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Wavelet/wavelet packet decomposition has become a very useful tool in describing nonstationary processes. Important examples of
nonstationary processes encountered in practice are cyclostationary processes or almost-cyclostationary processes. In this paper,
we study the statistical properties of the wavelet packet decomposition of a large class of nonstationary processes, including in
particular cyclostationary and almost-cyclostationary processes. We first investigate in a general framework, the existence and
some properties of the cumulants of wavelet packet coefficients. We then study more precisely the almost-cyclostationary case,
and determine the asymptotic distributions of wavelet packet coefficients. Finally, we particularize some of our results in the
cyclostationary case before providing some illustrative simulations.
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1. INTRODUCTION

Nonstationary processes have recently received an increasing
attention in the signal processing community, due to their
wide applicability in modeling natural phenomena gener-
ated by physical systems with time-varying parameters. Let
x(t), t ∈ R, be such a zero-mean random process. Its trans-
lated cumulants (if existing) cumn+1

x,u (t) = cum(x(u), x(t1 +
u), . . . , x(tn + u)) depend in general on the lag u. When these
functions in u are uniformly almost periodic (UAP) [1], we
say that the process is nth-order almost-cyclostationary. This
means that the cumulants have generalized Fourier series∑

s∈Ω An
s (t)e

2πηsu, with Ω countable [2, 3] and

An
s

(
t
) = lim

D→+∞
1
D

∫ D

0
cumn+1

x,u

(
t
)
e−2πηsu du. (1)

If the dependence on u of the translated cumulants is peri-
odic, the process is said to be nth-order cyclostationary. Cy-
clostationary and almost-cyclostationary processes are very
useful for modeling many real signals which appear in com-
munication, telemetry, radar, sonar, and economics [4]. In
practice, the nth-order translated cumulants may also be
assumed to have (n − 1)th-order finite energy, that is, to

belong to L2(Rn−1). Moreover, they often correspond to reg-
ular functions. This structure within the data suggests the use
of a multiscale analysis, for example, a wavelet analysis, for
the extraction of these higher-order statistical informations,
combined with a Fourier analysis for the determination of
the cyclic characteristics. In [5], a wavelet analysis for the
stationary case was realized. The field of wavelet coefficients
(when taken at the same resolution level) was shown to be
asymptotically (i.e., for coarse resolutions) a white Gaussian
noise. Similar results had already been obtained for the em-
pirical wavelet coefficients [6], but also restricted to station-
ary processes. However, as already mentioned, nonstationary
random processes are often encountered in many practical
situations. In this paper, we are interested in higher-order
statistics of the wavelet coefficients of nonstationary pro-
cesses, and especially cyclostationary/almost-cyclostationary
processes. Other relevant works concerning nonstationary
processes may be found in [7, 8, 9, 10, 11, 12].

In Section 2 of this paper, we introduce the necessary
assumptions and notations. In Section 3, we investigate the
existence and some properties of wavelet coefficient cumu-
lants for a wide class of nonstationary processes. Section 4
is devoted to the almost-cyclostationary case and Section 5
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provides some specific results in the cyclostationary case.
In Section 6, we give some simulations in order to illus-
trate our results. Finally, some conclusions are drawn in
Section 7.

2. HYPOTHESES ANDNOTATIONS

Throughout the paper, the symbols N, N∗, Z, and R de-
note, respectively, the sets of nonnegative integers, positive
integers, integers, and reals. Standard notations are also used
to denote the Banach space of n-dimensional (n ∈ N∗)
functions and sequences Lp(Rn) and �p(Zn), respectively,
1 ≤ p ≤ ∞. We consider the general case of an M-band real
orthonormal wavelet packet decomposition [13, 14] related
to a paraunitary perfect reconstruction filter bank with im-
pulse responses (h0(k))k∈Z, . . . , (hM−1(k))k∈Z in �2(Z). The
associated wavelet packet functions will be denoted in the se-
quel byWm(t),m ∈ N. We also recall that the wavelet packets
satisfy the following two-scale equation: for allm ∈ N, for all
p ∈ {0, . . . ,M − 1},

WMm+p(t) =
√
M
∑
k∈Z

hp(k)Wm(Mt − k). (2)

We also have

Wm(t − k) =
M−1∑
p=0

∑
l∈Z

hp(k −Ml)
1√
M

WMm+p

(
t

M
− l
)
. (3)

Note that W0(t) corresponds to the scaling function associ-
ated with a multiresolution analysis (MRA) of L2(R) [15]
while Wm(t), m ∈ {1, . . . ,M − 1}, represent the M-band
mother wavelets. The wavelet packet coefficients of the pro-
cess x(t) at the resolution level j ∈ Z and in mth frequency
bin, will be denoted by

cj,m(k) =
∫
R

x(t)M− j/2Wm
(
M− j t − k

)
dt. (4)

Their (n + 1)th-order cumulants (if existing) at multiresolu-
tion level j = ( j0, j1, . . . , jn) are, for k = (k0, . . . , kn) ∈ Zn+1,

cumn+1
cj,m

(
k
) = cum

(
cj0 ,m0

(
k0
)
, c j1 ,m1

(
k1
)
, . . . , c jn,mn

(
kn
))
.

(5)

We also define the time-shifted cumulants as

cumn+1
cq, j0 ,m0; j,m

(
k
)

= cum
(
cj0,m0 (q), c j1,m1

(
k1 + q

)
, . . . , c jn,mn

(
kn + q

))
,

k ∈ Z
n,

(6)

with j = ( j1, . . . , jn) andm = (m1, . . . ,mn).
Similarly cumn+1

x (t) = cum(x(t0), x(t1), . . . , x(tn)) and
cumn+1

x,u (s) = cum(x(u), x(s1 + u), . . . , x(sn + u)).
The following notations will also be used:

∀k = (k0, k1, . . . , kn) ∈ Z
n+1, Σk =

n∑
i=0

ki,

kr =
(
k0, k1, . . . , kr−1

)
, kr = (kr , . . . , kn),

∀t = (t1, . . . , tn) ∈ R
n, u ∈ R,

t + u = (t1 + u, . . . , tn + u
)
.

(7)

Finally, we make the following hypothesis.

Hypothesis 1. (1) cumn+1
x,u (·) has finite energy, that is, be-

longs to L2(Rn), and this energy is bounded with re-
spect to u by a constant Cn+1.

(2) Wm(t) ∈ L2(R)∩L1(R).
(3) The two scale equations (2) and (3) hold in L1(R)

sense.

In practice, the first condition is satisfied by station-
ary and almost-cyclostationary processes. The assumptions
made on the wavelet packets are also widely satisfied by gen-
eralized Daubechies’s [14], Symmlets, Coiflets, . . . .

3. EXISTENCE AND SOME PROPERTIES OF THE
WAVELET COEFFICIENT CUMULANTS

In this part we first show that, under Hypothesis 1, the
wavelet coefficient cumulants are properly defined, and us-
ing (2) and (3), we obtain a recursive algorithm for calculat-
ing these cumulants.

Proposition 1. Under Hypothesis 1, the wavelet coefficient cu-
mulants are well defined.

Proof. By Hölder inequality, we have

∫
Rn

∣∣∣∣ cumn+1
x

(
u, t
) n∏
i=1

Wmi

(
M− ji ti − ki

)∣∣∣∣dt
≤MΣ j/2∥∥ cumn+1

x,u (·)
∥∥
L2(Rn)

n∏
i=1

∥∥Wmi

∥∥
L2(R),

(8)

with j = ( j1, . . . , jn). Then, by using Hypothesis 1(1), (2),

the integral
∫
Rn+1 cumn+1

x (t0, t)
∏n

i=0Wmi(M
− ji ti − ki)dt dt0 is

well defined. This expression is, by multilinearity, equal to
the (n+1)th-order cumulant cumn+1

cj,m (k) (up to a multiplica-

tive factor).

Proposition 2. Under Hypothesis 1, the time-shifted cumulant
cumn+1

cq, j0 ,m0; j,m
(·) defines a sequence that belongs to �2(Zn).

Proof. We have

cumn+1
cq, j0 ,m0; j,m

(
k
)

=M( j0+Σ j)/2
∫
R

Wm0

(
t0 − q

)

×
{∫

Rn
cumn+1

x,M j0 t0

(
Mj1 t1, . . . ,M

jn tn
)

×
n∏
i=1

Wmi

(
ti +Mj0− ji t0 − ki − q

)
dt
}
dt0.

(9)
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cumn+1
c j+1,Mm+(0,...,0)

cumn+1
c j+1,Mm+(p0 ,...,pn)

cumn+1
c j+1,Mm+(M−1,...,M−1)

(M, . . . ,M) ↓

(M, . . . ,M) ↓

(M, . . . ,M) ↓

α̃n+1
h0 ,...,h0

α̃n+1
hp0 ,...,hpn

α̃n+1
hM−1 ,...,hM−1

cumn+1
c j,m

Figure 1: Multidimensional analysis filter bank.

By using the Plancherel formula, the cumulant is equal to

M( j0−Σ j)/2
∫
R

Wm0

(
t0 − q

)

×
{∫

Rn
Γn+1x,M j0 t0

(
ν

Mj

)

×
n∏
i=1

Ŵmi

(− νi
)
e2πνi(ki+q−Mj0− ji t0) dν

}
dt0.

(10)

Note that this integral (on Rn+1) is (as the first one) abso-
lutely convergent. So, from Fubini theorem, it is equal to

M( j0−Σ j)/2
∫
Rn

n∏
i=1

Ŵmi

(− νi
)

×
{∫

R

Wm0

(
t0 − q

)
Γn+1x,M j0 t0

×
(

ν

Mj

)
e−2π(

∑n
i=1 νi)(Mj0− ji t0−q) dt0

}

×e2π
∑n

i=1 νiki dν,

(11)

and, consequently [16],

cumn+1
cq, j0 ,m0; j,m

(
k
) =

∫
[−1/2,1/2]n

Γ̂n+1cq, j0 ,m0; j,m

(
ν
)
e2π

∑n
i=1 νiki dν,

(12)
with

Γ̂n+1cq, j0 ,m0; j,m

(
ν
)

=M( j0−Σ j)/2 ∑
l∈Zn

n∏
i=1

Ŵmi

(− νi − li
)

×
∫
R

Wm0 (t − q)Γn+1x,M j0 t

(
ν + l

M j

)
e−2π(

∑n
i=1(νi+li)(Mj0− ji t−q)) dt.

(13)

Using Cauchy inequality and the orthonormality of the
wavelet packets written in frequency domain, as well as
the Parseval equality, we obtain that Γ̂n+1cq, j0 ,m0; j,m

(ν) belongs

to L2([−1/2, 1/2]n) and its norm is upper bounded by
Cn+1Mj0/2‖Wm0‖L1(R). Consequently the Fourier transform
of cumn+1

cq, j0 ,m0; j,m
(·) is Γ̂n+1cq, j0 ,m0; j,m

(·) and cumn+1
cq, j0 ,m0; j,m

(·) belongs
to �2(Zn).

This result will be used in Section 4 to determine the
cyclospectra of the wavelet packet coefficient field in the
almost-cyclostationary case.

From the two-scale equations (2) and (3), a scale recur-
sive algorithm can be proposed to compute the higher-order
statistics of the wavelet packet coefficients.

Proposition 3. Let 1 ≤ r ≤ n + 1. The cumulants of the
wavelet packet coefficients at multiresolution level j + 1 =
( j0 + 1, . . . , jn + 1) are obtained from those of the coefficients
at level ( j

r
, jr + 1) = ( j0, . . . , jr−1, jr + 1, . . . , jn + 1) through

the multidimensional filter bank shown in Figure 1 involving
filters with impulse responses

α̃rhp
(
l
) = αrhp

(− l
) = r−1∏

i=0
hpi

(− li
)

(14)

and r-dimensional decimators by a factorM.

Proof. We have

cumn+1
cj+1,Mm+p

(
k
)

=M−(Σ j+n+1)/2
∫
Rn+1

cumn+1
x

(
t
) n∏
i=0

WMmi+pi

(
ti

M( ji+1)
− ki

)
dt.

(15)

So the result is obtained from (2), applied on the r first
wavelet packets, if assuming a finite length for the original
filters hi, i = 0, . . . ,M − 1. Otherwise, from the fact that (2)
holds in L1(R) sense, as well as L2(R) sense, and using some
technical arguments, we obtain the same result.

Similarly, from (3) we derive the following reconstruc-
tion formula:

cumn+1
cj,m

(
k
)

=
∑

p∈{0,...,M−1}r

∑
l∈Zr

αrhp
(
kr −Ml

)
cumn+1

cjr+1,Mmr+p, j
r ,mr

(
l, kr

)
.

(16)

Note 1. The shifted (by q) cumulants cumn+1
cq, j0 ,m0; j,m

(·) sat-

isfy the same recursive equations using the filter bank with
shifted impulse responses α̃rhp(·+(M−1)q) and (1 ≤ r ≤ n).

This result could be useful in providing alternatives to
statistical methods based on prior modelling of the wavelet
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coefficients. This formulation provides both analysis and re-
construction equations. The analysis equation allows to ex-
press the cumulants at a multiresolution level from those at
the lower levels, and the reconstruction equation allows to do
the reverse operation. If we suppose that we have (by means
of asymptotic estimation techniques or other methods) the
cumulant field at a multiresolution level ( j∗0 , j

∗
1 , . . . , j

∗
n ),

these equations allow to calculate recursively wavelet co-
efficient cumulant field corresponding to different scales
( j0, j1, . . . , jn).

Similar equations have been obtained in [5] but they are
restricted to the stationary case and they can only be used to
calculate recursively intra-scale higher-order statistics.

We can also derive an energy-conservation property
through resolution levels for shifted cumulants.

In the following, we focus on the almost-cyclostationary
case.We give frequency characteristics, and we obtain impor-
tant asymptotic results for the wavelet coefficient cumulants.

4. THE ALMOST-CYCLOSTATIONARY CASE

We assume that the polyspectrum of the signal Γn+1x,u (ν) has a
Fourier expansion with cyclic frequencies {ηs}s∈Z [4]. This is
the case, for example, if the cumulants have Fourier expan-
sions in L2(Rn) sense (with respect to t)

cumn+1
x,u

(
t
) = ∑

s∈Z
As
(
t
)
e2πηsu. (17)

(In order to simplify the notations, we do not recall the de-
pendence on n in As.) So the polyspectrum of the signal is
expanded, in L2(Rn) sense (with respect to ν), as

Γn+1x,u

(
ν
) = ∑

s∈Z
Âs
(
ν
)
e2πηsu, (18)

where Âs(ν) is the n-dimensional Fourier transform of As(t).
This expansion allows to obtain a simple expression for

the shifted polyspectrum of the wavelet packet coefficients.
We denote this polyspectrum by Γn+1cq, j0 ,m0; j,m

(ν), which is the

n-dimensional Fourier transform of the shifted cumulant
cumn+1

cq, j0 ,m0; j,m
(k) with respect to k. This polyspectrum is well

defined thanks to Proposition 2.

Proposition 4. Under Hypothesis 1, and assuming that for al-
most all ν,

∑
s∈Z |Âs(ν)| < ∞, the translated polyspectrum is

given by

Γn+1cq, j0 ,m0; j,m

(
ν
)

=M( j0−Σ j)/2 ∑
(s,l)∈Zn+1

Ŵm0

(
Mj0

n∑
i=1

νi + li
M ji

−Mj0ηs

)

×
n∏
i=1

Ŵmi

(− νi − li
)
Âs

(
ν + l

M j

)
e2πq[M

j0ηs+
∑n

i=1(νi+li)(1−Mj0− ji )].

(19)

Proof. In the proof of Proposition 2, we have seen that the
polyspectrum of the decomposition coefficients is

Γn+1cq, j0 ,m0; j,m

(
ν
) = Γ̂n+1cq, j0 ,m0; j,m

(
ν
)
. (20)

So using Hypothesis 1(2) and the fact that
∑

s∈Z |Âs(ν)| <∞,
the desired expression of the polyspectrum is obtained.

From this expression of the polyspectrum, we note that,
if x is (n + 1)th-order almost-cyclostationary with spectrum
Sx = {ηs}s∈Z, then cumn+1

c( j,..., j),m(q, k + q) is almost-periodic (in

q) [1], and its spectrum is {Mj · ηs}s∈Z. The coefficients of
the expansion with respect to s ∈ Z are the high-order cyclo-
spectra of the wavelet coefficients. For coefficients defined
at different resolutions, this property of cyclostationarity no
longer holds.

Now, consider the asymptotic behaviour of the wavelet
coefficients. First, we obtain the following bounds on the
shifted polyspectrum, and then we deduce bounds on the
translated cumulants of the wavelet packet coefficients.

Proposition 5. If
∑

s∈Z |Âs(ν)| ≤ C(n + 1)!Kn+1, Ŵm ∈
L1(R), and assuming that for all s 
= s′ ∈ Z, |ηs′ −ηs| ≥ γ > 0,
and |Ŵm(ν)| ≤ Cm(1/(1 + |ν|)r), with r > 1/2, then we have,
forMj0 ≥ 1,

∣∣Γn+1cq, j0 ,m0; j,m

(
ν
)∣∣

≤ BrC(n + 1)!Kn+1Mj0/2−Σ j/2 ∑
l∈Zn

∣∣∣∣∣
n∏
i=1

Ŵmi

(
νi −li

)∣∣∣∣∣,
(21)

with Br = Cm0 (2 + 2/(2r − 1)γ)1/2, and

∣∣ cumn+1
cq, j0 ,m0; j,m

(
k
)∣∣ ≤ BrC(n + 1)!K ′n+1Mj0/2−Σ j/2, (22)

with K ′ = Kmax{‖Ŵmi‖L1(R), 1}i=0,...,n.

Proof. We apply the Cauchy inequality on the sum∑
s∈ZŴm0(M

j0
∑n

i=1(νi+li)/M ji −Mj0ηs)Âs((ν+l)/M
j). First,

note that the polyspectrum of x(t) is bounded by C(n +
1)!Kn+1. So, by Parseval equality, for almost-cyclostationary
processes [1], we have


∑

s∈Z

∣∣∣∣Âs

(
ν + l

M j

)∣∣∣∣
2


1/2

≤ C(n + 1)!Kn+1. (23)

As |Ŵm(ν)| ≤ Cm(1/(1 + |ν|r)), we deduce after some calcu-
lations that


∑
s∈Z

∣∣∣∣∣Ŵm0

(
Mj0

n∑
i=1

(
νi +li

)
/M ji −Mj0ηs

)∣∣∣∣∣
2


1/2

≤Br, (24)

for all l. So the bound on the polyspectrum is obtained and
the bounds on cumulants follow by integration.
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In the following, we will make use of the 2nd-order
wavelet packets [5] as defined below

I2( j0, j1),(m0,m1)

(
k0, k1

)

=M−( j0+ j1)/2
∫
R

Wm0

(
t

M j0
− k0

)
Wm1

(
t

M j1
− k1

)
dt.

(25)

Obviously, we have

I2( j0 , j1),(m0,m1)

(
k0, k1

)
= I2(0, j1− j0),(m0 ,m1)

(
0, k1 −Mj0− j1k0

)
.

(26)

We establish the following lemma by iterating the analysis
equation (2).

Lemma 1. Let m = (m0,m1) ∈ N2, k = (k0, k1) ∈ Z2, and
j = ( j0, j1) ∈ Z2, with j1 ≥ j0. Let a = j1 − j0, then if a = 0,

I2( j0 , j1),(m0,m1)(k0, k1) = δ(m0 −m1)δ(k0 − k1).
If a < αm = logM((m1 + 1)/(m0 + 1)) or a > βm =

logM(m1/m0), then I2( j0 , j1),(m0,m1)(k0, k1) = 0. Otherwise, let
q ∈ {0, . . . ,M − 1}a be the M-ary representation of (m1 −
Mam0) : m1 =Mam0 +

∑a−1
i=0 Miqa−i, then

I2( j0 , j1),(m0,m1)(k0, k1)

=
∑

l∈Za−1
hqa−1

(
k0 −Mak1−

a−2∑
i=0

liM
a−1−i

) a−2∏
i=0

hqi
(
li
)
.
(27)

Note that these results may be useful in computing
the 2nd-order wavelet packets I2( j0 , j1),(m0,m1)(k0, k1) which are
closely related to the asymptotic correlations of the wavelet
coefficients as shown below.

Proposition 6. With the same notations as in the previous
propositions, let Cj,m(k) = (cj0,m0 (k0), . . . , c jp,mp(kp)) be an
array of wavelet packet coefficients of a zero-mean almost-
cyclostationary process with fixed values for the differences
ji − j0, i = 1, . . . , p. Then Cj,m(k) converges in law to a
Gaussian vector as j = mini=0,...,p( ji) → ∞, provided that

0 ∈ Sx, that is, limD→+∞(1/D)
∫D
0 Γ2x,u(0)du > 0. The conver-

gence rate is 2BrK ′CM− j/2. The asymptotic correlation matrix

is (limD→+∞(1/D)
∫D
0 Γ2x,u(0)du)A

p+1
Cj,m(k) where

[
A

p+1
Cj,m(k)

]
[l, l′] = I2( jl , jl′ ),(ml,ml′ )

(
kl, kl′

)
. (28)

Proof. Let Cj,m(k) = (cj0,m0 (k0), . . . , c jp,mp(kp)) be an array of
wavelet packets coefficients and ψCj,m(k)(u), u ∈ Cp its log-
characteristic function [1]

ψCj,m(k)
(
u
) = ln

(
E
(
exp

(
i

p∑
l=0

Cjl,ml

(
kl
)
ul

)))
. (29)

We denote by Rj,m,k(u) the remainder of order 3 of the
Taylor-series expansion of ψCj,m(k)(u). From Proposition 4 we

deduce that∣∣Rj,m,k
(
u
)∣∣

=
∣∣∣∣
+∞∑
n̄=3

in̄cum
((
cj0 ,m0

(
k0
))n0 , . . . , (cjp,mp

(
Kp
))np

)
n0! · · ·np!

un00 · · ·unp
p

∣∣∣∣
≤ BrCM

j0/2
∞∑
n̄=3

vn̄,

(30)

with n̄=∑p
i=1 ni and v=K ′

∑p
l=0 |ul|M− jl /2. This is valid for

any choice of j0. By choosing j0= j=min{ ji} large enough,
v≤ 1/2 and the remainder in the log-characteristic function
expansion is bounded by RM− j/2, with R=2BrCK ′

∑p
l=0 |ul|.

Consequently, it is sufficient to find the asymptotic statis-
tics of order 2. From the expression of the polyspectrum in
Proposition 4, we easily obtain the correlation matrix by fur-
ther using that, asWm belongs to L1(R),

lim
jl , jl′→+∞

Ŵml

(
Mjl

(
ν + u

M jl′
− ηs

))
= 0, ∀u ∈ Z, ∀ηs 
= 0.

(31)

Note 2. The convergence could be more directly proved by
invoking the theorem of moments, but the interest of our
proof is to provide the convergence rate.

Note 3. The asymptotic correlationmatrix is definite positive
if and only if the associated wavelet packets are linearly inde-
pendent. In this case, the process (cj,m(k))m, j∈N,k∈Z is asymp-
totically non degenerated.

If 0 /∈ Sx the wavelet coefficients array Cj,m(k) converges
geometrically to 0.

Some examples of signals satisfying the assumptions
made in this section are:

• AM signals:

x(t) = a(t) cos
(
2π f0t + θ0

)
+ b(t) cos

(
2π f1t + θ1

)
, (32)

where f0 and f1 are incommensurable, a(t) and b(t)
are nth-order independent stationary signals such that
cumn+1

a (t) and cumn+1
b (t) belong to L2(Rn) and their

polyspectra are bounded by (n + 1)!Kn+1. These con-
ditions are generally satisfied when a(t) and b(t) are
linear processes obtained by filtering white noises with
bounded-frequency response filters.

• PM signals: x(t) = cos(2π f0t+φ(t)), with φ(t) almost-
cyclostationary.

• Real AM signals: x(t) = a(t) cos(2π f0t + φ(t)), where
φ(t) is almost-cyclostationary and a(t) is stationary
and independent of φ(t).

5. SPECIFIC RESULTS IN THE CYCLOSTATIONARY
CASE

In this section, we show how the general results established in
the almost-cyclostationary case simplify in the cyclostation-
ary case.
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Under Hypothesis 1, we can easily obtain the Fourier ex-
pansion of the cumulants of a T-cyclostationary process x(t),
in L2([0, T]×Rn) sense,

cumn+1
x,u

(
t
) = ∑

s∈Z
As
(
t
)
e2π(su/T). (33)

So the polyspectrum of the signal is expanded, in L2([0, T]×
Rn) sense, as

Γn+1x,u

(
ν
) = ∑

s∈Z
Âs
(
ν
)
e2π(su/T), (34)

where Âs(ν) is the n-dimensional Fourier transform of As(t).
This expansion is obtained, in the cyclostationary case,

only by using Hypothesis 1. Note that the spectrum of the
T-cyclostationary process is (1/T)Z.

The spectrum of the decomposition coefficients at the
same resolution level j is (Mj/T)Z. This implies that the
decomposition coefficients field can be stationary only for
j ≥ j0, ifMj0 /T ∈ N.

Note that the condition |ηs′ − ηs| ≥ γ > 0 required
in Proposition 5 is automatically satisfied by cyclostationary
processes.

Finally the asymptotic correlations of the decomposition
coefficients are the same as those obtained in Proposition 6
when replacing (limD→+∞(1/D)

∫D
0 Γ2x,u(0)du) by

1
T

∫ T

0
Γ2x,u(0)du. (35)

An important example of cyclostationary processes is given
by PAM signals: x(t) =∑+∞

m=−∞ amp(t−mT), where the sup-
port of the pulse function p(t) is included in the interval
(−T/2, T/2), and (am)m is an IID sequence. Then x(t) is cy-
clostationary with cyclic period T .

6. SIMULATIONS

In this section, we present some simulation results illustrat-
ing some of the theoretical claims made in this paper. More
precisely, we verify the Gaussianity of the decomposition co-
efficients at coarse resolution levels.

We generated a random time series X(t) corresponding
to an amplitude-modulation of a χ2 (independent station-
ary) signal by an almost-periodic function

X(t) = ( cos (ω1t
)
+ cos

(
ω2t
))(

χ2(t)− 1
)
, (36)

where ω1 and ω2 are incommensurable (ω1 = 0.01 rd/s, ω2 =
πω1).

We generated 10000 samples of size D = 214 accord-
ing to (36). For each realisation, we realized a wavelet de-
composition on seven resolution levels. To do this, we used
the Symmlet four basis. We focused on the resolutions levels
j = 7 (the coarsest one), j = 5, j = 3, and j = 1.

In Figures 2a, 2b, 2c, and 2d we show the histogram of
one particular coefficient at each level. We also show its ap-
proximations by generalised Gaussian distributions, with the
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Figure 2: Histograms of wavelet packet coefficients (a): j = 7, β =
1.97. (b): j = 5, β = 1.91. (c): j = 3, β = 1.35. (d): j = 1, β = 0.84.

exponent parameter β of their distributions. The given val-
ues of β are those associated with the best approximations in
the maximum-likelihood sense.

We see that at coarse resolution levels the coefficients are
well approximated by Gaussian distributions, β is close to 2.
Such an approximation is no longer valid in higher levels, but
generalized Gaussian distributions still provide good approx-
imations for the wavelet decomposition.

7. CONCLUSIONS

In this paper, we have established fundamental results on the
wavelet packet decomposition of almost cyclostationary pro-
cesses. One of the main results is that the wavelet packet co-
efficients at a given resolution level also are almost cyclosta-
tionary. Due to the importance of this particular class of non-
stationary processes in modeling communication signals as
well as many other real world signals, our results should be
useful in many applications.

In our future work, we plan to use the derived properties
in denoising problems involving cyclostationary or almost
cyclostationary noise.
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