-
ular, we find simple bounds on capacity for the case where
the transmitter has no channel knowledge. These bounds are
used to further investigate the rate of growth of capacity with
the number of antennas. An asymptotic (in the number of
users) expression for the multiple access space-time channel
capacity is shown to be independent of the number of trans-
mit antennas, indicating that for large numbers of users mul-
tiuser diversity dominates transmit diversity. We then pro-
vide bounds on the outage capacity for slow fading Rayleigh
channels. These bounds provide additional support to a con-
jecture of Telatar concerning the optimal power distribution.

In Section 3.2, we consider perfect channel knowledge
at the transmitter. Asymptotic expressions for capacity are
given, and the advantage of using channel knowledge at the
transmitter is quantified. We find a transmit power thresh-
old beyond which transmitter channel knowledge yields only
a marginal capacity advantage. We also consider a subop-
timal approach, sometimes referred to as downlink beam-
forming, in which the transmitter uses only the most pow-
erful eigenchannel. Expressions for capacity and outage ca-
pacity are given for this case.

In Section 4, we give asymptotic expressions for a ran-
dom coding error exponent. In Section 5, we consider trans-
mit diversity (using only a single receive antenna). In particu-
lar, we derive a closed form expression for the error exponent
and show that the cut-off rate increases logarithmically with
the number of antennas. We also show that asymptotically,
the use of orthogonal carriers for each transmit antenna is
optimal.

Throughout, we make extensive use of results from the
theory of randommatrices. Of particular interest areWishart
matrices, which model certain statistics of the Rayleigh chan-
nel. Wemake use of both the large systems approach, now fa-
miliar in the analysis of multiple-input multiple-output sys-
tems, as well as using results for finite dimension matrices.
We collect in Appendix A several definitions and known re-
sults for reference. Several lemmas used throughout the pa-
per are also proved in Appendix A. Finally, in Appendix B we
give for reference definitions and some results concerning hy-
pergeometric functions of matrix argument, which are useful
in certain matrix variate distribution calculations.

We use the following notations. The vector x ∈ Cn is
a column vector with complex entries xi, i = 1, 2, . . . , n.
Likewise A ∈ Cm×n is a matrix with complex entries Aij ,
i = 1, . . . , m, j = 1, . . . , n. The superscripts ′, ∗ and −1 de-
note, respectively, transposition, Hermitian adjoint, and ma-
trix inverse. By A > 0 we indicate that A is positive definite.
Likewise A > X means A − X > 0, detA is the determinant,
trA the trace and etrA = exp(trA), and In is the n×n identity

matrix. For a random variable X , E[X] and varX are its ex-
pectation and variance.

2. THE SPACE-TIME CHANNEL

Consider a point-to-point communication link with t trans-
mit antennas and r receive antennas. Throughout the paper
we refer to m = min{r, t} and n = max{r, t}. We let the
match-filtered received signal y

j
k, at antenna 1 ≤ j ≤ r at

time k be given by

y
j
k =

t∑
i=1

L−1∑
l=0

xik−l f
i, j
k,l + n

j
k, (1)

where xik is the signal transmitted from antenna 1 ≤ i ≤ t

at time k; f
i, j
k,l

is the response at antenna j at time l to an

impulse applied to antenna i at time k; and n
j
k is a discrete-

time white Gaussian noise process, independent over time

and antennas, with E[n
j
kn̄

j
k] = σ2 and E[n

j
kn̄

j ′

k′] = 0 for j �= j ′

and/or k �= k′. The integer L > 0 is the (maximum) delay
spread of the fading channel.

The information theoretic analyses presented so far in the
literature have concentrated on the flat fading case, we like-
wise restrict our present scope. For flat fading, the impulse

response sequences f
i, j
k become scalars. We simplify (1) ob-

taining a linear algebraic model [2]. At each symbol interval,
the received vector y ∈ Cr depends on the transmitted vector
x ∈ Ct according to

y = Hx + n. (2)

Element yj is the matched-filter output from antenna j,
while xi is the signal transmitted from antenna i. The ma-
trix H ∈ Cr×t has as elements Hji, which is the complex
gain between transmit antenna i and receive antenna j. The
vector n contains i.i.d. circularly symmetric Gaussian noise
samples [22, page 134], E[nn∗] = σ2Ir . We place the follow-
ing power constraint on the transmitted signal (independent
of t),

E [x∗x] ≤ P. (3)

We denote the signal-to-noise ratio (SNR) as γ = P/σ2.

Definition 1 (Rayleigh channel). Randomly select the en-
tries of H, independently of x and n as follows. Let Hji,
i = 1, 2, . . . , t, j = 1, 2, . . . , r be i.i.d., zero mean Gaussian
with independent real and imaginary parts, each with vari-
ance 1/2.

The complex entries of H are independent with uni-
formly distributed phase and Rayleigh distributed magni-
tudes, modelling the scenario in which the antenna separa-
tion is large enough to ensure independent fading. A ma-
trix H selected according to Definition 1 is matrix normal
distributed (i.e., H ∼ �(r, t) according to Definition A.1).
The matrix product HH∗ will be of great interest and has



318 EURASIP Journal on Applied Signal Processing

the Wishart distribution, HH∗ ∼ �(r, t) by Definition A.2.
Appendix A describes some useful properties of Wishart ma-
trices that we will use throughout the paper. Appendix B
summarizes some results concerning hypergeometric func-
tions of matrix argument that are required for certain calcu-
lations concerning Wishart matrices.

The channel matrix may either be fixed, or time vary-
ing. In the time varying case, we can further distinguish
between fast variations (compared to the data transmission
rate), which allow us to compute average information rates,
and slowly varying channels, for which outage probability is
more appropriate. We assume throughout that the channel
matrix is known perfectly at the receiver. We consider both
the case where the channel is unknown at the transmitter
and the case where it is known perfectly. The theory for the
case in which the channel matrix is unknown at both ter-
minals is still in development. It is known that the capacity
gains to be achieved depend upon the coherence time of the
channel [23, 24, 25]. Special space-time codes have also been
designed to operate in the absence of channel state informa-
tion [26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36].

3. CAPACITIES

In this section, we try to gain some insight into the scaling
of capacity with the number of transmit and receive anten-
nas. We are particularly interested in quantifying the capacity
increase available through the availability of channel knowl-
edge at the transmitter. We assume throughout that the re-
ceiver has perfect channel knowledge.

Consider the channel (2), with average transmit power
constraint (3). Restrict xi, i = 1, 2, . . . , t to be i.i.d. zero mean
Gaussian variables, each with variance P/t. Then the maxi-
mum transmission rate is given by [2] as

I(γ, r, t,H) = log2 det
(
Ir +

γ

t
HH∗

)
bit/channel use. (4)

This is simply an achievable rate, rather than the capacity,
since no optimization over the source distribution is per-
formed. Such optimization would require knowledge ofH at
the transmitter. In the case of fast Rayleigh fading according
to Definition 1, the channel capacity is given by C(γ, r, t) =
E[I(γ, r, t,H)] and is achieved for the i.i.d. Gaussian input
distribution just described.

Given perfect channel knowledge at the transmitter,
channel capacity takes a different form, and is achieved by
water filling on the parallel orthogonal channels defined
by the singular vectors of H, see, for example, [37, Theo-
rem 8.5.1]. Let λ1, . . . , λm be the m nonzero eigenvalues of
HH∗. Then the capacity is given parametrically [2] by

CWF =
∑

i:λ−1i ≤µ
log µλi, (5)

P =
∑

i:λ−1i ≤µ
µ − λ−1

i . (6)

Note that in the case of transmitter channel knowledge, the

concept of forming an average capacity is somewhat less
straightforward, since the transmitter has the additional op-
tion of optimizing the power allocation over time as well as
over the eigenvalues (while maintaining the required average
power restriction). We do not consider average capacities for
this case.

3.1. Channel unknown at transmitter

Now concentrate on the case in which only the receiver per-
fectly knows the time varying Rayleigh channel matrix H.
The capacity of the fast time varying Rayleigh channel was
found by Telatar [2]. We rewrite this capacity using an alter-
native form in the following theorem.

Theorem 1. At each symbol interval, let H be selected ac-
cording to Definition 1, and assume that H is known to the
receiver, but not at the transmitter. Let m = min{r, t} and
n = max{r, t}. Then the capacity of the channel (2) is given
by

C(γ, t, r) = E
[
log det

(
I +

γ

t
HH∗

)]

=
(m − 1)!
(n − 1)!

∫∞

0
log

(
1 +

γ

t
x
)
e−xxn−m

×
[(
Lm−1
n−m+1(x)

)2− Lmn−m+1(x)L
m−2
n−m+1(x)

]
dx,

(7)

where Lαk is the generalized Laguerre polynomial of order k [38].
Capacity is achieved for x circularly symmetric zero mean com-
plex Gaussian vector with E[xx∗] = ItP/t.

Proof. The expression follows from [2, Theorem 2], us-
ing [39, equation (8.974.1)].

Although straightforward to numerically compute, (7)
does not give much information about the scaling of capac-
ity with r and t. Using limiting arguments, it is by now well
known, and often quoted that in the case of r = t = k that
C(γ, k, k) is linear in k. We now give convenient upper and
lower bounds to (7).

Theorem 2. The capacity (7) is upper and lower bounded ac-
cording to

C(γ, t, r) ≤ m log
γ

t
+ logm! + log

[
Ln−mm

(
− t

γ

)]
, (8)

C(γ, t, r) ≥ m log
γ

t
+

m−1∑
i=0

ψ(n − i), (9)

where ψ is Euler’s digamma function [39, equation (8.36)].

Proof. Inequality (8) follows directly from Jensen’s inequality
and Theorem A.4. The lower bound follows from det(I+A) ≥
detA for Hermitian A and Lemma A.2.

It is clear from the method of proof that the upper and
lower bounds (8) and (9) are tight as γ → ∞. In fact, ex-
panding the digamma as ψ(z) = log z − (2z)−1 − θ(12z)−2, for
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some 0 < θ < 1, we may further approximate (9) by

m log
γ

t
+ logm! + log

(
n

m

)
− c, (10)

where c ≈ 0.577 is the Euler-Mascheroni constant [40, Sec-
tion 3.1.9.4]. Now

lim
γ→∞

Ln−mm

(
− t

γ

)
=

(
n

m

)
, (11)

hence we expect polynomial tightness of the upper and lower
bounds in γ.

The lower bound is however poor when simultaneously
γ � t and t ≈ r. This problem may be somewhat offset by
noting that C is monotonic in both n and m, and hence the
lower bound near n = m may be improved by using smaller
values of either n orm.

It is therefore not unreasonable to use (8) as an approx-
imation for the purposes of determining the rate of growth
of capacity with t and r, since for sufficient SNR, the upper
and lower bounds will display the same gross behavior. Three
cases are of interest: (a) fix t and let r → ∞, (b) fix r and let
t → ∞, and (c) fix t/r and let both t, r → ∞.

Considering case (a), we hold t constant and send r large
to see that

C(γ, t, r) ≈ t log
γ

t
+ log

r!
(r − t)!

−→ t log
γ

t
+ t log r (12)

since r!/(r − t)! < rt (the convergence indicated is in the
sense of the ratio of the left- and right-hand sides approach-
ing unity). Hence an asymptotically logarithmic increase in r
results.

For case (b), we hold r constant and send t large, to
obtain

C(γ, t, r) −→ r log
γ

t
+ r log t = r log γ, (13)

where once again, convergence is understood in terms of the
ratio of the two quantities. As expected, this result indicates
that increasing t serves only to eliminate the effect of fading,
but provides no further gains.

Finally, consider case (c). It is already well known that
if t = r, an asymptotically linear increase in capacity is ob-
served. Now let t/r → β ≤ 1. Then

1
t
C(γ, t, r) −→ log γ + log β−1, (14)

which demonstrates that as long as t and r increase at the
same rate, a linear capacity increase occurs. The proportion
β serves only to scale the SNR and set the slope of the linear
increase. Finally, t/r → β > 1 results in C/r → log γ, which
is independent of β. Asymptotically, there is no benefit from
increasing t beyond r.

3.1.1 Multiple users

Now consider a K user multiple access channel, in which the
channel from each user to the common receiver is an in-
dependent space-time channel. We suppose each user has t
transmit antennas and that there are r receive antennas. At
each symbol interval, user k = 1, 2, . . . , K transmits a vector
x[k] ∈ Ct by sending

√
Pk/t x

(k)
i over antenna i = 1, 2, . . . , t

such that E[x[k]∗x[k]] ≤ 1, corresponding to a transmit
power constraint Pk. The received vector y ∈ Cr , observed
at the output of the r receive antennas is y = H

√
Px + n,

where x = (x[1], x[2], . . . , x[K]) and H ∈ Cr×Kt contains the
fading coefficients. For a given integer 1 ≤ k ≤ K , the ele-
ment Hj,kt+i−1 is the complex gain between transmit antenna
i of user k and receive antenna j. TheKt×Kt diagonal matrix
P = diag(P1It , P2It , . . . , PK It)/t. The vector n ∈ Cr contains
i.i.d. zero-mean Gaussian noise samples, E[nn∗] = σ2I. We
assume that H is known at the receiver, but not at the trans-
mitter.

Passing to the band-limited case via the usual arguments,
suppose that the total bandwidth available for transmission
is KW , whereW is some fixed quantity (KW should be less
than the coherence bandwidth of the channel for the flat fad-
ing assumption to be realistic). Then the sum capacity of this
channel is given by

C(P,H) = KW log det
(
Ir +

HPH∗

KWσ2

)
bit/s. (15)

IfH is independently selected at each symbol interval accord-
ing to Definition 1, the capacity of the resulting channel is
found by taking the expectation of (15) with respect to the
random matrix H.

Now as K → ∞, HPH∗ → Ir
∑

k Pk a.s., which leads di-
rectly to the following theorem1 which shows that for suffi-
ciently large numbers of users, the capacity gain from using
multiple transmit antennas disappears.

Theorem 3. For k = 1, 2, . . . , letHk ∈ Cr×Kt be chosen accord-
ing to Definition 1, and let 0 ≤ Pk < ∞ define an arbitrary but
nonrandom sequence of nonnegative real numbers. Then the
sum capacity (15), normalized by the number of users tends to
a fixed limit,

C
(
Hk

)
rK

−→ W log
(
1 +

∑
Pk

KWN0

)
a.s. (16)

which is independent of t.

Observe that a linear capacity increase with r is obtained,
independent of the ratio of r and t. Also note that this the-
orem refers only to the sum capacity. Benefits may still be
gained through the use of multiple transmit antennas for
achieving other points in the capacity region. Note, however,
that if it is the overall constraint that is tight, any increase in
the capacity of a subset of users, obtained by increasing the

1The idea for this theorem arose out of discussions with S. Hanly at Mel-
bourne University.
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number of transmit antennas comes at the price of decreas-
ing the capacity of the users in the complementary set.

3.1.2 Outage probability

So far, we have concentrated on the fast time varying
Rayleigh channel. Now consider the slowly varying channel,
for which outage probability has been proposed as the mea-
sure of interest [2, 3]. For a given information rate R and t× t
diagonal matrix Q > 0, define Pout(R,Q) = Pr(log det(Ir +
HQH∗) < R). For power constraint P, Telatar [2] gives

Pout(R, P) = inf
Q:Q>0,trQ≤P

Pout(R,W). (17)

We consider H chosen once for all time according to
our Rayleigh channel definition. Now the distribution
of log det(I + W) is unknown. Apart from the mean
(Theorem A.4), the moments of this quantity do not have
a simple expression (although in limiting cases they are
known [41]). The following theorem demonstrates the type
of difficulty one encounters.

Theorem 4. The outage probability is upper bounded

Pout(R, P) ≤ inf
s>0

Q>0,trQ≤P
2F0 (s,n;Q) esR, (18)

where mFn (·; ·; ·) is a hypergeometric function of matrix argu-
ment as defined in Appendix B.

Proof. NowW � HQH∗ ∼ �(m,n,Q) and

Pout(R,Q) = Pr
(
log det(I +W) < R

)
≤ E

[
det(I +W)−s

]
esR,

(19)

for any s > 0 by Chernoff ’s bound. Now consider

E
[
det(I +W)−s

]
=
∫
p(W) det(I +W)−sdW

=
detQ−n

Γm (n)

∫
W>0

sF0 (−W; etr)
( −Q−1W

)
× detWn−mdW,

(20)

where the second line results from (B.7) and theWishart den-
sity (A.3). The result is then obtained through application
of the Laplace transform recursion for the hypergeometric
functions (B.5).

The following is a more computable bound.

Theorem 5. The outage probability is upper bounded

Pout(R, P) ≤ Pr
(
X < eR−m log(P/t)), (21)

where X ∼ ∏m−1
i=0 Xi, Xi chi-squared with 2(n − i) degrees of

freedom.

Proof. The proof follows from det(I + A) > detA and the
distribution of detW forW ∼ �(m,n,Q), (A.3), which gives

Pout(R,Q) ≤ Pr(X < eR detQ−1). For fixed m, the optimal Q
is Q = argminQ̃>0,tr Q̃=P det Q̃ = PI/m, which leaves only a
minimization overm.

This upper bound lends additional support to the con-
jecture made in [2] that the outage probability is minimized
by using a uniform power distribution over some subset of
the antennas.

3.2. Channel known at transmitter

Now consider the case when both the receiver and transmit-
ter have perfect channel knowledge. We are interested in two
cases, firstly we compute a large systems limit for the water-
filling capacity CWF and establish the optimal power profile.
Secondly, we consider a simple suboptimum case, in which
transmitter selection diversity is used, that is, the transmit-
ter simply transmits using all its power along the maximum
eigenvector. In this second case, we compute the large sys-
tems capacity and the outage probability. Without loss of
generality, we let σ2 = 1, that is, γ = P. All of the results in
this section will be obtained as large systems limits and rely
on the convergence of the Wishart spectrum as m,n → ∞ in
such a way thatm/n → β ≤ 1.

Given a particular eigenvalue distribution, the capacity
may be found using (5). It is however a well-known fact that
for a wide class of random matrices, the normalized eigen-
value distribution converges to a nonrandom limit as thema-
trices are taken large. We use this fact to determine the large
systems capacity limit.

Theorem 6. Let m ≤ n approach infinity such that m/n →
β. Then for a sequence of matrices Hm,n selected according to
Definition 1

CWF

m
−→

∫b(β)

max{a(β),1/µ}
log µλ dF(λ), (22)

P −→
∫b(β)

max{a(β),1/µ}
(µ − λ−1) dF(λ), (23)

where F(λ), a(β), and b(β) are defined in Theorem A.7.

Proof. The proof follows from [37, Chapter 8] (using the
eigenvectors of H as kernels, rather than the Fourier kernel),
and the convergence in distribution of the empirical eigen-
value distribution to F(λ) [42].

According to this water-filling approach, if the transmit
power P is such that µ−1 > a(β), the transmitter uses only a
fraction F(µ−1) of the eigenchannels. If µ−1 ≤ a(β) it transmits
using all the parallel channels. In this latter case, we can find
a closed form expression for the capacity.

Corollary 1. Retaining the limiting regime from Theorem 6, let
P be such that µ−1 ≤ a(β). Then

CWF

m
−→ log

(
P +

1
1 − β

)
+
1 − β

β
log

(
1

1 − β

)
− 1. (24)
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Figure 1: Asymptotic water-filling capacity.

Proof. Under the assumption µ−1 ≤ a(β), the limit (22) be-
comes

CWF

m
−→ log µ +

∫b(β)

a(β)
log λ dF(λ)

= log µ +
1 − β

β
log

1
1 − β

− 1,

(25)

where the first line is due to integrating over the entire sup-
port of λ and the second line is from [42, Corollary 5.1]. It
remains to find µ. Now from (23),

P −→ µ − 1
2πβ

∫b(β)

a(β)

√(
λ − a(β)

)(
b(β) − λ

)
λ2

dλ. (26)

This integral is of the form [39, equation (2.267.2)] and after
straightforward calculation is found to be 1/(1 − β).

The critical value of µ beyond which Corollary 1 holds is

µcrit = (1 −
√
β)−2 corresponding to a critical SNR given by

Pcrit(β) = (1 −
√
β)−2 − (1 − β)−1.

Figure 1 shows the normalized asymptotic water-filling
capacity CWF/m plotted against β. The dot-dashed line shows
CWF(Pcrit(β), β). Capacity for values of β to the left of this line
may be calculated using Corollary 1. Values to the right are
calculated via numerical integration of (22). The solid lines
areCWF/m for fixed values of P. Shown for comparison as the
dashed lines are the corresponding values ofC, in the absence
of transmitter channel knowledge.

Note that for β small enough such that P > Pcrit (left
of dot-dashed line), or for large SNR that there is only a
small advantage in CWF/m to be obtained from water-filling.
This is investigated further in Figure 2, where the ratio of the
water-filling capacity to the corresponding limiting value of
C is shown for P = Pcrit(β). This loss will be even less for
higher power levels (to the left of the dot-dashed line on
Figure 1). The relative difference, upper bounded by approxi-
mately 1.022 at β ≈ 0.1 is preserved through the scaling bym.
This result indicates that in certain scenarios that the absence
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of P = Pcrit.
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Figure 3: Relative capacity gain from water-filling at β = 1.

of transmitter channel knowledge may not cost too much.
For P > Pcrit, the capacity advantage for using transmitter
channel knowledge is at most about 2%.

For P < Pcrit, there is more to gain. Figure 3 shows CWF/C
versus P in dB for β = 1 (which maximizes the gain). We see
that as P decreases the gain increases. For example, capacity
is increased by approximately 25% at P = 0 dB and is approx-
imately doubled for P = −10 dB.

We conclude our examination of transmitter channel
knowledge by considering a suboptimal method, some-
times referred to as downlink beamforming, which has
been proposed for 3G communications [7, 43, 44]. In this
method, only the largest eigenvector is used for transmission.
Theorem A.6 yields directly.

Theorem 7. Letm/n → β ≤ 1, then

C(γ) −→ log
(
1 + γm

(
1 +

√
β
)2)

a.s. (27)

This indicates that by transmitting along the maximum
eigenvector, performance superior to the unfaded AWGN
channel is obtained. Note however that the capacity increase
is only logarithmic with min{t, r}, as compared to the lin-
ear capacity increase available through the use of all transmit
antennas, even in the absence of channel knowledge at the
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transmitter. For finite systems, the following theorem may
be used to compute outage probabilities for the selection di-
versity approach.

Theorem 8. Let α = (eR − 1)/P, then

Pout(R, P) =
Γm (m)

Γm (n +m)
αnm1F1 (n;n +m;−αI) . (28)

Proof. From Theorem A.5, Pout(R, P) = Λ(α).

4. ERROR EXPONENTS

In addition to maximum information transmission rates, it
is interesting to consider the error exponent [37] for space-
time channels. The error exponent gives some indication of
how difficult it may be to achieve a certain bit error rate. In
this section, we derive a limiting expression for the error ex-
ponent. Telatar [2] gives the following lower bound to the
error exponent.

Lemma 1. The probability of error averaged over all randomly
selected (N,NR) block codes is bounded

Pe ≤ exp
[
−N max

0≤ρ≤1
(
E0(ρ) − ρR

)]
, (29)

where

E0(ρ) = − log E
[
det

(
Ir +

γ

t(1 + ρ)
HH∗

)−ρ]
. (30)

Reliability functions for fading channels with correlated
multiple antennas have also been considered in [45] for t = 1,
see also [46].

The following theorem uses the theory of random deter-
minants to give a limiting expression for the error exponent.

Theorem 9. Let t/r be fixed. The following limiting relation
holds.

sup
t→∞

E0(ρ) = µ(ρ)ρ − σ2(ρ)ρ2

2
, (31)

where, for convenience A(ρ) = I + γ/(t(1 + ρ))HH∗ and

µ(ρ) = lim
t→∞

E [log detA] = lim
t→∞

C
(

γ

1 + ρ
, t, r

)
,

σ2(ρ) = lim
t→∞

var log detA.

(32)

Proof. We can rewrite E0(ρ) as

E0(ρ) = − log E [exp(−ρx)] , (33)

where the random variable x = log detA. From [47], we have
that x is asymptotically normal with mean µ(ρ) and variance
σ2(ρ). The right-hand side of (33) is simply the negative log-
arithm of the moment generating function M(s) = E[esx],

which is well known for the normal distribution to be given
by

M(s) = exp
(
µs +

s2σ2

2

)
. (34)

Taking the supremum on both sides of (33) and using (34)
gives the result.

µ(ρ) may be calculated using [2, equation (13)], or may
be lower bounded using [48, Theorem 3].

5. TRANSMIT DIVERSITY

In this section, we consider transmit diversity, r = 1, t > 1.
From (4), it is easy to see that

C = E
[
log

(
1 +

γ

2t
X
)]

, (35)

where X is a chi-squared random variable with 2t degrees of
freedom.2 As t increases, C → log(1+γ) (since X → 2t by the
law of large numbers), which is as if all the power were trans-
mitted over a single, nonfaded link. By increasing the num-
ber of antennas, the effects of the fading may be completely
removed. In practice, only a small number of transmit anten-
nas (typically two or three for a wide range of γ) are required
(see [2, Figure 3]).

Increasing the number of transmit antennas however has
the desirable effect of increasing the error exponent, as we
now show.

Theorem 10. Let r = 1, then

E0(ρ) = − log
[(

t(1 + ρ)
γ

)t

Ψ
(
t, t + 1 − ρ;

t(1 + ρ)
γ

)]
,

(36)

where Ψ is the confluent hypergeometric function [39, Sec-
tion 9.2]. Furthermore, letting CG(γ) = log(1+γ) be the Gaus-
sian channel capacity with SNR γ we have the following limit-
ing expression for the error exponent:

lim
t→∞

Er =



CG

(γ
2

)
− R, if 0 ≤ R ≤ CG

(γ
2

)
− γ

2(γ + 2)
,

ρCG

(
γ

1 + ρ

)
− ρR(ρ), otherwise,

(37)

where for the second case, CG(γ/2)− (γ/2(γ + 2)) < R ≤ CG(γ)
we have a parametric representation via 0 ≤ ρ ≤ 1 and

R(ρ) = CG

(
γ

1 + ρ

)
− γρ

(1 + ρ)(1 + ρ + γ)
. (38)

2The factor 2 in the denominator accounts for the fact that the real and
imaginary parts of each independent Gaussian variate have variance 1/2.
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Figure 4: Error exponent, γ = 0 dB.

Proof. From (30), we have

E0(ρ) = − log E
[(

1 +
γ

2t(1 + ρ)
X
)−ρ]

, (39)

where X is a chi-squared random variable with 2t degrees of
freedom. Using an integral representation for Ψ [39, equa-
tion (9.211.4)], we get (36) after some algebraic manipula-
tions.

As t increases, X → 2t in probability we have

lim
t→∞

E0(ρ) = ρCG

(
γ

1 + ρ

)
, (40)

which, after some manipulations (along the lines of [37, Sec-
tion 7.4]) proves (37).

Figure 4 compares the error exponents for the additive
white Gaussian noise channel [37, equation (7.4.33)] and the
limiting t → ∞ transmit diversity channel with Rayleigh fad-
ing (37). The signal-to-noise ratio is zero dB. Further numer-
ical investigations have shown that the gap in the error expo-
nents only disappears as γ → 0. It is interesting to note that
although t → ∞ results in C → CG(γ) there is an inherent
complexity penalty to be paid (at least in terms of the error
exponent).

Closed form determination of Er for finite t using (36)
seems difficult, although numerical methods can be used.We
therefore concentrate on the cut-off rate, R0 = E0(1), which
gives the error exponent up the critical rate, and a lower
bound beyond that. Substituting ρ = 1 into the expressions
of Theorem 10, we obtain the following corollary.

Corollary 2. The cut-off rate is given by

R0(t, γ) = t log
γ

2t
− 2t

γ
− log Γ

(
1 − t,

2t
γ

)
, (41)

where Γ(α, z) =
∫∞
z xα−1e−t dt is the incomplete gamma func-

tion. Furthermore,

lim
t→∞

R0(t, γ) = log
(
1 +

γ

2

)
. (42)
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Figure 5: Cut-off rate versus number of antennas.

Proof. Equation (41) is obtained from (39) via the identity
Ψ(α, α; z) = ezΓ(1 − α, z).

For t > 1 the cut-off rate may be lower bounded as fol-
lows:

R0 ≥ log
[(

1 +
γ

2

)(
1 − 1

t

)]
. (43)

This bound is tight as t → ∞ or γ → ∞. Hence R0 increases
at least as the logarithm of t/(t − 1). Figure 5 shows R0 (solid
line) and the lower bound (43) (dashed) plotted versus t for
various SNR.

5.1. Orthogonal transmit diversity

It is interesting to consider the use of mutually orthogo-
nal transmit waveforms for each transmit antenna,3 as pro-
posed for cdma2000 [7, Section 3.2.1.1.5]. We continue to
consider transmit diversity only (r = 1), and assume code-
books with i.i.d. circularly symmetric complex Gaussian let-
ters. This means that for a given channel, transmission rates
are upper bounded by I as given by (4). If the channel is ran-
dom, according to Definition 1, the transmission rate is up-
per bounded by C as given by (7).

Examples of orthogonal waveforms include (a) time di-
vision, in which the scalar input is successively transmit-
ted from each antenna at disjoint time intervals; (b) fre-
quency division (multi-carrier transmit diversity [7, Sec-
tion 3.2.1.1.5.1]), in which the signal for each antenna
is modulated by an orthogonal frequency carrier; and (c)
code division (direct-sequence transmit diversity [7, Sec-
tion 3.2.1.1.5.2]), where each antenna is modulated by (for
example) an orthogonal Walsh code.

It is easy to see (e.g., through application of the data pro-
cessing theorem [49]) that restriction to orthogonal carriers
can only decrease the maximum possible mutual informa-
tion, when compared to the use of unconstrained space-time
codes. In this section, we show that use of a sufficiently large

3What counts is that the waveforms are orthogonal at the receiver, for
example, flat fading and no Doppler spread.
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number of transmit antennas makes this penalty insignifi-
cant. This may be interesting since use of orthogonal carriers
should result in simple receiver structures [11, 12]. Narula et
al. [6] have found the average mutual information (assuming
a Gaussian codebook) in the case of orthogonal signaling.

Theorem 11. Let H be a fixed matrix, known at the receiver.
Then the average mutual information under the assumption of
orthogonal transmit waveforms is given by

I⊥ =
1
t

t∑
i=1

log2

(
1 +

∣∣Hi

∣∣2P
σ2

)
. (44)

Furthermore, for this channel I⊥ ≤ I with equality if and only
if |Hi| = |Hj | for all i, j = 1, 2, . . . , t.

Hence for any given channel, the use of either multi-
carrier transmit diversity, or orthogonal direct-sequence
transmit diversity, while convenient from an implementa-
tion point of view, incurs a loss, when compared to space-
time coding. Since this is true of any given channel, the aver-
ages over random channel selection (e.g., Definition 1) also
obey E[I⊥] ≤ E[C]. The following result gives an expression
for E[I⊥] and shows its limiting behavior for large signal-to-
noise ratios.

Theorem 12. LetH be randomly selected every symbol interval
according to Definition 1, and let H be known at the receiver.
Then the maximum transmission rate, under the assumption of
orthogonal transmit diversity is given by E[I⊥] = −e1/γ Ei(−1/γ)
nats/channel use, where Ei(x) =

∫∞
−x e

−x/x dx is the exponential
integral function. Furthermore,

lim
γ→∞

log
(
1 + γ

) − E [I⊥] = c, (45)

where c ≈ 0.577 is the Euler-Mascheroni constant. E[I⊥] →
log(1 + γ) in the sense that their ratio tends to unity.

It is easy to verify that for r = 1 and increasing t, C →
log(1 + γ). Hence even though a rate penalty is incurred for
using orthogonal transmit diversity, this penalty disappears
as the signal-to-noise ratio and the number of antennas is
increased.

Proof. From (44), Definition 1, and the linearity of the ex-
pectation operator, we have that E[I⊥] = E[log(1 + γX)],
where X is an exponentially distributed4 random vari-
able [22]. Hence

E [I⊥] =
∫∞

0
log(1 + γx)e−x dx

= −e1/γ Ei
(
−1
γ

)
,

(46)

according to [39, equation (4.337(2))], which is the first part
of the theorem. Continuing, we note from [39, equation

4Or equivalently, a χ22 variable.

(8.214.1)] that

Ei(x) = c + log(−x) +
∞∑
k=1

xk

k · k! , x < 0. (47)

Using this identity, and performing some simple rearrange-
ments, we can write

E [I⊥] − e1/γ log(γ) = −e1/γ
[
c +

∞∑
k=1

(−1/γ)k
k · k!

]
. (48)

Taking limits as γ → ∞ on both sides yields the desired result,
since 1/γ → 0, forcing the exponential term to unity, and
each element inside the sum to zero.

6. CONCLUSION

In this paper, we have given several calculations regarding the
capacity and error exponents of multiple antenna Gaussian
channels. We used simple bounds to determine the scaling
of capacity with the number of antennas. In particular, we
found that if the number of transmit and receive antennas
are increased proportionately, a linear increase is obtained,
and the rate of this increase was determined. We further dis-
covered that asymptotically, there is no capacity advantage
for the number of transmit antennas to exceed the number
of receive antennas. In the case that the number of transmit
antennas is held constant, we found that capacity increases
logarithmically with the number of receive antennas. In the
reverse situation, holding the number of receive antennas
fixed, increasing the number of transmit antennas results in
convergence to a fixed capacity. A simple calculation showed
that for multiple-access space-time channels that capacity is
dominated by multiuser diversity, rather than space diversity.
For large numbers of users, there is no total capacity advan-
tage in using multiple antennas. We also gave bounds on the
outage probability for nonergodic channels and discovered
that a constant power allocation over some subset of anten-
nas minimized one of these bounds.

Large systems limits were calculated for the capacity in
the case of perfect channel knowledge at the transmitter. For
power levels above a certain critical threshold, this limit can
be easily calculated in closed form. We found numerically
that for power levels greater than this same critical threshold
that there is very little to be gained by the water-filling ap-
proach, although for smaller powers we found that capacity
may be increased significantly. We also considered briefly the
use of selection diversity at the transmitter and found that
this simple strategy outperforms a single antenna link with
no fading.

The remainder of the paper was devoted to calculation of
error exponents. In particular, we found a limiting expres-
sion for E0(ρ), and a closed form expression for the case of
transmit diversity (r = 1). We further showed that for r = 1
the cut-off rate increases logarithmically with the number of
transmit antennas. Although capacity is near to maximum
for a small number of antennas (typically 2 or 3), use of ad-
ditional antennas improves performance through increase of
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the error exponent. We have also shown that use of a suf-
ficiently large number of transmit antennas offsets the rate
penalty suffered due to orthogonal transmissions from each
antenna, such as those described for cdma2000.

APPENDICES

A. WISHARTMATRICES

Wishart matrices are of interest in statistics and signal pro-
cessing. We now review some facts concerning Wishart ma-
trices, and derive some results concerning expectations of
certain determinantal forms and further investigate the dis-
tribution and asymptotics of the largest eigenvalue. Books
providing an introduction to matrix variate distributions
are [50, 51, 52, 53]. These texts concentrate on real variables.
Although the corresponding complex cases that we require
are easily developed, they are noticeably absent from these
references.

Definition A.1 (complex normal matrix). Let the real and
imaginary parts of each element of X ∈ Cm×n be a selected
i.i.d. Gaussian with zero mean and variance 1/2. Then X is
complex normal, denoted X ∼ �(m,n).

Definition A.2 (complex Wishart). Let W = XX∗, where
X ∼ �(m,n). Then W ∈ Cm×m is complex Wishart [54, 55],
denotedW ∼ �(m,n).

Real normal and Wishart matrices may also be defined,
but we are more interested in the complex case. Henceforth
we refer to a complex Wishart matrix as simply Wishart.

Theorem A.1 (Wishart density). Let W ∼ �(m,n), m ≤ n.
Then

p(W) =
1

Γm (n)
etr(−W) detWn−m, (A.1)

where

Γm (a) = πm(m−1)/2
m∏
i=1

Γ (a − i + 1) (A.2)

is the complex multivariate gamma function.

In fact Theorem A.1 may be used as the definition of the
Wishart matrix, from which the statement of Definition A.2
may be proved as a theorem. The ordering of definition and
theorem however become less important in the light of [53,
Theorem 3.3.3], where it is proved that a matrix W with
the Wishart distribution may always be factored W = XX∗,
where X ∼ �(m,n). It is useful however to remember that
there are other matrix forms besides Definition A.2 that lead
to the Wishart distribution.

We can also consider Wishart matrices with arbitrary co-
variance structure. For A ∈ Cm×m nonsingular and Σ = AA∗,
the productW = AXX∗A∗ isWishart�(m,n,Σ) with density

p(W) =
(
detΣnΓm (n)

)−1 etr(−Σ−1W) detWn−m. (A.3)

The following theorem gives the distribution of a complex
Wishart matrix. The proof of this theorem follows [53, Theo-
rem 3.2.3], using however the complex hypergeometric func-
tions, as outlined in Appendix B.

Theorem A.2 (Wishart distribution). Let W ∼ �(m,n).
Then

P(W < X) =
Γm (m)

Γm (n +m)
detXn

1F1 (n;n +m;−X) . (A.4)

Theorem A.3 (Ordered eigenvalue distribution). Let W ∼
�(m,n) with ordered eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λm. Then

p
(
λ1, λ2, . . . , λm

)
=

πm(m−1)

Γm (n) Γm (m)

× exp

[
m∑
i=1

λi

]
m∏
i=1

λn−mi

∏
i< j

(
λi − λj

)2
.

(A.5)

It is well known that 2m detW is distributed as a product
of independent random variables

∏m−1
i=0 Xi, where Xi is chi-

squared with 2(n− i) degrees of freedom (see [51, pages 100–
101] and [53, Theorem 3.3.22]). This property leads easily to
the following lemma.

Lemma A.1 (generalized variance). Let W ∼ �(m,n). Then
the moments of detW are

E
[
detWh

]
=

m−1∏
i=0

Γ (n − i + h)
Γ (n − i)

. (A.6)

In particular,

E [detW] =
n!

(n −m)!
,

var detW =
[

n!
(n −m)!

]2 m

n −m + 1
.

(A.7)

Likewise, it is easy to determine moments of log detW.

Lemma A.2. Let W ∼ �(m,n). Then the following identities
hold.

E [log detW] =
m−1∑
i=0

ψ(n − i),

var log detW =
m−1∑
i=0

ψ ′(n − i),

(A.8)

where ψ(x) = Γ′(x)/Γ(x) is Euler’s digamma function [39,
equation (8.36)].

The following lemma is from [56, Section 37].

Lemma A.3. For α ∈ {1, 2, . . . , n}, let A(α) be the principal
submatrix [57, page 17] formed from A ∈ Cn×n by deleting
rows and columns not indexed by the elements of α. Then for
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any n × nmatrix A

det
(
λIn + A

)
=

n∑
i=0

λn−i
∑

αi⊆{1,2,...,n}
|αi |=i

detA
(
αi
)
. (A.9)

Note that Lemma A.3 yields an explicit representation for
the characteristic polynomial of a matrix. We will make ex-
tensive use of the following theorem, for which we believe the
proof is new.

Theorem A.4. Let W ∼ �(m,n) and let ω be a given scalar.
Then E[det(I + ωW)] = m!ωmLn−mm (−1/ω).

Proof. Using Lemma A.3 and the linearity of the expectation
operator, we can write

E [det(I + ωW)]

=
m∑
i=0

ωi
∑

αi⊆{1,2,...,m}
|αi |=i

E
[
detW

(
αi
)]

(A.10)

=
m∑
i=0

(
m

i

)
n!

(n − i)!
ωi (A.11)

= m!ωm
m∑
j=0

(
n

m − j

)
(−1) j
j!

(
− 1
ω

) j

, (A.12)

where (A.11) follows from Lemma A.2 and the fact that
E[detW(αi)] = E[detWi], whereWi ∼ �(n, i) (bymarginal-
ization of theWishart distribution [53, Theorem 3.3.9]). The
result follows from (A.12) which is the explicit representation
of Ln−mm (−1/ω) [38].

We remark that Theorem A.4 yields (under suitable
change of variables).

Corollary 3. The expected characteristic polynomial of a
Wishart matrix is

E [det(tI −W)] = (−1)mm!Ln−mm (t). (A.13)

This result was apparently first derived by Edelman [58,
Theorem 9.1], although our proof, based on the well-known
Lemma A.3 is somewhat more direct. Unfortunately, we can-
not generalize Theorem A.4 to give the variance, since the
terms W(αi) are not independent (if they were, var would
distribute over addition resulting in a simple expression).

The largest eigenvalue λ of a Wishart matrix is of interest
in statistical analysis and in signal processing. In principal
the distribution of the largest (indeed any) eigenvalue may
be obtained from (A.5) by (m − 1)-fold marginalization. The
required integrals however quickly become unwieldily. The
distribution of the largest eigenvalue of a Wishart matrix was
first found by Sugiyama [59, 60]. This distribution may be
easily derived from the c.d.f. of the matrix itself, as described
in [51, page 421].

Theorem A.5. Let W ∼ �(m,n) and let the random variable
λ > 0 be the largest eigenvalue of W. Then the distribution

function Λ(x) = Pr(λ < x) is given by

Λ(x) =
Γm (m)

Γm (n +m)
xnm1F1 (n;n +m;−xI) . (A.14)

Proof. A direct consequence of λ < x if and only if W < xI
and Theorem A.2.

Computation of the hypergeometric function is dif-
ficult, and the series expansion into zonal polynomials
(Appendix B) converges slowly. Sugiyama also gave an ap-
proximation to Λ(x) in terms of a product of chi-squared
distributions [61] (see also [51, Theorem 9.7.5]), but this ap-
proximation is only accurate for n � m. Alternatively, the
largest root of (A.13) may be used as an approximation to
E[λ]. Krishnaiah and Chang [62] have developed an alternate
expression for Λ(x) which avoids the use of zonal polynomi-
als. Their expression involves linear combinations of certain
double integrals.

As the matrix dimensions grow large proportionally, the
extreme eigenvalues converge to nonrandom quantities.

Theorem A.6. Let the elements of X ∈ Cm×n be selected i.i.d.
with zero mean, unit variance and finite fourth moment. Let
m and n increase without bound such that n/m → β ≤ 1
a.s. Let λmax and λmin be the largest and smallest eigenvalues
of XX∗/m. Then

λmax −→ b(β) �
(
1 +

√
β
)2

a.s.,

λmin −→ a(β) �
(
1 −

√
β
)2

a.s.
(A.15)

The proof for this theorem can be found in [63] (small-
est eigenvalue) and [64] for the largest eigenvalue. In fact, the
entire empirical distribution of a randomly selected eigen-
value converges, see, for example, [42].

Theorem A.7. Let X be selected according to Theorem A.6 and
letm and n increase without bound such thatm/n → β ≤ 1 a.s.
Then the empirical distribution F(x) = Pr(λ < x) of XX∗/m
converges to the nonrandom limit defined by

dF(x)

=


(2πβx)−1

√(
x − a(β)

)(
b(β) − x

)
, a(β) ≤ x ≤ b(β),

0, otherwise.

(A.16)

B. HYPERGEOMETRIC FUNCTIONS OFMATRIX
ARGUMENT

Many calculations involving matrix variate distributions can
be written in terms of hypergeometric functions of matrix
argument. We now give for reference the definitions and re-
sults that we require. As was the case for the matrix variate
distributions in Appendix A, we develop the complex vari-
ate case, which although straightforward is missing from the
obvious texts.
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Definition B.1 (partition). Let k > 0 then κ = (k1, k2, . . . , kp)
such that k =

∑p
j=1 kj , k1 ≥ k2 ≥ · · · ≥ kp ≥ 0 is a partition of

k into p parts.

Partitions may be ordered lexicographically as follows. If
κ = (k1, k2, . . . ) and λ = (l1, l2, . . . ), then κ > λ if ki > li for
the first index i where the partitions differ. Now let y1, . . . , yp

be p variables. Then we say that the monomial yk11 · · · ykpp is

of order κ and that yk11 · · · ykpp is of higher order than yl11 · · · ylpp
if κ > λ. The degree of a monomial in p variables is the sum
of degrees of the individual variables. The degree of a poly-
nomial is the maximum degree of the monomials making up
the polynomial.

Define Vk to be the vector space of symmetric homoge-
nous polynomials of degree k in p variables.5 Further let Vκ

be the subspace of Vk defined by polynomials of order κ.
Then Vk is the direct sum of the irreducible invariant sub-
spaces Vκ.

Zonal polynomials were introduced by James [65, 66, 67]
and Constantine [68]. A concise definition of these polyno-
mials for real symmetric matrix argument is given in [53].
We define the polynomials on Hermitian matrices.

Definition B.2 (zonal polynomial). Let Vk be defined on the
eigenvalues of a p × p Hermitian matrix X. Then the polyno-
mial (trX)k ∈ Vk has a unique decomposition into polyno-
mials Cκ (X) ∈ Vκ according to

(trX)k =
∑
κ

Cκ (X) . (B.1)

The zonal polynomial Cκ (X) is the component of (trX)k in
Vκ.

A general formula for the coefficients of zonal polyno-
mials has not been found. A recurrence for the coefficients
may be found in [51]. An easily proved useful identity is
Cκ (αX) = αkCκ (X).

The following constant occurs frequently in integrals
concerning zonal polynomials. Note that this differs from
the usual definition (e.g., [51, pages 247–248]), since we are
considering zonal polynomials on the space of Hermitian
matrices.

Definition B.3 (generalized hypergeometric coefficient). Let
κ be a partition of k. Then

(a)κ =
p∏
j=1

(
a − j + 1

)
kj
, (B.2)

where (a)n = a(a+1) · · · (a+n−1) is the Pochhammer symbol.

The zonal polynomials of the identity matrix are
known [68, 69]. Suppose κ has exactly r nonzero parts. Then

5A polynomial that is unchanged by permutation of variable subscripts
and such that every term has degree k.

Cκ (I) = 22kk!
(
p

2

)
κ

∏r
i< j

(
2ki − 2kj − i + j

)
∏r

i=1
(
2ki + r − i

)
!

. (B.3)

Hypergeometric functions of matrix argument were in-
troduced by Herz [70], defining the functions iteratively us-
ing Laplace transforms [70, equation (2.1)], starting from

0F0X = etrX. (B.4)

Note that we have modified Herz’s definition to be suitable
for Hermitian matrices (rather than symmetric).

Definition B.4 (hypergeometric function of matrix argu-
ment). Let Z be a Hermitian p × p matrix. The hypergeo-
metric function of matrix argument is defined iteratively by

m+1Fn (a1, . . . , am, c; b1, . . . , bn;−Z−1)

=
detZc

Γm (c)

∫
X>0

etr(XZ)mFn (a1, . . . , am; b1, . . . , bn;−X)

×det(X)c−mdX,

(B.5)

mFn+1 (a1, . . . , am; b1, . . . , bn, c;−X−1)

=
detXm−cΓm (c)

(2πi)n

×
∫
�Z>0

etr(XZ)mFn (a1, . . . , am; b1, . . . , bn;−Z−1)

× det(Z)−cdZ.
(B.6)

Another particularly simple and useful form is

1F0 (a;X) = det(I − X)−a. (B.7)

The power series representation given below is due to Con-
stantine [68].

Theorem B.1. Let X be a Hermitian p × p matrix. The hyper-
geometric function of matrix argument can be written as

mFn (a1, . . . , am; b1, . . . , bn;X)

=
∞∑
k=0

∑
κ

(a1)κ · · · (am)κ
(b1)κ · · · (bn)κ

Cκ (X)
j!

.
(B.8)

REFERENCES

[1] C. Berrou and A. Glavieux, “Near optimum error correcting
coding and decoding: turbo-codes,” IEEE Trans. Commun.,
vol. 44, no. 10, pp. 1261–1271, 1996.

[2] I. Emre Telatar, “Capacity of multi-antenna Gaussian chan-
nels,” European Trans. Telecomm., vol. 10, no. 6, pp. 585–595,
1999.

[3] G. J. Foschini and M. J. Gans, “On limits of wireless commu-
nications in a fading environment when using multiple an-
tennas,” Wireless Personal Communications, vol. 6, no. 3, pp.
311–335, 1998.

[4] J. H. Winters, J. Salz, and G. D. Gitlin, “The capacity of wire-
less communication systems can be substantially increased



328 EURASIP Journal on Applied Signal Processing

by the use of antenna diversity,” in Conf. Inform. Sci. Syst.,
Princeton, NJ, USA, 1992.

[5] J. H. Winters, J. Salz, and R. Gitlin, “The impact of antenna
diversity on the capacity of wireless communication systems,”
IEEE Trans. Commun., vol. 42, no. 2-4, pp. 1740–1751, 1994.

[6] A. Narula, M. D. Trott, and G. W. Wornell, “Performance
limits of coded diversity methods for transmitter antenna ar-
rays,” IEEE Transactions on Information Theory, vol. 45, no. 7,
pp. 2418–2433, 1999.

[7] S. Dennett, “The cdma2000 ITU-R RTT candidate submis-
sion (0.18),” Technical report, TIA, July 1998.

[8] W. C. Jakes, Microwave Mobile Communications, John Wiley
and Sons, New York, NY, USA, 1974.

[9] D. H. Johnson and D. E. Dudgeon, Array Signal Processing:
Concepts and Techniques, Prentice Hall, NJ, USA, 1993.
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