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This paper proposes a novel adaptive MUD algorithm for a wide variety (practically any kind) of interference limited systems, for
example, code division multiple access (CDMA). The algorithm is based on recently developed neural network techniques and
can perform near optimal detection in the case of unknown channel characteristics. The proposed algorithm consists of two main
blocks: one estimates the symbols sent by the transmitters and the other identifies each channel of the corresponding communi-
cation links. The estimation of symbols is carried out either by a stochastic Hopfield net (SHN), by a hysteretic neural network
(HyNN) or by both. The channel identification is based on either the self-organizing feature map (SOM) or the learning vector
quantization (LVQ). The combination of these two blocks yields a powerful real-time detector with near optimal performance.
The performance is analyzed by extensive simulations.
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1. INTRODUCTION

Recently, multiuser detection (MUD) has gained much at-
tention in the world of telecommunication research. The
claim for MUD primarily arises in systems suffering from
the limitation of interference, such as code division mul-
tiple access (CDMA) which has been adopted as the main
multiple access method of the third generation universal
mobile telecommunication system (UMTS). Without novel
MUD techniques, conventional receiver structures suffer se-
vere performance degradation in high bitrate applications
[1, 2].

MUD carries out joint detection for a group of users or
single-user detection for a specific user in the presence of
other users in the channel. In the 90’s, a large number of ar-
ticles were published focusing on this field. Many different
approaches to MUD have been proposed [1] (e.g., some au-
thors regard this field as a task of joint detection, others im-
plement signal processing methods to get rid of unwanted
interference, while a third group of authors still regard it
as a classification or hypothesis testing problem). Neverthe-
less, we should keep in mind that the purpose of MUD is to
provide a robust, low cost, reliable, and fast method to sep-
arate signals arriving from different sources over the same
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medium. In this paper, we propose an alternative method
which unites the fast convergence property of hysteretic neu-
ral networks (HyNN) [3] with the optimization power of
stochastic recurrent neural networks (SHN) [4]. Further-
more, an adaptive detection technique is applied in the neu-
ral network receiver, though still including the existing RAKE
receiver structure in the detector.

This paper is organized as follows: in Section 2, the ap-
plied baseband equivalent system model is introduced; in
Section 3, some neural network-based MUD techniques are
discussed; in Section 4, some novel multiuser detector struc-
tures are introduced based on the modified recurrent neu-
ral network model; in Section 5, the applied adaptation tech-
nique is demonstrated; in Section 6, the structure of the pro-
posed adaptive multiuser detector is described; in Section 7,
the performance of the novel algorithm is analyzed by exten-
sive simulations; and finally in Section 8, its computational
complexity is discussed focusing on real time applications.

2. SYSTEMMODEL

One of the major attributes of CDMA systems is the multiple
usage of the same frequency band and time slot. Although
the system is susceptible to multiple access interference, the-
oretically the users are not jammed by each other due to
the uncorrelated waveforms. However, in practice, this prop-
erty cannot be sustained because of multipath propagation
or asynchronous transmission which makes the waveforms
correlated. Two different channel models of the uplink are
introduced. In the first part of this section, the synchronous
channel is described, whereas in the second part the asyn-
chronous multipath environment is considered.

However, in both cases, the baseband equivalent output
signal of the kth user, denoted by qk(t), can be written in
the same form. For the sake of simplicity, we apply BPSK
modulation although the equations can also describe more
sophisticated multivalued modulation schemes (e.g., QPSK,
16QAM). User k transmits bk[i] ∈ {−1,+1} binary symbols
where i refers to the time instant. The output signal is given as

qk(t) = Ak

NB∑
i=1

bk[i]sk
(
t − iT − θk

)
, (1)

where Ak denotes the signal amplitude associated with the
kth user, T refers to the time period of one symbol, θk de-
notes the delay of user k, and NB is the block size, respec-
tively. The spreading waveform of user k is denoted by sk(t).
In the case of direct sequence (DS) multiple access, it can be
written as follows:

sk(t) =
PG−1∑
i=0

Sk[i]e
(
t − iTc

)
. (2)

Here Sk[i] denotes the ith time chip of user k, and e(t) is the
elementary waveform in the system. The chip duration is de-
noted by Tc. Each user is transmitting over a specific channel
which can be characterized by its impulse response function

denoted by hk(t). The received signal is the sum of the arriv-
ing signals plus a Gaussian noise which can be written as

r(t) =
K∑
k=1

hk(t)∗ qk(t) + n(t), (3)

where K refers to the number of users and n(t) is a white
Gaussian noise with a constant one-sided N0 spectral den-
sity. Depending on the properties of hk(t), we get different
received signals (r(t)), but the resulting channel matched fil-
ter (CMF) output can be expressed in the samemathematical
form, as will be pointed out in the following sections.

2.1. Synchronousmodel

In a symbol synchronous channel, all users are forced to
transmit at the same time instant (θk = 0), their channels
are characterized by single-path attenuation factors hsk(t) =
αkδ(t), where δ(t) is the Dirac delta function. The received
signal in (3) is given as

rs(t) =
K∑
k=1

NB∑
i=1

Akαkbk[i]sk(t − iT) + n(t), (4)

where the “s” in the superscript refers to synchronous trans-
mission. In the case of signatures limited to one symbol
length (sk(t) = 0 if t /∈ [0, T)), there is no intersymbol in-
terference, consequently, without loss of generality, index i
can be omitted which yields

rs(t) =
K∑
k=1

Akαkbksk(t) + n(t), t ∈ [0, T). (5)

The conventional detector consists of k = 1, 2, . . . , K filters
matched with the signature waveforms and channels, gener-
ating the following output for the kth user:

b̃sk = α∗k

∫ T

0
rs(t)s∗k (t)dt. (6)

In the case of BPSK modulation, the traditional single-user
detector (SUD) simply calculates the signum of expression
(6) yielding b̂SUDk = sign{b̃sk}. This will, however, severely de-
teriorate the detector’s performance, as can be seen from the
expanded version of formula (6)

b̃sk =
signal︷ ︸︸ ︷

AkR
s
kkbk +

multiple access interference︷ ︸︸ ︷
K∑

m=1,m �=k
AmR

s
kmbm +

noise︷︸︸︷
ñsk , (7)

where Rs
km is defined as follows:

Rs
km = α∗k αm

∫ T

0
s∗k (t)sm(t)dt, (8)

and ñsk = α∗k
∫ T
0 s∗k (t)n(t)dt is a zero mean colored Gaus-

sian noise due to linear transformation. The output of the
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matched filter in vector form is

b̃s = RsAsb + ñs, (9)

where As = diag[A1, A2, . . . , AK ] is a diagonal matrix, Rs =
[Rs

km] is a K × K Toeplitz, diagonal dominant matrix, and
Hermitian (Rs

km = Rs
mk
∗). The vectors are given as b̃s = [b̃sk],

b = [bm], and ñs = [ñsm], respectively.

2.2. Asynchronousmodel

Synchronous high bit rate communication cannot be en-
sured in practice due to multipath propagation. Thus, it is
required to develop more sophisticated channel models for
either analytical investigations or computer simulations. For
the sake of generality, we assume a general multipath prop-
agation channel. In this case, the channel impulse response
function for the kth user hak(t) is a general continuous func-
tion as opposed to the previous case where hsk(t) was a simple
attenuation factor. For instance

hak(t) =
5∑
j=1

αk jδ
(
t − τk j

)
(10)

is a five-path propagation model where the jth path’s atten-
uation and delay of user k are αk j and τk j , respectively. Here
the superscript “a” refers to the asynchronous transmission.
To ensure simple notations, a new function is defined

vk(t) = hak(t)∗ sk
(
t − θk

)
. (11)

Substituting into (3), we obtain

ra(t) =
K∑
k=1

NB∑
i=1

Akvk(t − iT)bk[i] + n(t). (12)

The kth matched filter performs a convolutional product on
the incoming stream with v∗k (−t), which results in a contin-
uous signal r̃ak (t), which can be written as r̃ak (t) = v∗k (−t) ∗
ra(t). The output of the channel matched filters is given then
in the form of

r̃a(t) =
NB∑
i=1

Φa
vv(t − iT)Asb[i] + ña(t), (13)

where As is defined previously, and

r̃a(t) = [
r̃a1 (t), r̃

a
2 (t), . . . , r̃

a
K (t)

]T
,

b[i] = [
b1[i], b2[i], . . . , bK [i]

]T
.

(14)

Furthermore, ña(t) = v∗(−t) ∗ n(t) and Φa
vv(t) is a K × K

matrix with all correlation functions between vi(t) and vj(t).
It can be written as a dyadic convolution product

Φa
vv(t) = v∗(−t)∗ vT(t), (15)

where v(t) = [vi(t)]. Sampling with (iT), expression (13)
results in a discrete-time model for mapping b[i] into b̃[i],

namely

b̃a[i] = Ra[i]∗ Asb[i] + ña[i], (16)

where b̃[i] = r̃(iT), ña[i] = ña(iT), and Ra[i] = Φa
vv(iT),

which is the discrete-time channel matrix. To describe the
different detection schemes in Section 3, it is helpful to use
the following block notation where the components of all
vectors b̃a[i], b[i], and ña[i] are written into column vectors
with KNB elements

b̃a = [
b̃a1[1], b̃

a
2[1], . . . , b̃

a
K [1], b̃

a
1[2], . . . , b̃

a
K

[
NB

]]T
,

b = [
b1[1], b2[1], . . . , bK [1], b1[2], . . . , bK

[
NB

]]T
,

ña = [
ña1[1], ñ

a
2[1], . . . , ñ

a
K [1], ñ

a
1[2], . . . , ñ

a
K

[
NB

]]T
.

(17)

The convolutional form in (16) can be rewritten as a multi-
plication

b̃a = RaAab + ña, (18)

resulting in the same form as in (9) but with different pa-
rameters. Here Aa = diag[As,As, . . . ,As] is a KNB × KNB di-
mensional diagonal matrix, containing NB sub-matrices of
As. Matrix

Ra =




Ra[0] Ra[−1] · · · Ra
[−NB + 1

]
Ra[1] Ra[0] · · · Ra

[−NB + 2
]

...
. . .

Ra
[
NB − 1

] · · · Ra[1] Ra[0]


 (19)

is a KNB ×KNB dimensional block Toeplitz matrix and Her-
mitian (Ra[i] = (Ra[−i])H for all i) with diagonal dominance
(|Ra

ii| > |Ra
i j| for all (i, j); i �= j). Moreover, it contains many

zero elements, in most practical situations only Ra[�], for all
|�| ≤ 6 differ from zero.

Since both the synchronous and asynchronous case can
be treated by the same mathematical formula (see (9) and
(18)) in the forthcoming discussion, we use b̃, ñ, A, and R
without indices which can either refer to the synchronous or
the asynchronous case.

3. MULTIUSER DETECTION

Based on the linear model introduced in (9) and in (18) ap-
plying BPSK modulation (only the real part of all matrices
and vectors are taken into account), we can derive the op-
timal MUD as a maximum likelihood sequence estimation
(MLSE) problem which can then be obtained in the follow-
ing fashion:

b̂opt = arg max
x∈{−1,+1}K

[
Pr
{
x|b̃}], (20)

which yields [1, 2]

b̂opt = arg min
x∈{−1,+1}K

[
xTARAx− 2xTAb̃

]
. (21)
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This equation involves the global minimization of a
quadratic form where the perfect knowledge of system pa-
rameters A and R is required. In practice, the RAKE receiver
is used to keep track with the incoming signal and to estimate
the components of matrix R. A power control mechanism is
applied to ensure that diag[RA] tends to the unit matrix.

The optimal solution can be found, for example, by ex-
haustive search using (21), however, it implies exponen-
tially increasing computational complexity as the number
of users grows. In real life implementation, we cannot af-
ford to use such a time wasting mechanism, thus many sub-
optimal MUD schemes have been studied in the recent past
[1]. Among the investigated ones, neural networks, which
are widely accepted and used for classification and optimiza-
tion tasks, have received considerable interest in sub-optimal
MUD algorithms too. Analyzing (20), we can apply a feed-
forward network for MUD. The first feed-forward neural
network-based MUD was proposed by Aazhang et al. in [5].
Since that time, dozens of articles have appeared, for exam-
ple, [6, 7, 8, 9, 10, 11], including further studies on the sub-
ject. The papers treating feed-forward neural network-based
MUD can be distinguished mainly by the applied training
method.

In this paper, we focus on recurrent neural network de-
tection which can be characterized by strong feedback mech-
anisms. Recurrent neural networks are built up by comput-
ing elements termed as neurons. In each neuron a simple up-
dating process is realized

Yl[� + 1]

= sign


 1
Wll


 l−1∑

j=1
WljYj[� + 1] +

M∑
j=l+1

WljYj[�] +Vl




,

(22)

where Yj[�] is the output of the jth neuron at the �th iter-
ation. Parameter Vl denotes the threshold of the lth neuron
andWlj is the connection strength between the output of the
jth neuron and the input of the lth neuron. The size of the
network is denoted by M. It has been proven [12, 13] that
the Hopfield net will drive the following quadratic form (of-
ten referred to as Lyapunov function) into local minimum in
the {−1,+1}M state space

J
(
y[�]

) = −(y[�])TWy[�]− 2
(
y[�]

)T
v, (23)

where y[�] = [Yi[�]], v = [Vj], andW = [Wij], respectively,
[14].

For a two-dimensional example see Figure 1. In the fig-
ure, the Lyapunov function is depicted as a discrete function
of the neuron outputs. We assume that the two dimensional
neural network runs from the initial state y[0] = [−1,−1]T.
In each step, the net decreases the Lyapunov function, thus
the first iteration produces y[1] = [−1,+1]T and in the sec-
ond iteration, the network arrives at the steady state y[2] =
[+1,+1]T.

Due to the similarity between (21) and (23), we can use
the Hopfield net for MUD (as was done in [15, 16, 17]). In

−1−1

1
1

J(y)

Y2
Y1

Figure 1: Two-dimensional Lyapunov function.

order to do this, we have to choose the parameters in (22) in
the following manner:

W = −ARA, (24)

v = Ab̃, (25)

where matrix A and matrix R are the previously defined am-
plitude and discrete-time channel matrices, respectively. The
number of performed iterations is denoted by Tr , which is
limited by the speed of hardware implementation and the
symbol period T . Thus, the estimated symbols are given by
the outputs of the neural network in the last iteration

b̂RNN = y
[
Tr
]
. (26)

The first implicit Hopfield neural network-based real-
ization of MUD was introduced by Varanasi and Aazhang
[18]. They defined a multistage detection scheme without
mentioning the term neural. Later many authors, for exam-
ple, Miyajima et al. [15], Kechriotis and Manolakos [16],
and Teich and Seidl [17] have shown that this structure
is identical to—and can be replaced with—the recurrent
neural network detector, often referred to as Hopfield net
detector.

Since the Lyapunov function in (23) can only be locally
maximized by traditional Hopfield neural networks, the op-
timal solution is not reached in most cases. Avoiding the
local maxima of the Lyapunov function results in a better
performance. Many articles introduced modified recurrent
neural network structures to achieve improved performance
in MUD by avoiding local minima. For instance, Yoon and
Rao [19] and Chen et al. [20] have proposed an annealed
neural network multiuser receiver, which is based on nor-
mal Hopfield network, but they applied optimized sigmoid
function as nonlinearity in (22). This modification resulted
in remarkable performance enhancement, although the op-
timality of this strategy has not yet been verified analyti-
cally. Kechriotis and Manolakos proposed another modified
structure which was named as hybrid detector. It is built up
by a reduced detector followed by a normal Hopfield neu-
ral network [21]. Although there exists some analytical de-
scription on the behavior of this hybrid receiver structure,
its optimality has not yet been proven. Wang et al. [22] pro-
posed a transiently chaotic neural network-based multiuser
receiver scheme which originates from chaos theory. This de-
terministic network can reach the global optimum, however
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x

sghth{x}

Figure 2: The hysteretic decision function.

its performance is deeply influenced by the choice of initial
parameters which are set on the basis of experimental results.

To achieve performance enhancement, we use stochastic
sources inside the neurons and to speed up the network, we
apply hysteretic type nonlinearity. These twomethods are in-
troduced in the next section.

4. THEMODIFIED HOPFIELD NETWORK

For the sake of generality, we use the following updating
function instead of (22):

Yl[� + 1] = sghthl


 1
Wll


 l−1∑

j=1
WljYj[� + 1]

+
M∑

j=l+1
WljYj[�] +Vl + νl[�]




,
(27)

where νl[�] is a stochastic term with F(x, �) distribution at
time instant �, that is, Pr{νl[�] ≤ x} = F(x, �). Parameter
hl denotes the bound of the hysteresis function related to the
lth neuron, sghth{·} is a hysteretic decision function, with
decision boundary h, see Figure 2 for better comprehension.
If one set hl = 0 and νl[�] = 0, then the operation of the
original Hopfield net is obtained.

In Figure 3, the above defined modified recurrent neu-
ral network is depicted. This structure combines the advan-
tages of the two previously investigated methods, namely the
stochastic and the hysteretic type recurrent neural networks.
The former is able to escape from local maxima due to the
stochastic nature and to find the optimal solution of the cor-
responding quadratic form. In exchange, additional itera-
tions are required [4]. Whereas the latter is able to reduce
the number of iterations to provide faster detection [3]. Both
are detailed in the forthcoming two subsections.

4.1. Stochastic recurrent neural net

The additional ν[�] term is expected to be symmetric, to pro-
vide equiprobability of movements in both directions

Pr
{

ν [�] < x
} = F(x, �) = 1− F(−x, �). (28)

W1N W2N WNN

W12 W22 WN2

W11 W21 WN1

V1 ν1 V2 ν2 VN νn
sghthN sghthN · · · sghthN

Y1 Y2 · · · YN

...× × ×

× × ×

× × ×
+ + +

Figure 3: The structure of the modified recurrent neural network.

Furthermore, in order to obtain a stable solution, the vari-
ance of ν[�] should decrease with �.

The authors claim to prove that if we use

F(x, �) = 1
1 + eγ[�]x

(29)

distribution—termed as logistic distribution—to generate
the values of ν[�], where γ[�] is a negative parameter, de-
creased with �, then the recurrent neural network defined in
(27) finds the optimum of the corresponding quadratic form
defined in (21) with the highest probability. This statement
is a subject of a separate paper and is not proven here.

However, the cooling schedule defining the function γ[�]
remains open for further investigation. Previously, we used
γ[�] = −1.5 · �, which is applicable in the case of randomly
generated channel matrices [23]. In other cases, where chan-
nel matrices are constant, the resulting performance is slow
[24]. In general, parameter γ[0] and the function of γ[�]
is a trade-off between performance and speed; quickly de-
creased γ[�] values results in quick detection, but worse per-
formance. On the contrary, slowly decreased γ[�] values can
yield almost optimal performance but the network may re-
quire more iterations to find the steady state.

4.2. Neural net with hysteretic type nonlinearity

Recurrent neural networks with hysteretic type nonlinear-
ities can provide fast convergence since hysteresis prevents
output changes in the case of small input values. Hys-
teretic type recurrent neural networks was introduced by
Levendovszky et al. [3]. Here it is taken into consideration
that the parameters are still defined based on rule (24) and
(25) but the power control is perfect, that is, A = I. Later, R is
used instead of W and b̃ is considered instead of v. For spe-
cial R matrices, the uniqueness of the steady state, which is
at the global optimum of the corresponding Lyapunov func-
tion, can be proven [3]. First, we define the so-called eye-
openness parameter (D) in the following form:

∣∣Rii

∣∣ ≥ D ·
∑
j; j �=i

∣∣Rij

∣∣ ∀i, (30)
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Table 1: Probability of being in the DC.

Eb/N0 Pr{m ∈ DCε} Pr{m /∈ DCε}
10dB 0.631878 3.681 · 10−1
15 dB 0.910229 8.977 · 10−2
20 dB 0.998473 1.527 · 10−3

where D must be positive obviously. Secondly, we define the
internal double cube (DC) with parameter ε (0 < ε < 1),
which is denoted by DCε,

DCε ≡
{
x = [

xi
]
: ∀i, ε ≤ ∣∣xi∣∣ ≤ 2− ε

}
. (31)

Finally, we introduce vectorm as the continuous solution of
(21), that is,m satisfies b̃ = Rm.

Theorem 1. If there exists 0 < ε < 1 parameter such thatm ∈
DCε, and if

κ = (
ε(1 +D)− 3

)
min

i

∑
j; j �=i

∣∣Rij

∣∣ (32)

is positive, then the corresponding Hopfield recursion converges
to the global optimum. Moreover, reaching the optimal state
can be accelerated by using hysteresis decision function with pa-
rameter

hi =
∣∣Rii

∣∣− Rii + κ. (33)

Proof. For detailed proof see [3]. The outline of the proof
can be summarized as follows: firstly, it can be seen that if
m is in the double cube DCε, then y = sign{m} is one steady
state solution of the corresponding quadratic form. Secondly,
there is no other y �= sign{m} which could be a steady state.
The third proof shows that y = sign{m} gives a stable solu-
tion.

Note that introducing hysteretic nonlinearity results in
less state changes, thus the hysteretic neural network is more
stable than the original Hopfield neural network. As a mul-
tiuser detector, the Hopfield network reaches the steady state
in less than ten iterations (even if the number of users and
package sizes are large). Thus, the application of hysteretic
Hopfield network alone, as a multiuser detector, is not advis-
able. The need for application of hysteretic Hopfield network
alone, as a multiuser detector primarily, arises in overloaded
systems where computation time must be minimized to han-
dle all connections.

Sometimes, however, κ > 0 could not be satisfied. Since
in (32) only the term (ε(1 + D) − 3) can be negative, we in-
vestigate its behavior. Two variables are considered: D and
ε. Parameter D is deterministic, it depends on the structure
of the discrete-time channel matrix R, and can be computed
easily. On the other hand, due to the existence of unbounded
thermal noise, b̃ can take an arbitrarily large value (see (9)
and (18)). Thus, the vectorm can also be infinitely large, the
boundary of the DC tends to infinity, hence ε cannot be kept
in the interval (0, 1). Nevertheless, if some error is allowed

in the system, we can choose parameter ε to provide suffi-
ciently small fault probability. In the next section, an exam-
ple is shown on how to compute the fault probability, that is,
the probability ofm escapes from the double cube DCε.

4.3. A simple example

Let the following system be investigated, which is defined by
its discrete-time channel matrix

R =




1.2 0.2 −0.15
0.2 1.1 0.1

−0.15 0.1 1


 , (34)

and b = [−1,+1,−1]T. It is easy to see that D = 24/7 is
the eye-openness parameter. To sustain positive κ, we must
choose at least ε = 21/31 (see (32)). The output of the RAKE
receiver (9) is given as b̃ = [−0.85, 0.8,−0.75]T + ñ, where ñ
is a zero mean Gaussian noise with covariance matrix RN0.
Based on the above statements m = R−1b̃, where m is still a
noise term, with b mean and R−1N0 covariance. Taking into
account the expression of three-dimensional normal distri-
bution, the probability of satisfying the condition defined in
Theorem 1 can be expressed as

Pr
{
m∈DCε

}=∫
x∈DCε

exp
{− (x − b)TR(x− b)/2N0

}
√
2πN0

3√
detR−1

dx.

(35)

The results for different Eb/N0 scenarios is shown in
Table 1. The event m ∈ DCε gives a sufficient—but not
necessary—condition that the optimal solution is found.
Thus, the value of Pr{m ∈ DCε} gives a lower bound to the
probability of finding the global optimum. For instance, if
Eb/N0 = 15dB, then the probability of not being in the dou-
ble cube with m is equal to 0.08977. In other words, for the
discrete time channel matrix R defined in (34), the optimal
solution is not found at a maximum probability of 9%. We
must note that the probability of falling into the DC is not
equal to the probability of finding the global optimum. In
most cases, under faulty circumstances, it is still possible to
start from a neighboring state and reach the global optimum.

5. ADAPTATIONMETHOD

In this paper, the adaptation is regarded as the approxima-
tion of discrete-time channel matrix R, whereas the ampli-
tude matrix A is assumed to be known in the receiver. Fur-
thermore, for the sake of simplicity, the amplitude matrix is
assumed to be a unit matrix (A = I) in the sequel. How-
ever, the equations can be easily expanded to the more gen-
eral case.

RAKE receiver is designed to synchronize and to keep
track of the incoming signal. The fingers of the RAKE re-
ceiver are assigned to different multipath components. These
fingers are locked to the signal when sensing synchronization
takes place. Assuming perfect knowledge of system parame-
ters (R), the optimal decision rule for single-user scenarios is
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to apply a signum function on (6) and (9). However, per-
fect estimation of the channel parameters may not be en-
sured due to thermal noise and multiuser interference. In
our case, the RAKE receiver is modeled as an absolutely er-
roneous estimator—this situation is termed as noncoher-
ent scenario—yielding R̃ = I (i.e., the unit matrix instead
of R) as the input of the adaptation method. In spite of
the erroneous estimator, we still consider the output of the
channel matched filter to be b̃ which is the perfect case.
This may seem to be in contradiction with the previous
statement and could invite criticism. Nevertheless, the ex-
planation is simple: in this paper, the proposed method is
analyzed in its simplest way (taking into account that a
faulty channel matched filter remains as a subject of further
investigation).

To carry out the detection, the detector algorithm needs
the exact form of matrix R (see, e.g., (24)). Due to the un-
known channel and noise, the elements of this matrix must
be estimated recursively from the incoming signal by the
means of adaptation. The adaptation method applied in the
paper is based on Kohonen’s self-organizing map (SOM)
[25, 26]. This method was first implemented for the pur-
pose of MUD by Hottinen [27] who used SOM followed by
a two-stage detector. We investigate two types of adaptation
which are commonly used in mobile communication (see
[25, 26]) supervised and unsupervised algorithms. When the
decisions are assumed to be correct at the detector (near op-
timal performance), a training set can be obtained by using
the detected symbols matched against the received sequence
at the input of the receiver. In this case, supervised meth-
ods such as learning vector quantization (LVQ) can be of
use. However, when the detected sequence contains errors
with high probability (the detector is far from optimal per-
formance), blind equalization techniques, such as SOM, are
needed.

5.1. Supervised learning based on LVQ

To apply supervised equalization, we assume that a training
set is given

τ(N) =
{(

b[z], b̃[z]
)
, z = 1, . . . , N

}
, (36)

where b̃[z] represents the received block number z (see (9)
and (18)). In the case of communication session (following
the training period), we can replace b[z] with the detected se-
quence b̂[z]. If the detector works in a near optimal fashion,
we can track further changes in the channel or noise char-
acteristics based on this set. LVQ equalizer operates in the
following way (see [27]):

R̂[z+1]= R̂[z] + δ[z]
(
b̃[z] − R̂[z]b[z]

)(
b[z]

)T
, if b̃[z] ∈ ωb[z] ,

R̂[z+1]= R̂[z]−δ[z]
(
b̃[z]−R̂[z]b[z]

)(
b[z]

)T
, if b̃[z] /∈ ωb[z] ,

(37)

where ωb[z] is the Voronoi tessellation of vector b[z]. The

learning rate is defined as

δ[z+1] = δ[z]

1 + c[z]δ[z]
, (38)

where c[z] = +1 in the case of correct classification, that is,
b̂[z] = b[z], and c[z] = −1 otherwise. In the expression above,
b̃[z] /∈ ωb[z] denotes misclassification when b̃[z] does not fall
into the corresponding Voronoi cell denoted by ωb[z] .

5.2. Blind learning based on SOM

In the case of blind learning, we can apply the SOM algo-
rithm described as follows:

R̂[z+1] = R̂[z] + η[z]
(
b̃[z] − R̂[z]b̂[z]

)(
b̂[z]

)T
+

∑
x∈Ab̂[z]

β[z]
(
b̃[z] − R̂[z]x

)
xT,

(39)

where b̂[z] represents the detected binary vector at the output
of MUD, x denotes a generic binary vector and Ab̂[z] denotes
a set of rival decisions. Rival decisions refer to a set of pos-
sible classifications excluding the chosen one (which is b̂[z]).
Choosing the weight sequence η[z] should satisfy the condi-
tions

∑
i

(
η[i]

)2
<∞,

∑
i

η[i] = ∞ (40)

to adapt to a stationary distribution. Similar conditions are
imposed on β[z] [27].

One further structure should be considered, which is a
modification of the SOM based blind learning. Here (39) is
used with β[z] = 0. This method is often termed adaptive vec-
tor quantization (AVQ) or the on-line k-means method. It is
worth emphasizing that AVQ is still a blind method while
LVQ was a supervised one. The reader should not be con-
fused by the phrase. For both the synchronous and asyn-
chronous case, to avoid the increment in the computational
complexity, we focus only on the AVQ technique, that is,
β[z] = 0, but we term it SOM to avoid misunderstandings.

6. THE STRUCTURE OF THE PROPOSED DETECTOR

In Figure 4, the structure of the proposed detector is de-
picted. The RAKE receiver block is assumed to be incorpo-
rated, it receives the incoming signal and as an output gives
the values b̃ and R̃. At the top of the figure, a random num-
ber generator is shown, it generates noise values to the neu-
rons of the stochastic recurrent neural network-based on the
distribution function (29). This block has two inputs, � in-
dicates the iteration instant, and A is the initial variance pa-
rameter of noise: γ[�] = −A · �. On the right, the modified
neural network is shown which has already been depicted by
Figure 3. The input matrix R̂ and vector b̃ are used to set the
network parameters based on the rule (24) and (25), vector
h = [h1, h2, . . . , hN ]T determines the hysteresis parameters
of the network. The output b̃MNN is the estimation of the
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Figure 4: The structure of the proposed detector.

sequence b. The role of the block at the bottom of the fig-
ure is twofold; on one hand, it is an adaptive equalizer to fix
the estimation error of the RAKE receiver in the sense of R̃.
On the other hand, it controls the entire detector. Depending
on the structure of matrix R, this unit decides what opera-
tion should the detector follow: normal, stochastic, hysteretic
type or the latter two. In the following subsections, these four
different operations are detailed.

6.1. Normal operation

If the eye-openness parameter is close to—or less than—one,
and there is a limited amount of time to iterate, then normal
operation is performed, thus both A and vector h are set to
zero. Neither stochastic nor hysteretic properties are exhib-
ited in this case. The controller unit is ordered to focus on
adaptive estimation of matrix R̂.

6.2. Stochastic operation

If there is enough computational capacity (i.e., the mobile
network is rarely loaded) or the discrete-time channel ma-
trix R shows poor eye-openness (D is small), then the con-
troller can switch to stochastic operation. The limit vector h
is set to contain zero elements, thus hysteresis in the decision
function of the neurons does not appear. Parameter A is set
to be the proper value which can be pre-programmed con-
stant (e.g., 2.5), or can be adaptively updated in the course of
operation based on bit error ratio (BER) measurements.

6.3. Hysteretic operation

To perform hysteretic operation, matrix R must show wide
eye-openness. If the receiver serves many users, and there is
lack of computational time, the controller drives the detec-
tor to perform hysteretic operation. Vector h depends on the
time the receiver has to demodulate, larger h value produces
higher speed detection but worse bit error ratio. Note that the
minimal value of h is zero, a negative value drives the detector
to malfunction. ParameterA is set to zero, thus the stochastic
nature disappears.

6.4. Stochastic and hysteretic operation

The best performance can be achieved by applying both
stochastic and hysteretic properties in the state transition rule

(27). The advantage of hysteresis truly lies in streamling the
convergence time of the detector. The controller unit deter-
mines what h andA are to be used. This operation is themost
effective although there is no general recipe on how to set the
corresponding parameters. A separate paper could be ded-
icated to this problem, thus it is not considered here. When
simulating the detector, we focus on the stochastic operation.

7. SIMULATION RESULTS

To show the applicability of the proposed structure, simula-
tions of both synchronous and asynchronous uplink are con-
sidered in the following two subsections. In the synchronous
case, we show the results for all adaptive scenarios. For the
SOM structure, we have omitted the terms which take into
consideration the possible rival decisions (β[z] = 0 in (39)).
In this way, a considerable computational simplification be-
came possible. Despite the fact that this simplification results
in performance degradation, the simplified structure is still
able to yield a performance close to the coherent case, as will
be demonstrated later.

7.1. Synchronous case

Uplink with synchronous transmission can be regarded as
a system where intersymbol interference (ISI) is somehow
avoided. If we assign limited bandwidth for the communi-
cation link, it will result in infinite waveform in the time do-
main which gives rise to the effect of ISI. Thus, synchronous
transmission models are not realistic, but they provide an
easy way for simulation and get insight into the applicability
of different methods. Section 7.2 deals with more sophisti-
cated channel models.

Here the signal is modeled as a pulse amplitude modu-
lated (PAM) stream, so e(t) = ∆Tc(t), where ∆Tc(t) is equal to
one, if 0 ≤ t < Tc and zero otherwise. AWGN scenario is in-
vestigated (α[z] = 1, for all k) and the amplitude of the users
are equal (A = I). Seventeen users are considered (K = 17)
only with Gold codes of length PG = 15. Due to synchronous
transmission, all θk are equal to zero. The resulting discrete-
time channel matrixR from (8) is visualized in Figure 5. Each
row and each column is assigned for one user, and the boxes
represent the absolute value of cross correlation between the
corresponding users. Dark tones refer to stronger correla-
tions while light tones show weaker correlations between the
corresponding users. The greatest elements of the matrix are
located in the diagonal which are the auto correlation values
and are equal to one.

For the synchronous scenario, the SHN was ordered to
perform 1000 iterations with initial noise value A = 0.02
with linearly decreased γ. For the noncoherent methods, 300
iterations were performed and the initial learning weight was
set to δ[0] = 0.01, η[0] = 0.02, and η[z] = η[0](1 − τ/300),
where τ refers to the iteration instance. The initial estimate
of channel matrix R was set to R̂ = I which corresponds
to the worst case. In Figure 6, BER is exhibited as a func-
tion of EB/N0, the case of different detector structures and
adaptation methods. The optimal performance can be lower
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Figure 5: The structure of the channel matrix in the synchronous
case.
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Figure 6: The synchronous case: BER versus Eb/N0.

bounded by the theoretical BPSK limit

BERoptimal ≥ BERBPSK = 1
2
erfc

(√
Eb
2N0

)
, (41)

where

erfc(x) =
∫∞
x

2√
π
e−y

2
dy (42)

denotes the complementary error function [28]. This BPSK
bound is the lowest curve on the figure. The optimal detec-
tor is also simulated (assuming the full knowledge of R) de-
noted by MLSE-coherent on the figure. The corresponding
curve is just beyond the BPSK bound. Next, the performance
of the stochastic recurrent neural network was simulated as-
suming known channel characteristics. It is denoted by SHN-
coherent on Figure 6. The corresponding curve is located
above the MLSE-coherent as expected. Hereby, we must note
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Figure 7: The synchronous case: Frobenius norm versus number of
iterations.

that the SHN-coherent detection algorithm provides the best
performance among all suboptimal detection methods [24].
For example, if we want to achieve BER = 10−3, then only
3 dB additional signal-to-noise ratio (SNR) is needed com-
pared with the MLSE-coherent, although the system is over-
loaded (serving 17 users with processing gain of length 15).
It may be noteworthy that the SUD method cannot reach
BER = 10−1 which is grossly unacceptable.

Some simulation results related to the noncoherent case
are also depicted in Figure 6. Namely, the MLSE method was
implemented with the LVQ algorithm to adaptively identify
matrix R. We see that the corresponding curve termed as
MLSE-LVQ goes above the one of MLSE-coherent scenario
due to the information loss on R. Next, the MLSE detector
with the self-organizing map is denoted by MLSE-SOM. Us-
ing an unsupervised adaptation method results in slight loss
of performance (which can only be significant in the case of
powerful noise). The performance of SHN was also evalu-
ated by using both LVQ and SOM algorithms. Note that both
curves are very close to the corresponding MLSE curves. An
important conclusion can be drawn from the figure: for ap-
plying SHN with SOM, we pay only approximately 4 dB ad-
ditional SNR related to the coherent SHN case.

In Figure 7, the Frobenius norm between the discrete-
time channel matrix R and its estimated counterpart R̂ is
given as a function of iterations (performed by the corre-
sponding learning algorithms). The Frobenius norm is de-
fined as follows:

‖R− R̂‖F =
√√√∑

i

∑
j

∣∣Rij − R̂i j

∣∣2. (43)

In this case, the Eb/N0 = 12dB scenario is considered. As can
be seen, the LVQ algorithm yields a faster convergence and
smaller deviation from the true channel matrix R because
this is a supervised method. The decision rule results in fur-
ther difference in the learning performance as the detected
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symbols are needed both by the SOM algorithm (39) and to
reconstruct the Voronoi cells in the case of LVQ (37). Because
of this effect, the learning algorithm (let it be either LVQ or
SOM) exhibits slower convergence when working with SHN
than working with MLSE.

Figure 8 illustrates the cumulated BER as the function of
iterations for Eb/N0 = 12dB. As the figure demonstrates, the
BER decreases with time as the Frobenius norm of deviation
becomes smaller and smaller. We conclude that LVQ algo-
rithm provides the fastest adaptation, however, there is only
a slight difference between SOM and LVQ in the performance
of SHN. This implies that unsupervised learning can yield al-
most as good performance as the supervised one in the case
of SHN. In the sequel, the asynchronous scenario is consid-
ered where the MLSE method is impossible to simulate. To
save computational time, only the unsupervised SHN-SOM
method is simulated which is expected to give almost similar
performance as the one of the supervised SHN-LVQ algo-
rithm.

7.2. Asynchronous case

The asynchronous uplink of a DS-CDMA transmission sys-
tem is considered. BPSK modulation with carrier frequency
5.2GHz, chip duration Tc = 31.25ns, and measurement
bandwidth 128MHz (which is equal to four samples per
chip), we assumed mobile velocity 3m/s, time invariant
channel impulse response. For e(t), we used root raised co-
sine with roll-off parameter 0.22, the processing gain was set
to PG = 16 in all the simulations. We simulated K = 16
users with both Walsh-Hadamard and extended Gold code
sets. The delay configuration was θk = (k − 1)TC for the kth
user.

We have investigated the behavior of this complex struc-
ture in two typical types of indoor channel models [29]:

(i) HPLOS: hard partitioned (HP) office scenario with
line of sight (LOS) propagation, average RMS delay
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Figure 9: The HPLOS channel with extended Gold codes.

spread 27ns, maximum RMS delay spread 144ns,
(ii) OPOBS: open plan (OP) scenario without line of sight

(obstructed topography—OBS) propagation, average
RMS delay spread 109ns, maximumRMS delay spread
191ns.

The simple AWGN was omitted here as the other models
present more relevant channel scenarios. Based on (15) cal-
culating the discrete-time channel matrices for these cases,
the R[i] values are not equal to zero for any i due to the in-
finite nature of e(t). However, for |i| > 6 they are negligi-
ble, and thus they can be omitted. The resulting discrete-time
channel matrices can be checked at [30]. For all four scenar-
ios, only the SOM adaptation method is considered with 100
iterations and η[z] = (1− τ/100)η[0], where τ refers to the it-
eration instance. For the detector part, only SHNwas investi-
gated due to the unmanageable computational requirements
of the MLSE. In the neurons, the same F(x) distribution
function was used (29) but with parameter γ[�] = −2.5 · �,
and only 100 iterations were performed.

In Figure 9, BER is depicted as a function of Eb/N0 in the
case of asynchronous HPLOS channel with extended Gold
codes. We can see that SHN with SOM and SHN-coherent
yields a reasonable detection performance. Of course, SHN-
SOM is slightly worse than SHN-coherent, it needs an addi-
tional 2 dB payoff in SNR to achieve the same performance.
This stresses the advantage of SHN detection with SOM, as
only a marginal increase in SNR yields the same performance
as SHN-coherent. Thus, LVQ adaptation has not been simu-
lated for the asynchronous scenarios to save computational
time. As can be seen in the figure, SUD also results in a very
poor performance in this case. Other detection schemes such
as MLSE were not implemented due to the high computa-
tional complexity required by the algorithm.

Figure 10 depicts the same as Figure 9, only the channel
model is different (OPOBS instead of HPLOS). The results
show the same tendencies as elaborated in explaining the pre-
vious figure.
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Figure 11: The HPLOS channel with Walsh-Hadamard codes.

Figures 11 and 12, respectively shows the BER with re-
spect to Eb/N0 in the case of applying Walsh-Hadamard
codes. Since these codes exhibit worse correlation properties
in asynchronous case than the extended Gold codes [31], the
performance has deteriorated. However, the same tendency
can be observed as in the previous figures (but BER is defi-
nitely higher).

Figure 13 shows the Frobenius norm of the deviation be-
tween the true discrete-time channel matrix R and its esti-
mated version R̂ given in (43). In all cases, SHN detector with
SOM adaptation method is applied. The transient behavior
of the norm can be studied based on four different channel
models such as HPLOS with extended Gold codes, HPLOS
with Walsh-Hadamard codes, OPOBS with extended Gold
codes andOPOBSwithWalsh-Hadamard codes, respectively.
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Figure 12: The OPOBS channel with Walsh-Hadamard codes.
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Figure 13: Frobenius norm versus number of iterations in the asyn-
chronous case.

However, in all cases the adaptation method reaches quickly
(in approximately ten iterations) a minimal Frobenius norm
around 10 independently of the code sequences and the
propagation model. We may wonder that the convergence
of the norm (i.e., the convergence of the adaptation algo-
rithm) seems to be faster here than in the synchronous case
in Figure 7. The reason lies in the parallel update of matrix
elements in a block fashion in contrast with the synchronous
case. As a result, the matrix elements are updated 250 times
within one iteration in the asynchronous case due to the
block size NB = 250.

Further simulation results, including dynamic behaviour
of the structure (for instance, change in the number of active
users), can be found in [32].
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8. COMPUTATIONAL COMPLEXITY

The computational complexity of the proposed detector is
evaluated as the complexity of different blocks in Figure 4.
The RAKE receiver is already implemented and widely used
in spread spectrum systems. The only additional require-
ment related to RAKE receiver is the accessibility of the vec-
tor b̃ (i.e., soft output values) which is assumed to be im-
plemented. To determine the computational requirements of
the other three blocks, we must take into consideration some
system parameters, for example, bit rate of communication,
chip rates, block size, etc. We consider the third generation
universal mobile telecommunication system where CDMA is
already standardized as the basic modulation scheme. In our
model, we assume packets at the input (18), thus we focus
on one slot. Following the standard, one slot is defined to
last for 0.625ms containing 2560 chips. Each user chooses
the rate of communication from 32kbps up to 2Mbps, thus
the number of bits in one slot changes from 20 up to 1280.
Of course, with higher speed communication, only less ac-
tive users could be accommodated in the system. Namely,
only two 2Mbps users are allowed to transmit at the same
time, and the maximal number is 128 at 32 kbps. However,
in a fully loaded system, the task is to demodulate 2560 sym-
bols per slot. It infers 2560 decisions per slot, equivalent to
approximately 4 million decisions per second. From [23], it
is clear that 20 iterations must be sufficient. It results in ap-
proximately 80 million iterations per second. Thus, to gener-
ate random values for internal noise sources in the neurons,
the noise chip must be capable of generating 80 million val-
ues per second in the upper part of Figure 4. This is an easy
task for today’s DSP devices.

The stochastic Hopfield network should process these
noise values, that is, the SHN must compute 80 million it-
erations per second. In one iteration, each neuron computes
the updating rule defined in (27) which entails 2559 multi-
plications and 2561 additions. This adds up to 5120 opera-
tions per iteration per neuron. The resulting computational
requirement is approximately 410 billion operations per sec-
ond which seems to be a huge number. However, it can be
handled with distributed computing. Namely, we can take
into account that

(1) we can assign one specific DSP device to every symbol
of each user, that is, one DSP for every neuron;

(2) there are zero elements in the matrix W, that is, the
intersymbol interference occurs locally, thus only the
neighboring symbols can overlap each other. Zero ele-
ments inW decrease the required computation.

Depending on the circumstances (available hardware in-
frastructure, network load), we can apply one DSP also for
more neurons, then our results must be multiplied by the
number of neurons computed by the DSP device. Based on
the second condition 3× 128, symbols interfere in the worst
case (128 users on the channel) which entails 383 multipli-
cation, 385 addition, and one random number generation
in each neuron equivalently 769 operations per slot per it-
eration. Using the above mentioned values approximately 25

million operations per second per neuron are required for
SHNMUD. For instance, Texas TMS 320c 5502 neuron inte-
grated circuit is capable of reaching 100million iterations per
second, thus four neurons fit in one IC. On the other hand,
it is very cheap (approximately $8), which yields a low cost
implementation of the proposed detection scheme.

The HyNN represents the same complexity, only the de-
cision function differs, which does not need special attention.
As has already been seen, the adaptation method contains
linear operations at the end of every packet, resulting in the
update of matrix R̂, which comprises 2560× 2560 elements.
For the update of each component, 2562 multiplications and
two additions are required at every 0.625ms (see, e.g., (39)).
This results in approximately 4 million operations per sec-
ond per matrix element, thus all elements cannot be updated
using the same hardware; distributed architecture is needed
for the adaptation method.

9. CONCLUSIONS AND FURTHERWORKS

In this paper, a novel MUD scheme was presented based on
the theory of neural networks and adaptive detectors. The
new detector is also capable of serving many users in heav-
ily loaded environments. The robustness of the method lies
in the application of the stochastic recurrent neural network
and the self-organizing feature map. As an improvement, a
control unit is also proposed which could switch between
stochastic and hysteretic operations depending on the cir-
cumstances. However, the rules of how to do so have not yet
been investigated. The system has been tested by extensive
simulations. Simulation results are promising and they show
that the performance of the proposed scheme is close to the
one of the optimal detector.

For further work, the authors plan to provide a more
rigorous mathematical analysis of this system, including
the cooling schedule, which plays an important role in the
stochastic recurrent neural network. Furthermore, a separate
SOM seems to be feasible in the controller part too which
could recognize what operation the detector should follow;
stochastic, hysteretic, or both. For doing this, continuous
adaptation will be required.
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