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An Active Model for Facial Feature Tracking
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We present a system for finding and tracking a face and extract global and local animation parameters from a video sequence.
The system uses an initial colour processing step for finding a rough estimate of the position, size, and inplane rotation of the
face, followed by a refinement step drived by an active model. The latter step refines the previous estimate, and also extracts local
animation parameters. The system is able to track the face and some facial features in near real-time, and can compress the result
to a bitstream compliant to MPEG-4 face and body animation.
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1. INTRODUCTION

The goal of this work is to extract parameters describing
the adaptation of a face model to the frames of a video se-
quence. Since the target applications are video-phones and
man-machine interaction, we assume a “video phone-like”
input, that is, we assume that there is a face in the image,
looking approximately into the camera.

We use the face model Canpipe-3 [1], and the adapta-
tion parameters as global (rotation, translation, scale) as well
as local (action units [1, 2] controlling the mouth and the
eyebrows).

Initially, a colour-based algorithm, assuming that skin
colour is recognizable, is used to give a rough estimate of the
size and position of the face. Those parameters are then re-
fined by an active model. The two algorithms are presented
in the subsequent sections, followed by the results, and a de-
scription of our ongoing work.

2. BACKGROUND: ACTIVE APPEARANCE MODELS

Deformable models describing the shape of a class of objects
(e.g., faces) have been in use for some time, evolving from
the snakes or active contour models introduced in 1988 3] to
statistical models like point distribution models (PDMs) and
active shape models (ASMs) [4, 5]. The shape of a statistical
shape model is typically controlled by adding a linear com-
bination of shape/deformation modes to an average shape §
according to

s=§+So, (1

where 0 is a vector of shape/deformation parameters, and the
columns of S contains the deformation modes. The resulting

vector s contains the 2D or 3D coordinates of the model’s
control points, edge points, or vertices.

In parallel, statistical models describing the texture of ob-
jects have been developed, starting with Turk and Pentland
introducing eigenfaces for face recognition in 1991 [6]. The
main problem with the eigenfaces soon turned out to be that
the face distribution in the image space is highly noncon-
vex and complex, and thus it is not well modelled by a linear
basis. The two popular ways of handling this problem are to
create either a nonlinear model, for example, by ISOMAP [7]
or LLE [8], or geometrically normalized eigenfaces, introduced
by Strom et al. who used it for image compression [9]. Ge-
ometrically normalized eigenfaces are also called shape free
eigenfaces, eigentextures, or texture modes. The parameter-
ized (and geometrically normalized) texture of a model is de-
scribed by

x =X+ X¢, (2)

where the texture parameters & put weights on the eigentex-
tures (columns of X) and x is the average texture.

Appearance models [10] combine shape and texture into
one statistical model, where a number of appearance modes
are controlled by the model parameters. Such a model would
consequently be expressed as

s =5+ Ap, X =X+ Ap, (3)

that is, the same parameters control shape as well as texture.

In 1998, the active appearance models (AAMs) were in-
troduced by Edwards et al. [10], combining an appearance
model with a fast search algorithm for matching the model
to an image. The AAMs have been the target for quite some
research since, and extensions include view-based face spaces
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[11], modelling the ageing of faces [12], face detection [13],
and constrained AAM search [14], to pick a few. A compar-
ison between ASMs and AAMs can be found in [15], and a
combination in [16]. For an introduction to AAMs, see [17].
A more in-depth treatment can be found in [18]. The AAM
search algorithm will be briefly described below.

2.1. The AAM search algorithm

Given an input image i and a model parameter vector p, we
can map the image onto the model, reshape the model to the
standard shape, and thus create a normalized input image

i=i(is(p)- (4)

From now on we fix the input image and regard j as a func-
tion of p only. We compute the residual image as

r(p) =j(p) —x(p), (5)

and our goal is to find the optimal adaptation of the model
to the input image, that is, to find the p that minimizes the
error measure

e(p) = [|x(@)|”. (6)

Assuming that we have a rough estimate of the model param-
eters, we would like to find the update vector Ap that mini-
mizes e(p + Ap). Following [17], we Taylor-expand r around
p + Ap getting

r(p + Ap) =r(p) + GAp + O(Ap), (7)

where
0
G= %r(P) (8)

We approximate r(p) with the first terms and regard it as
a linear function. Thus, we want to minimize

e(p +Ap) = ||r(p) + GAp||? (9)

of which the least square solution is
Ap = Ur(p) = —(G"G) 'G"r(p). (10)

The vector Ap gives us a probable update in the search
space, and we compute a new parameter vector and a new
error measure

p=p+ap, & =ep) (11)
If ¢ < e, we update p accordingly (p’ — p) and iterate until
convergence. If ¢ > e, we try smaller update steps (0.5 and
0.25). If neither of these improves the error measure, we de-
clare convergence.

2.2. Training the AAM

From a set of training data (models adapted to images), we
can estimate the gradient matrix G, and from the estimated

G we compute the update matrix U as the negative pseudoin-
verse of G:

U=-G'=-(G"G)"'G". (12)

To be able to use the AAM search, we should consequently
estimate the gradient matrix G. We do that by perturbating p
from the set of (manually) adapted models, parameter by pa-
rameter, step by step. The jth row in G can thus be estimated
as

Gj =Y (r(p+Api) - r(p)), (13)
k

where Apjy is a vector that perturbs p in the jth component
to the amount of k - ¢ for some suitable constant c.

3. OURACTIVE MODEL AND ITS PARAMETERIZATION

Our active model is a simplification of the AAM, and we de-
scribe here the model and how it is parameterized. As a start-
ing point, we use the wireframe face model CANDIDE, which
has been popular in video coding research for many years.
The third variant of this model, CANDIDE-3, is also compli-
ant to MPEG-4 Face Animation.

The CaNDIDE model has manually been adapted to a set
of images by varying a set of 12 parameters:

o the first six parameters are the global motion (or
pose) parameters; 3D-rotation, 2D-translation, and
scale. We denote the pose parameter vector m =
(72 Ty T2 by by, z] T

e the remaining parameters are activation levels for six
action units (from FACS, the facial action coding sys-
tem [2]) controlling the lips and eyebrows. They are
contained in the vector o, and control the shape of the
head according to (1).

We collect those parameters in a 12D vector pT =
(77, 6T], which parameterizes the geometry of the model.

Thus, the geometry is described by
g(p) =R(z+1)(5+8S0) + 1, (14)

where the columns of S are action unit definitions from
CANDIDE-3, ¢ is the vector of action unit activation levels,
§ is the standard shape of the CANDIDE model, T = 7(y, t,) is
a function of the x- and y-translations, R = R(ry, 7, 7;) is a
rotation matrix created from the three rotation parameters,
and z is a scaling factor.

The image under the model has, for each image in
the training set, been mapped onto the model, creating
a texture mapped wireframe model. The model has then
been normalized to a standard shape, size, and position
(ie, p = 0 = g = @), in order to collect a geo-
metrically normalized set of textures. On this set, a PCA
has been performed and the eigentextures (shape free
eigenfaces, geometrically normalized eigenfaces) have been
computed.
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(c) (d) (e)

FIGURE 1: The model matching and texture approximation process. (a) A good and a bad (top and bottom row, respectively) model adap-
tation is shown; (b) the image mapped onto the model; (c) the model is reshaped to the standard shape, producing the image j; (d) the
normalized texture is approximated by the eigentextures, producing the image x; (e) the residual image r is computed. The better the model
adaptation is the more similar the images j and x are. Analysis of the image r tells us how to improve the model adaptation, that is, how to

minimize the difference between j and x.

We can now describe the complete appearance of the
model by the geometry parameters p and an N-dimensional
texture parameter vector £, where N is the number of eigen-
textures we want to use for synthesizing the model texture.

3.1. Matching the model and the image

As in (4) we can create the normalized input image j(p). The
texture parameters minimizing the model error e(p) are then
given by projecting the normalized input image j(p) on the
eigentextures, that is,

& =X"(j(p) - %). (15)
Thus, p is the only necessary parameter in our case:

g=8p) x = x(p), (16)

where
x(p) = %+ XX" (j(p) - X). (17)

The entire process from input image to normalized is illus-
trated in Figure 1.

Note that our model is not a complete appearance model,
since we parameterize the geometry only and let the texture
depend on the input image as well. For an appearance mod-
els, a PCA is performed to find the suitable subspace of ap-
pearance modes combining deformation modes and texture
modes (eigentextures). In our application, we only parame-
terize the model in terms of deformation (including global
motion) since we know in advance what kind of parameters
we are interested in extracting. If we want to extract action
units (the parameters typically used for CANDIDE), we simply

parameterize and train our model on those parameters (or
deformations spanning the same subspace). We can still use
the AAM search exactly as described above.

3.2. Training the model

To try out this scheme, the model has been adapted (manu-
ally in the beginning, then semiautomatically) to 330 images
of six different persons from different angles and with differ-
ent facial expressions. The following action units from FACS
have been chosen as deformation parameters:

(1) jaw drop;

(2) lip stretcher;

(3) lip corner depressor;

(4) upper lip raiser;

(5) eyebrow lowerer;

(6) outer eyebrow raiser.

The adapted model, for each image, has been normal-
ized to a standard shape with the size 40 x 42 pixels, as in
Figure 1c, top row, and a PCA has been performed on the
resulting training textures to compute the eigentextures. The
mean texture X and the DC-level have been subtracted from
the training textures prior to the PCA.

With the eigentextures available, all the parameters have
been perturbed, one by one and for each image, in steps of
0.01 in the range [-0.1,0.1], and the matrix G estimated.
From G, the update matrix U has been computed.

3.3. Using the active model for tracking

The AAM search efficiently adapts the model to the image
provided that the initial estimate of the model parameters are
good enough. The better the initial estimate is, the smaller is
the risk of the AAM search getting stuck in a local minimum
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FiGure 2: Examples of the colour-based algorithm giving a rough
initial estimate of the location, size, and inplane rotation of the face.

not corresponding to the correct model adaptation. In a
video sequence, the changes between each frame are quite
small (provided that the frame rate is high enough) so the
adaptation from the previous frame can be used as the initial
estimate. However, for the first frame, some other technique
has to been used, as discussed in Section 4. Also note that
since we do not change the static shape, the model should be
adjusted to the subject feature’s in advance, using the shape
units.

4. THEINITIAL STEP: THE COLOUR-BASED
ALGORITHM

To quickly find the approximate location of the face in the
input image, the pixels are traversed and each is given a
likelihood value of being a skin coloured pixel. This likeli-
hood value is based on a priori collected statistics, to which
a mixture of Gaussian distributions has been adapted using
the expectation-maximization (EM) algorithm. The result-
ing image of likelihood values is blurred and then thresh-
olded, and of the remaining objects in the image, the largest
one is selected as the most probable face candidate. The posi-
tion, size, and orientation of this “blob” is used as the initial
estimate handed over to the refinement step. Examples of re-
sulting estimates are shown in Figure 2.

This kind of algorithm has been chosen because it is
fast and simple. The obvious drawback is that it needs re-
calibration for each camera and for differing lighting condi-
tions.

5. IMPLEMENTATION

We have implemented a C++ library with routines for han-
dling face models and training them as to be active mod-
els. The shape of the (normalized) eigentextures is deter-
mined by the standard shape of the CANDIDE model (with
the upper part of the head removed) scaled so that the size is
40 x 42 pixels (see Figures 1c and 1d). The eigentextures have
been computed in RGB as well as in grayscale for compar-
ison, the eigentextures and the update matrix U have been
computed in RGB as well as in grayscale.

The implementation uses OpenGL for the texture map-
ping in the AAM search, utilizing the fact that modern graph-
ics cards have specialized hardware for such tasks. The ge-
ometrical normalization of the input image (see Figure 1c)

FiGURE 3: The CANDIDE-3 model adapted to four frames of a video
sequence.

is thus performed in a very short time (less than 2 millisec-
onds), and the speed of the algorithm is dependent more on
the graphics card than on the CPU.

5.1. MPEG-4 encoding

The animation of the face model can be encoded using the
MPEG-4 standard for face animation. Since the vertices of
the CANDIDE-3 model correspond well to the facial feature
points defined in MPEG-4, the coding is easily done. Details
on how to compute the Facial Animation Parameters (FAPs)
from CANDIDE-3 can be found in [1].

The FAPs used to represent movements of the facial
feature points in MPEG-4 are measured in face dependent
scales, using different FAP Units (FAPUs). The FAPs are also
measured relative to the neutral face, and thus a neutral face
model is kept in memory. Using this neutral face model, the
FAPUs and the FAPs are computed, and then compressed us-
ing the MPEG-4 reference software. The entire process takes
only about five milliseconds per frame and does not influ-
ence the real-time performance. The output is an MPEG-4
Face and Body Animation (FBA) compliant bitstream, that
can be played in an FBA player, for example, the Facial Ani-
mation Engine (FAE) [19] or MpegWeb [20]. The bitstream
can be stored on a file or streamed over the network.

6. RESULTS

The experiments presented here are performed on a PC with
a 500 MHz Intel Pentium III processor and an ASUS V3800
graphics card with video input. The colour-based algorithm
runs on approximately 0.1seconds, and the AAM search
needs about 15 ms/iteration. Typically, less than 10 iterations
are needed each frame, and fewer iterations are needed the
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FIGURE 4: The original frame (left), the frame synthesized with FAE from DIST, University of Genova (middle), and the facial animation
system by Miralab, University of Geneva (right). The corresponding CANDIDE model adaptation is shown in Figure 3 (right).

TaBLE 1: Timing results (average over 341 frames).

Measurement RGB Grayscale
Iterations per frame 6.9 6.8
Total time per frame (ms) 94.1 69.1
Time per iteration (ms) 13.6 10.2
Time for computing Ap (ms) 7.2 5.05

closer the initial estimate is to the optimum. Thus, if a video
sequence is recorded at a high frame rate (with small motion
between each frame), the tracking will also run on a higher
speed. Visual results are shown in Figure 3.

Using grayscale eigentextures and update data, it turned
out that the computation in the graphics card (which inter-
nally uses RGB) became almost 20% slower. However, the
computations performed in the CPU became (as expected)
about 3 times faster, and then only 20% of the total comput-
ing time is due to the CPU (the rest being computations in
the graphics card).

Testing on a video sequence of a few hundred frames gave
results according to Table 1. It is clear that the grayscale com-
putations are preferable, since the visual results are equiva-
lent.

Snapshots from the animation of the resulting MPEG-4
Face Animation bitstream using two different facial anima-
tion systems are shown in Figure 4.

7. CURRENT WORK AND FUTURE IMPROVEMENTS

There are several ways this system can be improved, and they
are currently under investigation. Four things to be consid-
ered are mentioned here.

First, the colour-based algorithm is not robust enough,
and it should be complemented with some more simple and
fast technique. For example, we could require that an area
could be a face candidate only if there is some difference (due
to motion) between the first and second frame.

Second, U is a somewhat sparse matrix. By utilizing this
fact, the computation time could be improved.

Third, as all tracking systems, this system can lose
track, and therefore, some kind of re-initialization scheme
is needed. One possible procedure is that when the active

model does not converge to a small error measure, the
colour-based algorithm is invoked, handing a new initial es-
timate to the active model. Re-initialization issues are dis-
cussed in [21].

Fourth, our currently used set of action units is not com-
plete. For example, we do not analyse the motion of the eye-
lids at all, and the shape of the head is assumed to be known
a priori.

8. CONCLUSION

We have presented a system that tracks a face and facial fea-
tures in a video sequence. The resulting animation data is en-
coded using MPEG-4 Face Animation. The system works in
near real-time, and the experimental results are promising.
With some further development and optimization, a real-
time 3D face and facial feature tracker should be possible to
implement on consumer hardware.
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