EURASIP Journal on Applied Signal Processing 2002:5, 525-531
(© 2002 Hindawi Publishing Corporation

Maximum-Likelihood Sequence Detection of Multiple
Antenna Systems over Dispersive Channels

via Sphere Decoding

Haris Vikalo

Information Systems Laboratory, Stanford University, Stanford, CA 94305, USA

Email: hvikalo@leland.stanford.edu

Babak Hassibi

Department of Electrical Engineering, California Institute of Technology, Pasadena, CA 91125, USA

Email: hassibi@systems.caltech.edu

Received 6 May 2001 and in revised form 28 March 2002

Multiple antenna systems are capable of providing high data rate transmissions over wireless channels. When the channels are
dispersive, the signal at each receive antenna is a combination of both the current and past symbols sent from all transmit anten-
nas corrupted by noise. The optimal receiver is a maximum-likelihood sequence detector and is often considered to be practically
infeasible due to high computational complexity (exponential in number of antennas and channel memory). Therefore, in prac-
tice, one often settles for a less complex suboptimal receiver structure, typically with an equalizer meant to suppress both the
intersymbol and interuser interference, followed by the decoder. We propose a sphere decoding for the sequence detection in
multiple antenna communication systems over dispersive channels. The sphere decoding provides the maximum-likelihood esti-
mate with computational complexity comparable to the standard space-time decision-feedback equalizing (DFE) algorithms. The
performance and complexity of the sphere decoding are compared with the DFE algorithm by means of simulations.
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1. INTRODUCTION

Multiple antenna wireless communication systems are capa-
ble of providing data transmission at potentially very high
rates [1]. To secure high reliability of the data transmis-
sion, special attention has to be payed to the design of the
receiver. When transmitting over noisy dispersive channels,
the received signal at each receive antenna is the combi-
nation of the transmitted signals perturbed by noise, in-
tersymbol interference (ISI), and by interuser interference
(IUT). In this case, the optimal receiver structure is the multi-
channel maximum-likelihood sequence estimation (MLSE).
However, the computational complexity of the traditional
maximum-likelihood sequence detector often prohibits its
practical implementation. (For instance, the Viterbi decoder
is exponential in the length of the channel [2].) One way
to alleviate the computational burden is to settle for (sub-
optimal) reduced complexity MLSE algorithms by reducing
the number of states (see, e.g., [3, 4]). In practice, however,
most often a multichannel (space-time) equalizer is used to
suppress ISI and IUI first; then, a hard decision is made to
recover the symbol that has been sent [2, 5, 6]. The equalizer

may be linear (zero-forcing or minimum mean square),
or nonlinear decision-feedback equalizer (DFE). DFEs es-
sentially perform successive interference cancellation: a soft
symbol estimate is used to cancel the trailing interference,
upon which the hard decision is made to recover the sym-
bol. (For the analysis of the performance of DFE algorithm in
a dispersive MIMO environment, see [6].) For high enough
SNR, DFEs obtain better performance than linear equalizers
while still having much lower complexity than the optimal
MLSE algorithm. However, the performance of the DFE is
highly inferior compared to the performance of the optimal
MLSE algorithm.

In this paper, we propose an algorithm that yields the
optimal MLSE performance on dispersive multiple-input
multiple-output (MIMO) channels with finite impulse re-
sponse (FIR). (We should point out that the wireless commu-
nication systems may or may not employ feedback from the
receiver to the transmitter. In this paper, we focus on optimal
detector structures for systems where feedback is unavail-
able and the receiver learns the channel based on the training
information.)
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We consider the so-called sphere decoding, an algorithm
for solving integer least-squares problems, which, in the
communication context, provides the ML estimate of the
transmitted data sequence. The algorithm is due to Fincke
and Pohst [7] and was first proposed in the context of the
closest point searches in lattices (for a review of these, see
[8] and the references therein). The algorithm was rediscov-
ered in [9] in the context of detection in GPS systems. The
use of the sphere decoding for lattice codes was first pro-
posed in [10], and further investigated in [11, 12]. In [13],
it has been analytically shown that the average complexity
of the sphere decoding used for ML detection in flat fading
multiple-antenna systems is polynomial (often sub-cubic)
for a wide range of signal-to-noise ratios (SNRs).

The paper is organized as follows: in Section 2, we de-
scribe the FIR MIMO channel model. In Section 3, we pose
the detection problem, briefly overview heuristics for solving
it, and describe the sphere decoding algorithm. Simulation
results are presented in Section 4, where it is shown that the
sphere decoding provides significant improvement (several
dBs) over the MIMO DFE. The computational complexity of
the sphere decoding turns out to be comparable to that of the
MIMO DFE, thereby suggesting that it can be implemented
in practice. The paper concludes with Section 5.

2. FIR MIMO MODEL DESCRIPTION

We consider a multiple-antenna system with M transmit and
N receive antennas. The MIMO channel is modeled as block-
fading frequency-selective, where the channel impulse re-
sponse is constant for some discrete interval T, after which
it changes to another (independent) impulse response that
remains constant for another interval T, and so on. The addi-
tive noise is spatially and temporally independent identically
distributed (i.i.d.) circularly-symmetric complex-Gaussian.
The MIMO channel model is shown in Figure 1.

The channel is represented by its complex baseband
equivalent model. Let the column vector
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hid) = [hlu A hc’({‘,,] (1)
denote the single-input single-output (SISO) channel im-
pulse response from the jth transmit to the ith receive an-
tenna. For convenience, we shall make the following assump-
tions on the SISO channels h/):

(1) C%) = C, 1 <i<N,1<j< M, thatis, all SISO
channels have impulse responses of the same length,

(2) the channel coefficients h;i’j), 1<I1<C1<i<N,
1 <j<Mareiid. €(0,1).

The received signal at the ith antenna can then be expressed
as
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FiGUrE 1: FIR MIMO channel model.

matrix form as
C
X = D HiS i + Vi, (3)
I=1

where

!
S = [55(1) s](cz) S;(M)] (4)

is the transmit vector, whose entries typically come from a
QAM constellation, V' € @€N*! is the additive noise vector
defined as

!
Vi = [vf{l) v,(f) v,((N)] , (5)

and H; € €N*M i the Ith coefficient matrix in the MIMO
channel impulse response,

h;l,l) h;l,Z) . h;l,M)
h;Z,l) h;z,Z) . h;z,M)

H=| . o N (6)
h(N,l) hl(N,Z) . hl(N,M)

1

In other words, the z-transform of the MIMO channel
impulse response is given by

H(z) = Hy+Hyz '+ + Hez ¢V, (7)

Define the following vectors:

L= & o W]
V=V Vy o Vien]s (8)
=1 ) S

(Note that the random vector V' € @N(T+C-1) has unit vari-
ance complex Gaussian i.i.d. entries, E[VV™*] = In(ric-1).)
Then from (3) we can write the input-output relation for the
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FIR MIMO channel in the matrix form as 4
— % X
X =HS + OV, (9) L 9 N
where # € @N(T+C-DxMT ig constructed as
} FIGURE 2: Matrix equivalent channel model.
H, ]
H, H as
Hc . H, x=Hs+v, (14)
H = . (10) where the signal vectors s are typically obtained upon mod-
He --- H, ulation of the input bits onto an L-PAM constellation 227,
o He. L-1 L-3 L-3 L-1)*M"
HC HC 1 QD%MTz{_ > e > } . (15)
I He | 2 2 )

Model (9) is illustrated in Figure 2. We assume that symbol
bursts are uncorrelated (which is an appropriate assumption
when modeling, for instance, packet transmission in TDMA
systems).

It will be convenient to define the signal-to-noise ratio p
for the system in (9),

L
AT

E[tr (HSF*5)]
T E[ur (V)]

_E[tr (99 9%))]
~ N(T+C-1

(11)

Assuming that the entries in & are coming from an LxL QAM
constellation (where L is assumed to be even), and that the
minimum distance between constellation points is dpin, = 1,
we find that

-1 .
p= WC—I)E[U (3%)]

I’-1
TO6N(T+C-1)
(L*-1)MTC
Te(T+C-1)

MTCN (12)

Notice that all quantities in (9) are complex. We will find
it useful to rewrite (9) in terms of real quantities. To this end,
define

x= [R&) s@)],
v=[ROY (N7,

R(H) -3(%)
S(H) RH) |

(13)

Thus, with the previously defined x € RNT+C-Dx1"y ¢
RAN(T+C-Dx1 “and H € RINIHC-Dx2MT | wwo can rewrite (9)

(This particular structure of vector s stems from the assump-
tion that entries of & in (9) are points in L x L QAM constel-
lation.) Notice that we assumed that L is even. (In practice,
L is commonly a power of 2, giving rise to 2-PAM, 4-PAM,
8-PAM, etc., constellations.)

Finally, notice that M7 is a finite lattice carved from an
infinite one, %2MT,

3. PROBLEM STATEMENT

With the notation introduced in Section 2, due to the Gaus-
sian assumption on the additive noise, we can express the
MLSE problem as the optimization problem

[Ix — Hs||,, (16)

se@MT oMt

where the minimization is over all points in the constellation
@2MT_We can interpret problem (16) as follows.

Given the “skewed” lattice Hs, find the “closest” lattice
point to a given 2N T-dimensional vector X.

The closest lattice point search problem in (16) is known
to be, in general, of exponential complexity [8]. There are
several reduced complexity heuristic methods that can be
used to obtain approximate solutions to (16). The most ob-
vious are the following two.

e Inverting and rounding to the closest integer
$ = [H'x],, (17)

where HT denotes the pseudo-inverse, and where for
a € R the notation [a]y means the closest integer to
a. So [Htx] is simply the vector obtained by this op-
eration applied to each entry of Hfx. The above § is
called the Babai point (estimate). In the communica-
tions context, the preceding procedure is nothing but
simple zero-forcing equalization, followed by a hard
decision.

e In nulling and canceling [14], one uses the Babai es-
timate for one of the entries of s, say s then as-
sumes that sV is known and subtracts out its effect
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to obtain a reduced integer least-squares problem with
2MT - 1 unknowns. Then the procedure is repeated
to solve similarly for s*), and so on. (Nulling and can-
celling is fundamentally equivalent to the generalized
decision-feedback equalization discussed in [15].) As
a side note, one can further improve the performance
of nulling and canceling by introducing optimal order-
ing: the algorithm starts from the “strongest” and pro-
ceeds to the “weakest” entry in s (see, e.g., [14, 16]).

The aforementioned heuristics have acceptable polyno-
mial-time computational complexity for practical imple-
mentation purposes. However, their performance is inferior
in comparison with the exact solution to the MLSE problem.

We proceed by describing an algorithm, the so-called
sphere decoding, for efficient closest point search in the lattice.

3.1. Sphere decoding

The sphere decoding performs the closest-point search in
a somewhat more sophisticated manner than doing a full
search over the integer lattice, which requires exponential
complexity. In particular, it performs search only over lat-
tice points lying in a certain hypersphere of radius r cen-
tered around the received vector x. The closest lattice point is
clearly the solution.

From a practical point of view, there are two issues that
have to be resolved. One is the proper choice of the sphere ra-
dius r: if r is too large there will be too many lattice points in
the sphere and we may still require an exponential search; if
r is too small there will be no points in the sphere. The other
issue concerns determining which lattice points lie within the
sphere—if the algorithm were to check all the points in the
lattice, we would be again stuck with an exponential search.

We use a statistical criterion to choose radius r. In par-
ticular, the radius of the sphere is chosen so that with high
probability we find at least one lattice point in the sphere. To
this end, note that

IvI[* = Ilx - Hs||* (18)
is a chi-square random variable with NT degrees of freedom.
(Recall that each entry on v is an independent N (0, 6%) ran-

dom variable.) We choose the radius r to be a linear function
of the variance of ||v|]?,

r2 = a2NTo?, (19)

where the coefficient « is chosen in such a way that with a
high probability pg, we find a lattice point inside a sphere,

e d) = pg. (20)

a2NT /\N]L]
fo I(NT)

We find « in (20) by a simple table lookup.

Once we have chosen radius r, we need to determine
which lattice points belong to the sphere of radius r. An ef-
ficient way to check whether a lattice point belongs to the
sphere is given by the algorithm of Fincke and Pohst [7]. Note

that s lies in a sphere of radius r if

r? > ||lx - Hs||* = (s — §)"H*H(s - 8) + [Ix||* - |H5||>, (21)

where § = H'x. To make the notation simpler, denote size of
the vector s as

m=2MT. (22)

(Note that m is the number of unknowns and it will be of
interest in studying the complexity.)

Introducing the QR decomposition H = QR (where Q is
unitary and R is upper triangular), and defining 2 = r? -
|Ix||Z + ||HS||?, we can write (21) as

r? > (s—8)"R* Q'Q R(s -3

(s—%) : (s—9)

> (s—8)"R'R(s—8)
2 e i O\

s 5, 200)
i=1 j=i+l il

= T (Sm — §m)2

2 N Tm-1,m R 2

t T me1 <Sm—1 —Sp-1 + (Sm —sm)> e

Tm-1,m-1
(23)

where r;; denotes (i, j) entry of the matrix R. A necessary
condition for s to lie inside the sphere is therefore that

2o, (sm — §m)2 <72 (24)

This condition is easy to check and it leads to

r
[-em_ lgsmS[§m+

rm m

r J (25)

rmm

However, condition (25) is by no means sufficient. For every
sm satisfying (25), upon defining r2 | = % = 12, (Sm — $m)?
one can state a stronger necessary condition

A T'm-1, A
Vzn—l,m—l Sm-1—Sm-1 1 - (Sm - Sm) < r;ﬁ—l’ (26)

rm—l,m—l
N -

r

Sm-1lm

which is equivalent to

! !

- R V=
m-1 ] <Sm-1 < lsm—1|m + r el . (27)

"m-1,m-1 ‘m—1,m-1

r

Sm-1|m

In a similar fashion, one proceeds for s,_,, and so on,
stating nested necessary conditions for all elements of s. This
leads us to the sphere decoding algorithm which essentially
finds all points that satisfy the previously stated conditions:

Input: R, X, 8, .

(1) Setk =m,r2=r>—|x|I> + [HS|I, Smpm+1 = Sm-

(2) (Bounds for s¢) set z = r/rkx, UB(sk) = |z + Sk,
sk = [z + S ] - 1.
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(3) (Increase si) sk = sg + 1. If sp < UB(sk) go to (5), else
to (4).

(4) (Increase k) k = k+1;if k = m+1, terminate algorithm,
else go to (3).

(5) (Decrease k) if k = 1 goto (6). Else k = k — 1, k1 =
$ + Z;n:k+l(rkj/rkk)(sj =)=, - "l§+1,k+1(5’“rl -
$kr1jke2)?> and go to (2).

(6) Solution found. Save s and go to (3).

In general, the closest point search has both worst-case
and average complexity that is exponential in the number of
unknowns [17]. The same is true for the sphere decoding.
However, in our application, the vector x in (16) is not an
arbitrary point in space but rather a lattice point perturbed
by the noise as expressed by (14). Clearly, the higher the SNR
in (12), the less perturbed the lattice point is. Therefore, one
may suspect that the expected complexity of the sphere de-
coding algorithm will depend on the SNR. Indeed, this is the
case—the higher the SNR, the lower the complexity.

In [13], we have computed in closed-form the expected
complexity (averaged over the noise and the lattice) of the
sphere decoding for the nondispersive (flat-fading) channels.
It is shown that the expected complexity is polynomial-time
over a wide range of SNRs, and is, in fact, often sub-cubic for
SNRs that support the data rates being transmitted.

For dispersive channels explicitly computing the ex-
pected complexity appears to be much more complicated,
and we are currently not able to analytically perform all
the required steps. Nonetheless, simulation suggest the same
qualitative performance of polynomial-time complexity as
we observe from the examples in Section 4.

Furthermore, the complexity of the sphere decoding can
be improved by exploiting the Toeplitz structure of the chan-
nel matrix. In particular, note that the channel matrix pre-
processing is required only in order to transform H into an
upper triangular form. Due to the Toeplitz structure of H,
it is in fact sufficient to perform QR factorization of only
one coefficient matrix in the MIMO channel impulse re-
sponse (Hc in (10)). Upon QR factorization of H¢ the bot-
tom square submatrix of H becomes upper triangular and
thus can be processed by the sphere decoding algorithm to
find a lattice point s; then one proceeds by adding the con-
tribution of the top 2(C — 1) rows of H to find the metric
|x — Hs||? and by testing whether the lattice point s belongs
to the sphere.

Further improvement in the complexity of the sphere de-
coding can be obtained by employing the Schnorr-Euchner
variation of the Fincke-Pohst algorithm (see [8, 18]). Essen-
tially, by examining points in the hypersphere in a different
order (in particular, by starting from the Babai point), signif-
icant computational savings can be obtained [18].

4. SIMULATION RESULTS

We first consider a communication system with M = 2
transmit and N = 2 receive antennas. The channel mem-
ory is assumed to be C = 4, and the coherence interval
time T = 4. Data is modulated onto 4-QAM constellation

— Sphere decoding
-~ - - Generalized DFE

0 2 4 6 8§ 10 12 14 16 18 20 22
SNR (dB)

Figure 3: BER performance of SD and DFE for M = 2, N = 2,
C=4,T=4,L=2.
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3.4

3.2

Complexity exponent c,

28 r

2.6

0 2 4 6 8 10 12 14 16 18
SNR (dB)

FiGURre 4: Complexity exponent of the SD for M =2, N =2,C =4,
T=4,L=2.

(corresponding to 2-PAM, or L = 2, in the real-valued
set of (14)). The resulting transmission rate is therefore
4 bits/channel use. The performance comparison of an un-
coded transmission in terms of bit error rate (BER) between
the sphere decoding and nulling and canceling (or, equiva-
lently, generalized DFE) is shown in Figure 3.

As an indicator of the expected computational complex-
ity of the sphere decoding, we adopt the complexity expo-
nent, ¢, defined as

_ log(expected total flop count)

¢ log(m) ’ (28)

where m is defined in (22). The expected complexity can
therefore be expressed as

O(m) = O((2MT)%). (29)
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FIGURE 5: BER performance of SD and DFE for M = 2, N = 2,
C=4,T=8,L=4.
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FIGURE 6: Complexity exponent of the SD for M =2, N =2, C =4,
T=8L=4.

The complexity exponent as the function of SNR for the
previous example with m = 16 is shown in Figure 4. Note
that for SNRs above 7 dB we obtain sub-cubic complexity.

As another example, we consider the same 2 x 2 system
(M = 2, N = 2), with C = 4, but now increase the block
length to T = 8, and the constellation to 16-QAM, corre-
sponding to L = 4 and a transmission rate of 8 bits/channel
use. The performance comparison between the sphere de-
coding and generalized DFE is shown in Figure 5. The com-
plexity exponent as the function of SNR for this example
(where m = 32) is shown in Figure 6.

As a final example, consider the 4 x4 communication sys-
tem (M = 4, N = 4), with C = 4 and block length T = 8 (and
thus m = 64). The constellation used is 4-QAM (hence L = 2,
and the corresponding transmission rate is 8 bits/channel
use). The performance comparison between sphere decoding
and generalized DFE for this system is shown in Figure 7. The

SNR (dB)

FIGURE 7: BER performance of SD and GDFE for M = 4, N = 4,
C=4,T=8,L=4.
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FiGgure 8: Complexity exponent of the SD for M =4, N =4, C =4,
T=8,L=4.

corresponding complexity exponent of the sphere decoding
is shown in Figure 8 and is sub-cubic for SNRs above 12 dB.

5. DISCUSSION AND CONCLUSION

We have proposed sphere decoding for maximum-likelihood
sequence detection of multiple antenna systems over
frequency-selective channels. To employ the sphere decod-
ing, the detection problem was posed as an integer least-
squares problem. As illustrated by simulations, the sphere
decoding provides several dBs improvement over the MIMO
decision-feedback equalization. We have shown empirically
that the expected computational complexity of the sphere
decoding is polynomial (often sub-cubic) for a wide range
of SNRs. Both the sphere decoding and MIMO DFE re-
quire some preprocessing of the channel matrix (usually in
a form of QR factorization) which, in general, has cubic
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complexity. Therefore, the maximum-likelihood detection
on MIMO channels with memory can be implemented with
complexity similar to that of heuristic methods, but with sig-
nificant performance gains.
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