
EURASIP Journal on Applied Signal Processing 2002:7, 649–658
c© 2002 Hindawi Publishing Corporation

Simulation of Specular Surface Imaging Based
on Computer Graphics: Application on a Vision
Inspection System

Ralph Seulin
Laboratoire Le2i, CNRS FRE2309, EA 2421, Université de Bourgogne, 71200 Le Creusot, France
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This work aims at detecting surface defects on reflecting industrial parts. A machine vision system, performing the detection
of geometric aspect surface defects, is completely described. The revealing of defects is realized by a particular lighting device.
It has been carefully designed to ensure the imaging of defects. The lighting system simplifies a lot the image processing for
defect segmentation and so a real-time inspection of reflective products is possible. To bring help in the conception of imaging
conditions, a complete simulation is proposed. The simulation, based on computer graphics, enables the rendering of realistic
images. Simulation provides here a very efficient way to perform tests compared to the numerous attempts of manual experiments.
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1. INTRODUCTION

Highly reflective surfaces inspection is a problem met fre-
quently within the automatic control of industrial parts
[1, 2, 3]. This inspection is generally done manually. It im-
plies subjectivity and tiredness influence on classification re-
sults. A machine vision system offers objectivity, better relia-
bility and repeatability and is able to carry out defects mea-
surement to classify the industrial parts quality.

This work aims at detecting surface defects on reflect-
ing industrial parts. The objects to be controlled are highly
reflective and so, act as perfect mirrors. Surface defects are
dents, bumps, and scratches. The defects areas have the same
reflective properties as the flawless area of the surface: they
reflect incident light only in the specular direction. Indus-
trial parts dimensions are 200×50mm and defects surface is
less than 1mm2.

This paper describes a complete machine vision system
development. We will present the inspection system based on
a particular lighting device that enables efficient real time de-
fect detection and some of the features design performed via
computer graphics simulation.

2. SPECULAR SURFACE IMAGING ANDDEFECTS
DETECTION

2.1. Specular surface imaging

2.1.1 Lighting principle

Imaging of reflective surfaces is not easy. We observe the en-
tire object environment through its surface. In order to cap-
ture images without unwanted information, we need to com-
pletely master the environment of the surface. By choosing
an adapted lighting system, the imaging of defects is possible.
The lighting principle used in our system enables an efficient
defects detection. A tried technique to reveal the aspect de-
fects is the imaging of the reflection of a structured lighting
through the surface [1, 2, 3]. The surface imperfections pro-
voke important light rays’ deviations. This property is used
to detect defects with a particular lighting system. This light-
ing is binary type. It is composed of a succession of zones of
null luminous intensity and zones of maximal luminous in-
tensity. In these conditions, a defect appears in the captured
image as a set of luminous pixels among a dark zone or a set
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Figure 2: Defect size variation.

of dark pixels among a luminous zone. Figure 1 illustrates the
lighting principle and shows a typical image acquired with
the lighting device. In the first case, without defect, the sur-
face reflects a dark zone of the lighting. In the second case,
the defect deflects luminous rays coming from the luminous
zone and so, the defect appears as a clear spot in a dark zone.
We choose to saturate the camera in order to obtain images
where defects appear very contrasted on a dark background
and so to enable a simple image processing for detection (see
Section 2.2). In these illumination and imaging conditions,
defects appear only as high gray level pixels in dark zones.

2.1.2 Implementation

In order to inspect the whole part surface, an element of the
lighting structure has to scan every part of the surface. Dur-
ing experiments, we noticed that the size of the defect signa-
ture on the image depends on the distance between the light
transition and the defect. It can be schematically explained as
shown in Figure 2.

If the light transition, projected on the surface, is close to
the defect, the defect size on the image is close to its real size.
But if the distance between the defect and the light transi-
tion increases, the defect size decreases and can even be null
for an important distance. This particular property can be
measured by computing the defect size from images acquired
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Figure 3: Defect size variation versus distance to the first light tran-
sition (experimental results).

during experiments. Figure 3 represents a defect size (per-
centage of real size) versus the distance between two light
transitions and the center of the defect (normalized by the
defect dimensions) and the corresponding images.

The image signature equals the physical size if the defect
is close to a light transition and it decreases if the distance in-
creases. In our industrial application, we have to obtain im-
age signatures proportional to the defects physical size. So,
the light transition has to scan all over the surface to ensure
that each defect is close to a light transition in the image se-
quence. To carry out surface inspection, we can imagine that
the object is moving in front of the camera and the lighting
system [4]. In the case of important surface curvature gradi-
ents, the projection of the luminous and dark fringes on the
complex geometry surface varies a lot between two consecu-
tive images. So, entire scanning is not ensured if the object is
moving in front of the static lighting. To overcome this lim-
itation, an inverse process is proposed: the lighting structure
is dynamic while the object is static.

Having static object during the inspection presents nu-
merous advantages:

• the fringes projections and the position of the fringes
between two images are completely mastered;

• an a priori knowledge of the object to be controlled
can enable definition of region of interest in the surface
inspection (see Section 2.2.2);

• shape defect detection can be computed by inspecting
the silhouette.
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In order to reduce the number of necessary images to per-
form the scanning of industrial parts, the lighting system is
composed of juxtaposed luminous and dark fringes. It en-
ables a large number of light transitions to scan the surface.
The lighting devices have to be diffuse and homogenous. So,
the lighting system is realized by luminous surfaces made of
diffusers placed in front of fluorescent tubes. The luminous
panels are then shaded by an opaque mask.

The surface aspect imaging is performed by different
lighting system positions. The lighting system is translated
along the main object axis. For each regular spatial position,
an image is captured. We finally obtain an image sequence as
seen in Figure 4.

2.2. Defects segmentation andmeasurements

2.2.1 Image sequence processing

In the sequence, defects always appear as high gray level pix-
els because of the saturation of the Charge Couple Device
(CCD) matrix. By computing the mean image of the se-
quence, we obtain a synthetic image called aspect image.In
this image defects appear as high gray level pixels and the en-
tire flawless area of the image appear with medium gray level
(see Figure 5).

The segmentation of defects zones is then easy to com-
pute because of the very contrasted aspect images. The seg-
mentation processing consists in filtering the aspect image by
a local (9×9 pixels) Gaussian filter and to subtract the result-
ing image to the initial one. With this filter, segmentation of
pixels belonging to clear thin areas (defects) from zones of
homogenous gray levels (flawless area) is performed.

2.2.2 Postprocessing

A postprocessing is then applied on the segmented image to
distinguish holes or bumps from scratches and to compute
defects measurements.

Defects measurement

Defects measurement consists first in blob coloring to label
the defects. Then each defect is analyzed individually by com-
puting moments on its representing pixels. Two-dimensional
moments have been successfully used for a number of image
processing applications [5, 6]. For a digital image represented
in a two-dimensional array, the moment of order (p + q) is
given by

mpq =
M−1∑

x=0

N−1∑

y=0
xp yq f (x, y), (1)

where M and N are the horizontal and vertical dimensions
and f (x, y) is the gray level at point (x, y). The zeroth or-
der moment, m00, represents the total mass of the given im-
age. When computed for a silhouette image on a dark back-
ground,m00 represents the total object area. The two first or-
der moments,m10,m01, are used to locate the center of mass
of the object in the image. The coordinate of the center of
mass G(xG, yG) can be defined through moments as follows:

Figure 4: Part of image sequence (experimental results).

Figure 5: Aspect image (experimental results).
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Figure 6: Segmented and classified defects.

xG = m10

m00
, yG = m01

m00
. (2)

So, by computing two-dimensional moments on the labeled
image, the position (coordinate of the center of mass), the
size (number of pixels representing the defect), and the
weight (the sum of gray level pixels representing the defect in
the aspect image) of each defect are computed. The defects
are finally measured upon their size and weight.

The classification between bumps or holes versus
scratches is made upon the compacity of defects (see
Figure 6). The compacity of a shape is computed from the
second-order central moments {µ20, µ11, µ02}, where

µpq =
M−1∑

x=0

N−1∑

y=0

(
x − xg

)p(
y − yg

)q
f (x, y) (3)

are the central moments of order (p + q).
We consider that a shape is a hole or a bump if the fol-

lowing relation is checked:

µ02 − µ20
µ11

≥ k or
µ11

µ02 − µ20
≥ k, (4)

where k is the chosen compacity factor. If the relation is not
checked, the defect is considered as a scratch.

Regions of interest

The lighting principle used here is designed to reveal small
geometrical surface imperfections. In the case of objects
composed of smooth surfaces decorated by relief, the relief
will be detected as pertaining to defects. So if we do not de-
fine regions of interest (ROI) for the defect detection, lots
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Figure 7: Definition of ROI by equivalent ellipse matching.

of false detection will perturb the classification of parts. A
method is so proposed to define ROI on the industrial parts.
This method consists in positioning a predefined mask on
the object to be controlled. The first phase is to compute the
silhouette of the object from the image sequence. The silhou-
ette is reconstructed from the image sequence. The image se-
quence represents the lighting scanning through the entire
object surface. Then, by computing the sum of the N images
and by applying a flood fill method on the external recon-
structed shape, the reconstruction of the object silhouette is
effective. Once the silhouette obtained, we are able to match
a predefined binary mask on the shape (see Figure 7). The
matching is realized by fitting the equivalent ellipse of the
shape to be controlled on the equivalent ellipse of the refer-
ence shape on which the binary mask is defined. The equiv-
alent ellipse of a shape is an ellipse which has the same geo-
metrical moments as the shape. In our case, the shape fitting
is realized by matching the center of mass and the orienta-
tion of the two shapes. The center of mass is determined as
described in Postprocessing (Section 2.2.2). The orientation α
is computed from the three second-order central moments
{µ20, µ11, µ02}:

tan(2α) = 2 · µ11
µ02 − µ20

. (5)

The fitting is computed by scaling, translating, and ro-
tating the reference shape to make it matching the current
shape.

This method is applied in our case to perform the defect
detection only in smooth surface areas. The main advantages
of this method is the translation, rotation, and scale invari-
ance. The position and orientation of the objects can be ap-
proximate. It simplifies consequently the parts manipulation
and positioning on the production line.

2.3. Summary of themethod

The specular surface inspection method can be summarized
as shown in Figure 8.

3. SPECULAR SURFACE IMAGING SIMULATION

The imaging conditions have been particularly studied be-
cause they influence strongly the quality of acquired im-
ages and consequently, the quality of image processing re-
sults. These imaging conditions are often the fact of exper-

Image
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Lighting translation

Image sequence

Sequence
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Aspect image

Post
processing

Defect
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Figure 8: Specular surface inspection algorithm.

iments: numerous attempts on lighting features and on the
relative positions between the camera, the lighting, and the
object are still necessary. To bring help in the choice of these
imaging features, a complete simulation of the system is pro-
posed.

3.1. Imaging systemmodeling

Lighting and imaging features need to be modeled in order
to simulate the imaging process. In our case, the geometri-
cal optics is applicable because the wavelength of the inci-
dent light is weak compared to the dimensions of the sur-
face imperfections [7]. The ray tracing technique is so used
to analyze the reflection of the lighting through the surface.
Each element of the scene is modeled and is described in this
chapter.

3.1.1 Cameramodel

Because the geometrical optics is applicable, a pinhole model
is used to describe the camera. The phenomenon of sensor
saturation or blooming is extremely important within the
framework of this application. It conditions the defect reveal-
ing, computed by the mean image of the sequence.

The model proposed here is based on experiments. It is
applicable only in the case of high saturation imaging con-
ditions. The camera saturation can be modeled by a blur ef-
fect and the resulting synthetic image is multiplied by a gain
factor. Figure 9 presents an example of the saturation effect
modeling. (a) is the experimental source image, (b) is the
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Figure 9: Saturation effect simulation.
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Figure 11: Lighting reflection properties on perfectly specular sur-
faces.

experimental saturated image, and (c) is the simulated sat-
urated image from image (a).

To model the saturation effect, each image is processed
by a filter (see Figure 10).

3.1.2 Object model

Lighting reflection properties

The reflection properties of the metal surfaces have been
accurately studied [8]. A simple model is used here to de-
scribe the lighting reflection on the polished metal surface.
We consider that the surface is perfectly specular. So, the
Snell-Descartes law is applicable (see Figure 11). The light is
reflected with the same angle as the incoming ray and the re-
flected luminous intensity is equal to the incoming one.

Industrial parts model

In the case of CAD/CAM (computer assisted design/
computer assisted manufacturing) designed and manufac-
tured industrial parts, the CAD file is used for the object
model. But most of times, the CAD model does not exist or
is not sufficiently accurate for the modeling. In that case,
we use a 3D scanner to obtain a range image of the surface
to be controlled. The range image is then converted in a 3D
model made of Non Uniform Rational B-Splines (NURBS)
(see Figure 12).

Figure 12: 3D object model.

Figure 13: Bump mapping principle.

Defects model

Defects can be integrated in the 3D model of an object. De-
fects are zones where the surface is affected by geometrical
imperfections. The surface is still smooth in the defect zones,
so the specular property is maintained. For example, a dent
is modeled by a Gaussian curve. The Gaussian function char-
acterizes the smoothness of the surface.

The influence of surface height and surface orientation
on the lighting point reflected by the surface has been stud-
ied [9]. This study is based on physical values taken from
our machine vision prototype and is applicable in the case
of a viewing point situated at a large distance from the ob-
ject (compared to the defect dimensions). We demonstrate
that the influence of the surface height induces negligible
light rays’ deviations compared to the influence of the sur-
face orientation. The defect surface is so modeled as flat and
is only described by its orientation. Normal vectors are com-
puted from the surface model and completely describe the
defect surface (see Figure 13). This kind of modeling can be
compared to the bumpmapping technique used in computer
graphics to artificially represent the surface orientation mod-
ification [10, 11].

3.1.3 Lightingmodel

The lighting system was modeled in order to represent the
developed prototype. The luminous zones are completely
diffuse and homogenous. They can be modeled by Lam-
bertian lighting sources. The lighting sources are shaded
by opaque fringes where the luminous intensity is null.
Figure 14 reminds the luminance law of a Lambertian light-
ing source. The luminous intensity varies with the observa-
tion angle θ of the lighting source with a cosine law.

3.2. Simulation process

The imaging and lighting model enables to simulate the im-
age acquisition process. Ray tracing is used to compute realis-
tic images. Ray tracing is well adapted for this kind of render-
ing because the surfaces are completely specular. Light rays
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Figure 14: Lambertian lighting model.

are modeled by vectors. For each pixel C of the CCD matrix,
the lighting point L reflected by the surface is computed from
the reflected ray. Figure 15 describes this modeling.

Blue Moon Rendering Tools (BMRT) are used here for
the rendering [12, 13]. BMRT are a collection of programs
that render 3D scene models. BMRT use some Application
Program Interfaces (APIs) that are very similar to those de-
scribed in the published RenderMan Interface Specification
[14]. This rendering kernel has been chosen for its possible
custom settings for all scene elements features. Each element
of the scene is controlled by a shader. A shader describes the
object handling on the light rays. There is so a shader for the
lighting device which sets the Lambertian luminous fringes
and the dark ones. And an object shader defines the surface
as perfectly specular.

4. APPLICATION

4.1. System features

The method proposed in the first chapter is applied to the
detection of surface defects on reflecting industrial parts. The
system features have been first chosen by experimental tests.
The tests have proved the feasibility of the detection and a
first prototype has been developed.

The lighting stripes are disposed in a tunnel made of two
flat panels. It enables so a complete mastery of the environ-
ment of industrial parts to be controlled. A high resolution
CCD camera (1300× 300 pixels), positioned vertically to the
object plan, inspects the objects. We obtain a spatial resolu-
tion of 0.15mmper pixel. Defects appear with an average size
of 5 pixels on the images. Binary lighting zones dimensions
and images sequence capture features are computed as de-
scribed in [9]. The surface inspection is performed by several
lighting system positions realized by a translation of the tun-
nel along the main object axis. A sequence of 24 images is
captured during the lighting translation (see Figure 17). The
camera captures images at a rate of 24 images per second, it
enables to avoid the blur effect due to the translation move-
ment. The acquisition conditions are schematically repre-
sented in Figure 16.

The homogeneity of the flawless area is critical in the de-
fect segmentation. The imaging conditions have to be cho-
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Figure 15: Imaging system modeling.
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Figure 16: Specular surface imaging system (principle schema).

sen in order to provide aspect images with a flawless area the
more homogenous as possible. The homogeneity criterion is
estimated on aspect image by computing the following equa-
tion:

h = 1−
∑M−1

x=0
∑N−1

y=0
∣∣ f (x, y)/µ− 1

∣∣

M ×N
, h ∈ [0, 1], (6)

whereM andN are the horizontal and vertical dimensions of
the image, f (x, y) is the gray level at point (x, y), and µ is the
mean luminance of the image, h must be close to 1 or 100%
to have a homogenous flawless area.

Figure 18 presents the aspect image resulting from the
experimental sequence. The corresponding measured homo-
geneity is h = 85.6%.

The images provided by the prototype can be obtained by
simulation (see Figure 17). The simulation provides realistic
images with the same features as the real ones. It completely
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Figure 17: Part of image sequence (first experimental results and
simulation).

Figure 18: Aspect image form first experiments.

enables the simulation of industrial parts imaging. With the
simulation, it is possible to simulate new imaging conditions
and so to estimate the influence of scene elements features on
the quality of acquired images and consequently the quality
of image processing results. The simulation enables virtual
tests on the acquisition conditions.

A new lighting system has been virtually tested by sim-
ulation. This new system uses a semicylindrical tunnel.
Figure 19 presents a simulated image sequence with the new
lighting configuration. It provides better images features
than the first one: the regularity of the projected stripes is
better and the resulting aspect images are more homogenous
(see Figure 20). The corresponding measured homogeneity
is h = 89.4%.

Simulated tests have been so performed before construct-

Lighting position 1

Lighting position 2

Lighting position 3

Figure 19: Part of image sequence (simulation results).

Figure 20: Aspect image resulting from the simulation.

ing a new and finalized prototype. Figure 21 presents a pho-
tograph of the final prototype and the real sequence provided
by the new developed prototype is presented in Figure 22.
Figure 23 presents the aspect image resulting from the exper-
imental sequence. The corresponding measured homogene-
ity is h = 88.8%.

We can notice that the images features and homogeneity
results provided by the prototype have been completely pre-
dicted by the simulation process. The simulation tool pro-
vides here a very efficient way to ease system improvement
compared to the necessary numerous attempts of the manual
experiments. This simulation tool brings help in the choice of
the imaging and lighting parameters.
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Figure 21: Developed machine vision system (prototype photo-
graph).

4.2. Performances

The machine vision prototype has been tested on 200 indus-
trial parts sorted out by an expert. The tests have been made
on a selection of parts affected by all possible defects. This
industrial parts selection is not representative of the produc-
tion quality, but enables to estimate the classification possi-
bilities of the machine vision system.

Two parameters were calculated. The first parameter is
the size of the biggest defect detected on each part. The
second parameter corresponds to the sum of the size of
the detected defects. This last parameter is hence a func-
tion of the number of defects on the part. The graph of
Figure 24 presents results obtained for holes defects. Each
point corresponds to the quality measurement of a part. This
point is placed on the graph according to the two parame-
ters calculated. Three classes have been proposed by the ex-
pert (Perfect, Acceptable, and Rejected). For each parameter,
a threshold has been defined to separate the three classes. The
system is capable of distinguishing the class of defects pro-
posed by the expert.

The diagram of Figure 25 presents results obtained for
scratch defects. Two classes have been proposed by the expert
(Perfect and Rejected). The parts are rejected as soon as they
are not perfect. It is due to the segmentation processing for
the scratches (see Section 2.2.2): if a scratch has a weak size,
it is considered as a hole.

The machine vision prototype enables an efficient de-
tection at the industrial production rate (1 part every
2 seconds). The sequence imaging time requires 1 second
and the image processing takes 0.8 second (evaluated on a
700MHz Pentium III based machine).

5. CONCLUSION AND FUTUREWORK

A machine vision system for specular surface inspection has
been presented. This system enables the detection of ge-

Lighting position 1

Lighting position 2

Lighting position 3

Figure 22: Part of image sequence (prototype results).

Figure 23: Aspect image provided by the prototype and measured
homogeneity.

ometric aspect surface defects. The revealing of defects is
realized by a particular lighting device. It has been care-
fully designed to ensure the imaging of defects. Defects ap-
pear very contrasted in resulting images. The elementary
processing for defect segmentation, so very fast comput-
ing, is possible because of the well-designed lighting sys-
tem. The lighting system simplifies a lot the image process-
ing and so a real-time inspection of reflective products is
thus possible. The imaging conditions have been particu-
larly studied because they influence strongly acquired im-
ages. These imaging conditions are still often the fact of ex-
periments. In order to bring help for the system concep-
tion, a complete simulation of the acquisition process have



Simulation of Specular Surface Imaging Based on Computer Graphics: Application on a Vision Inspection System 657

Rejected
Acceptable
Perfect

0 2 4 6 8 10

Size of the biggest defect

0

5

10

15

20

25

30

Su
m

of
th
e
si
ze

of
th
e
de
fe
ct
s

Classification for “holes” defects (estimated on 200 samples)

Figure 24: Classification of holes defects.
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Figure 25: Classification diagram for scratch defects.

been proposed. Each system device has been physically mod-
eled and it enables to obtain realistic images. Simulation
provides here a very efficient way to perform virtual tests
compared to the necessary numerous attempts of the man-
ual experiments. The use of simulation, based on computer
graphics enables to save time in a machine vision system
improvement.

Future work concerns the automatic optimization of the
system via the simulation. The efficiency estimation of imag-
ing conditions on the defect revealing and detection is stud-
ied. By measuring the quality of the resulting images, it
will be possible to automatically optimize the system via a
gradient-based method.
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