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The recently developed blind adaptive techniques for multiuser detection in code division multiple access (CDMA) systems offer
an attractive compromise of performance and complexity. However, the desire to further reduce complexity at the mobile unit
has led to the investigation of techniques that move signal processing from the mobile unit to the base station. In this paper, we
investigate transmitter precoding for downlink time division duplex (TDD) code division multiple access (CDMA) communica-
tions. In particular, we develop a linear minimummean square error precoding strategy using blind channel estimation for fading
multipath channels that allows for simple matched filtering at the mobile unit and is easy to make adaptive. We also present a
performance analysis using tools developed for the analysis of conventional (receiver-based) linear blind multiuser detection in
unknown channels. We compare the analytical and simulation results to traditional receiver-based blind multiuser detection. It is
seen that transmitter precoding offers a reasonable alternative for TDD-mode CDMA when minimizing computational complex-
ity at the mobile unit is a priority.
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1. INTRODUCTION

The demand for capacity and performance in multiple
access wireless systems has spurred the development of
sophisticated signal processing techniques for signal recep-
tion [1, 2]. However, the goal of maintaining low cost and
complexity, especially at the mobile unit, is as important
as ever. As a result, researchers have recently begun inves-
tigating signal processing techniques that move computa-
tional complexity from the mobile unit to the base station,
where it can be managed more efficiently. Generally speak-
ing, these techniques involve some kind of transmitter-based
multiuser interference cancellation at the base station (pre-
coding) and simple linear processing, for example, matched
filtering, at the mobile unit. They are particularly appealing
for time division duplex code divisionmultiple access (TDD-
CDMA) [3] since the same carrier is used for both uplink

and downlink in different time slots. Hence, the downlink
channel can be estimated at the base station using the uplink
signals [4].

In [5], the authors considered transmitter precoding
for synchronous CDMA over additive white Gaussian noise
(AWGN) channels. They also present an extension to mul-
tipath channels, but a RAKE receiver is required and the
channel is assumed perfectly known. A similar technique,
pre-RAKE diversity combining, is investigated in [6]. How-
ever, RAKE reception is inherently sensitive to channel mis-
match and performance is generally inferior to minimum
mean square error (MMSE) or decorrelating multiuser in-
terference rejection. The authors in [7] present a comparison
of the techniques mentioned above using a typical vehicular
channel. In [8], the authors consider transmitter precoding
for multipath fading channels but, in contrast to the present
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work, their prefilter is applied to the output of the spread
spectrum encoder, rather than applying the filter, first fol-
lowed by spreading. It was shown that this approach has in-
ferior average performance unless the spreading codes them-
selves are allowed to be adaptive.

In this paper, we develop a linear MMSE-based trans-
mitter precoding strategy for the CDMA downlink in syn-
chronous multipath fading channels. No RAKE receiver is
required at the mobile unit, only matched filtering. Since we
require channel information to construct optimal precoding
filters, we implement blind channel estimation at the base-
station, where complexity can be managed more efficiently.
We also present a performance analysis using tools devel-
oped for the analysis of blind multiuser detection with blind
channel estimation [9]. Finally, we develop an adaptive im-
plementation that is able to adjust the precoding matrix as
users enter and leave the system.

This paper is organized as follows. Section 2 describes
the system under consideration. Section 3 develops the trans-
mitter precoding strategy for CDMA over synchronous mul-
tipath channels. Section 4 presents a performance analysis.
Section 5 discusses an adaptive implementation. Section 6
reports simulation results and Section 7 concludes.

2. SYSTEMDESCRIPTIONS

2.1. Uplink signal model and blind channel estimation

We consider a K-user discrete-time synchronous multipath
CDMA system with no intersymbol interference (ISI). Such
a system is realized either by neglecting the ISI when themul-
tipath delay spread is small compared with the symbol inter-
val, or by inserting guard intervals between symbols when
the delay spread is large. The path delays are also assumed
to be an integral number of chip periods and are known. We
first consider the chip-match filtered uplink signal received
at the base station which, during the ith symbol interval, can
be written as

r[i] =
K∑
k=1

bk[i]
L∑
l=1

sl,k fl,k + n[i], (1)

where L is the number of resolvable paths, bk[i] is the ith
symbol for the kth user, sl,k and fl,k are, respectively, the de-
layed versions of the spreading waveform (with zero-padding
when a guard interval is inserted) and the complex channel
fading gain corresponding to the lth path of the kth user, and
n[i] ∼ �c(0, σ2IN ) is a complex white Gaussian noise vec-
tor. Note that r[i],n[i] ∈ CN where N is the processing gain.
Denote

Sk
�=
[
s1,k s2,k · · · sL,k

]
, (2)

fk
�=
[
f1,k f2,k · · · fL,k

]T
. (3)

Then (1) can be written as

r[i] =
K∑
k=1

Skfk︸ ︷︷ ︸
hk

bk[i] + n[i] = Hb[i] + n[i], (4)

where

H
�=
[
h1 h2 · · · hK

]
,

b[i]
�=
[
b1[i] b2[i] · · · bK [i]

]T
.

(5)

A block diagram of the uplink system appears in Figure 1.
Let the autocorrelation matrix of the received signal r[i]

be

Cr
�= E

{
r[i]r[i]H

} = HHH + σ2IN (6)

= UsΛsUH
s + σ2UnUH

n , (7)

where (7) is the eigendecomposition of Cr . Since the matrix
H has full column rank K , the matrix HHH in (6) has rank
K . Therefore, in (7), Λs contains the K largest eigenvalues of
Cr ;Us contains the corresponding orthonormal eigenvectors;
and Un contains the (N − K) orthonormal eigenvectors that
correspond to the smallest eigenvalue, σ2.

Suppose User 1 is the user of interest. Then sinceUH
n h1 =

UH
n S1f1 = 0, we can estimate f1 at the base station in the

following way [10, 11, 12, 13]:

f̂1 = arg min
‖f‖=1

∥∥UH
n S1f

∥∥2 (8)

= arg min
‖f‖=1

fH
(
SH1 UnUH

n S1
)

︸ ︷︷ ︸
Q

f (9)

= minimum eigenvector of Q. (10)

Note that (10) specifies f1 up to a scale and phase ambigu-
ity and that, in practice, (10) can be implemented blindly in
a batch or sequential adaptive manner. In batch mode, we
simply replace the noise subspace parameters in (9) with pa-
rameters obtained from the eigendecomposition of the sam-
ple autocorrelation matrix of the received signal. In sequen-
tial adaptive mode, where we update the channel estimates
at each time slot, we may employ a suitable subspace track-
ing algorithm and use the sequential Kalman filtering tech-
nique described in Section 5. Note that a necessary condition
for our channel estimate to be unique is that H has rank K ,
which necessitates this matrix to be tall, that is, K ≤ N .

2.2. Downlink signal model, precoding and receiver

The (downlink) signal transmitted from the base station,
during the ith symbol interval, can be written as

x[i] = SMb[i], (11)

where

S
�=
[
s1 s2 · · · sK

]
(12)

is the matrix of spreading waveforms and M ∈ CK×K is
a complex precoding filter which we will optimize in the
following section. Throughout this paper, we assume that
the CDMA system is operating in the TDD mode, so that
the downlink and uplink operate using the same carrier fre-
quency in different time slots. We also assume that the time
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Figure 1: The uplink of a K-user CDMA system.
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Figure 2: Adaptive precoding transmitter structure at the base station for the downlink signal.

elapsing between uplink and downlink transmissions is suffi-
ciently small compared to the coherence time of the channel
that the channel impulse response is the same for the uplink
and downlink. Then from (2) and (3), the received signal at
user 1’s mobile unit can be written as

r1[i] =
[
S1f1 S2f1 · · · SK f1

]
︸ ︷︷ ︸

H1

Mb[i] + n1[i], (13)

where S1, S2, . . . , SK contain shifted versions of their respec-
tive signature waveforms as in (2) except that the L shifts are
the same for each user’s waveform since all spreading codes
have been transmitted over user 1’s downlink channel. De-
tection of the downlink information bits is accomplished via
matched filtering of the received signal r1[i] with user 1’s sig-
nature waveform, s1. Figure 2 contains a block diagram of
the signal processing that takes place at the base station when
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an adaptive implementation is employed. We will see more
details in Section 5.

3. TRANSMITTER PRECODING FOR SYNCHRONOUS
MULTIPATH CDMA

We seek to choose the precoding matrix M so as to provide
the best downlink performance possible when the mobile
units are constrained to the use of a matched filter receiver.
We choose the MMSE criterion, soM is chosen to minimize

J = E




∥∥∥∥∥∥∥∥∥∥∥∥




b1

b2
...

bK


−




sH1 r1

sH2 r2
...

sHK rK




∥∥∥∥∥∥∥∥∥∥∥∥

2

, (14)

where we have dropped the time index for clarity. It is easy to
see that




sH1 r1

sH2 r2
...

sHK rK



=




sH1 H1

sH2 H2
...

sHKHK




︸ ︷︷ ︸
�

Mb +




sH1 n1

sH2 n2
...

sHKnK




︸ ︷︷ ︸
v

. (15)

Then

J = E
{‖b−�Mb− v‖2}. (16)

The following proposition gives the optimal precoding ma-
trix.

Proposition 1. The choice of M that minimizes J isM = �−1.

Proof. Although cumbersome, a direct proof can be con-
structed via a complex analog to the proof in [5, Appendix
A]. We offer the following simple alternative proof by con-
tradiction. Suppose there exists a choice of M, say M = M0,
that results in a smaller J thanM = �−1. Then

E
{∥∥b−�M0b− v

∥∥2} < E
{‖v‖2}. (17)

We may evaluate the left-hand side of (17) as

E
{∥∥b−�M0b− v

∥∥2} = K − 2E
{
Re
[
bH�M0b

]}
+ E

{
bHMH

0 �H�M0b
}

+ E
{
vHv

}
.

(18)

Then (17) implies

K − 2E
{
Re
[
bH�M0b

]}
+ E

{
bHMH

0 �H�M0b
}
< 0. (19)

However, the left-hand side of (19) is equal to E{‖b −
�M0b‖2} which can never be less than zero. Hence, we have
a contradiction.

Denote by Ĥi (1 ≤ i ≤ K) the matrix Hi where the chan-
nel fi has been replaced with the blind estimate f̂i obtained
from (10). Then we may form an initial blind estimate of M
at the base station as

M̂ =




sH1 Ĥ1

sH2 Ĥ2
...

sHK ĤK




−1

. (20)

There remain amplitude and phase ambiguities in M̂ that are
addressed in the following sections.

Remarks

We should expect the performance of transmitter-based
multiuser detection to be somewhat inferior to traditional
receiver-based approaches since the transmitter precoding
filter must satisfy more requirements than the detector in
a receiver-based approach. More specifically, notice that the
objective function in (14) requires that the choice ofMmax-
imize performance for all users simultaneously. Choosing M
to minimize an objective of the form

J ′ = E
{∣∣b1 − sH1 r1

∣∣2}
= E

{∣∣b1 − sH1
(
H1Mb[i] + n1[i]

)∣∣2} (21)

could provide better downlink performance for User 1 than
J of (14) but at the expense of the other users. Hence J ′ is
not an acceptable cost function. In this sense, the simultane-
ity requirement means that transmitter precoding has fewer
degrees of freedom for combatting interference than does
MMSE or decorrelating receiver-based multiuser detection.

Notice that choosing the optimal precoding matrix by
minimizing J places no explicit constraint on average trans-
mit power. In fact, it was found in a related work on MMSE
precoding [5] that unconstrained optimization with simple
power scaling provides superior performance at high signal-
to-noise ratio (SNR) to constrained optimization. As a result,
we will focus on the former. We will also suppress the power
scale factor for simplicity.

4. PERFORMANCE ANALYSIS

In [9, 14, 15, 16, 17], the authors developed analytical tools
to investigate the performance of blind and group-blind lin-
ear MMSE multiuser detection. In this section, we adapt
these tools to the analysis of transmitter precoding with blind
channel estimation. In particular, we will derive signal-to-
interference-plus-noise ratio (SINR) and bit error rate (BER)
expressions that take residual multiple-access interference
and channel estimation error into account. In Section 6, we
will compare these expressions to simulation results.

Notice that the estimate M̂ given by (20) is not a consis-
tent estimate ofM because of the unknown phase and scaling
factors. However, there is a diagonal matrix Φ so that M̂Φ−1
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is a consistent estimate. The matrixΦ is of the form

Φ
�= diag

(∥∥f1∥∥eφ1 ,∥∥f2∥∥eφ2 , . . . ,∥∥fK∥∥eφK ), (22)

where φk, k = 1, . . . , K , are phase factors that depend on how
the estimation is implemented. With this in mind, we state
the following result which is proved in the appendix.

Theorem 1. Let M̂ be given by (20) and let b be i.i.d. QPSK
symbols independent of M̂. Then

√
M
([
M̂Φ−1 −M

]
b
) −→ �c

(
0,Cm

)
(23)

in distribution asM −→ ∞ with

Cm = �−1D�−H, (24)

where the diagonal elements of D are given by

[D]i,i = βi

K∑
k=1

K∑
l=1

[
�−1�−H]

k,ls
H
i SkQ

†
i S

H
l si,

βi
�= σ2hHi UsΛs

(
Λs − ηIK

)−2
UH

s hi,

(25)

while the off-diagonal elements can be ignored with good accu-
racy. Here, Q†i denotes the Moore-Penrose generalized inverse

[18] of the matrix Qi
�= SHi UnUH

n Si.

The SINR at the output of the matched filter for User 1 is
given by [9, 14]

SINR
�=

∣∣E{sH1 r1[i] | b1[i]}∣∣2
E
{
Var

(
sH1 r1[i] | b1[i]

)} . (26)

Now suppose that the phase and amplitude factors inΦ have
been determined. Write the estimated matrix M̂ as M̂Φ−1 =
M + ∆M, where ∆M is the estimation error. Dropping the
time index for clarity, the received signal can then be written
as

r1 = sH1 r1 (27)

= (
sH1 H1

)
M̂Φ−1b + sH1 n1 (28)

= (
sH1 H1

)
Mb +

(
sH1 H1

)
∆Mb + sH1 n1 (29)

= (
sH1 H1

)
[M]:,1b1 +

(
sH1 H1

)
[M]:,2:K [b]2:K

+
(
sH1 H1

)
∆Mb + sH1 n1, (30)

where the notation [M]:,2:K indicates the matrix composed
of columns 2 through K of the matrix M. According to
Theorem 1, for large M, the third term in (30) is also Gaus-
sian distributed (independent of the other terms) with vari-
ance

v21 =
1
M

(
sH1 H1

)
CmHH

1 s1. (31)

Since M represents an MMSE detector, we can also make
the approximate assumption that the residual multiple access
interference is Gaussian distributed [19]. We can therefore

calculate the BER via a single Q-function as

Pb(e) ∼= Q
(√

SINR
)

(32)

with

SINR

=
[(
sH1 H1

)
[M]:,1

]2
∑K

k=2
∣∣(sH1 H1

)
[M]:,k

∣∣2+σ2∥∥s1∥∥2+(1/M)
(
sH1 H1

)
CmHH

1 s1
.

(33)

Notice that the first term in the denominator of the SINR ex-
pression is due to residual multiple-access interference. The
second term is the ambient noise, and the third term is due
to the channel estimation error.

5. ADAPTIVE IMPLEMENTATION

In this section, we present an adaptive implementation of
the transmitter precoding strategy discussed in Section 3 that
updates the precoding matrix M at each time slot. This se-
quential updating allows the implementation to adapt as the
channel changes and as users enter and leave the system. A
block diagram of the signal processing at the base station
appears in Figure 2. Note that we have suppressed the sig-
nal processing necessary for detection of the uplink bits. The
uplink signal received at the base station is used in a sig-
nal subspace tracker, along with the known spreading codes
of all users, to construct channel estimates by solving (39).
Recall that since we are assuming TDD mode, the uplink
channel estimates also serve as downlink channel estimates
that can be used to construct M. As previously mentioned,
these channel estimates have amplitude and phase ambigui-
ties. Since nearly all cellular CDMA systems employ power
control, it is likely that the base station has some knowl-
edge of each users’ transmit power. This information, cou-
pled with estimates of the received power, can be used to
estimate the channel amplitude for each user. More specif-
ically, let the diagonal matrices A = diag(α1, α2, . . . , αK ) and
P = diag(

√
p1,
√
p2, . . . ,

√
pK ) contain the unknown channel

amplitudes and the known uplink transmit powers, respec-
tively. Also define H̄ such thatH = H̄AP so that the columns
of H̄ have unit norm.

We propose an estimator based on the following fact.

Proposition 2. The amplitude matrix, A, may be expressed as

A =
[
H̄HUs

(
Λs − σ2IK

)−1
UH

s H̄P2
]−1/2

, (34)

where Us and Λs are signal subspace components derived from
an eigendecomposition of the autocorrelation matrix Cr , of the
received signal, as in (6) and (7).

Proof. Since

H̄A2P2H̄H + σ2IN = UsΛsUH
s + σ2UnUH

n

= HHH + σ2IN = Cr ,
(35)
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it is easy to see that H̄A2P2H̄H = Us(Λs−σ2IN )UH
s . It can also

be verified using the definition of the Moore-Penrose gener-
alized matrix inverse that (H̄A2P2H̄H)† = (H̄H)†A−2P−2H̄†.
Then

(
H̄H

)†
A−2P−2H̄† = Us

(
Λs − σ2IK

)−1
UH

s (36)

and, solving for A−2, we have

A−2 = H̄HUs
(
Λs − σ2IK

)−1
UH

s H̄P2 (37)

and the proposition follows.

We may obtain an estimate Â of A by replacing H̄, Us,
Λs, and σ2 of (34) with their respective estimates obtained
from subspace tracking and the solution to (39). The sub-
space tracker we have chosen to use for this adaptive imple-
mentation is NAHJ-FST (noise averaged Hermitian Jacobi
fast subspace tracking) which has complexity O(NK) float-
ing operations per user per bit and which performs close to
the lower bound for all subspace trackers that are based on
the singular value decomposition [20]. The application of
NAHJ-FST to the current tracking problem is a straightfor-
ward modification of [20] and will not be discussed in detail.
The channel phase ambiguity can be circumvented by the use
of differential encoding and decoding of the data. After chan-
nel and amplitude estimation, the amplitude corrected chan-
nel information is then used, along with the known spread-
ing codes, to construct the precoding matrix M̂. Finally, the
downlink information bits are differentially encoded and fil-
tered with M̂ before spreading and transmission. At the mo-
bile unit, matched filtering and differential detection are per-
formed to obtain estimates of the downlink information bits.

5.1. Blind sequential adaptive channel estimation

Here, we describe the adaptive channel estimator used in
Figure 2. Consider User 1 the user of interest and denote
by z[i] the projection of received uplink signal r[i] onto the
noise subspace, that is,

z[i] = r[i]−UsUH
s r[i] = UnUH

n r[i]. (38)

Since z[i] lies in the noise subspace, it is orthogonal to any
signal in the signal subspace and, in particular, it is orthog-
onal to S1f1. Hence, f1 is the solution to the following con-
strained optimization problem:

min
f1∈CL

E
{∥∥z[i]HS1f1∥∥2} = min

f1∈CL
E
{∥∥(SH1 z[i])H f1∥∥2

}

s.t.
∥∥f1∥∥ = 1.

(39)

In order to obtain a sequential algorithm to solve the above
optimization problem, we write it in the following (trivial)
state space form:

f1[i + 1] = f1[i], state equation,

0 = [
SH1 z[i]

]H
f1[i], observation equation.

(40)

Denote x[i]
�= SH1 z[i]. Then the standard Kalman filter can

be applied to the above system as

k[i] = Σ[i− 1]x[i]
(
x[i]HΣ[i− 1]x[i]

)−1
,

f1[i] = f1[i− 1]− k[i]
(
x[i]H f1[i− 1]

)
∥∥f1[i− 1]− k[i]

(
x[i]H f1[i− 1]

)∥∥ ,
Σ[i] = Σ[i− 1]− k[i]x[i]HΣ[i− 1].

(41)

with the initial condition Σ[0] = IL.

5.2. Algorithm summary

We may summarize the adaptive implementation at the base
station as follows.

Algorithm 1 (Sequential adaptive transmitter precoding for
synchronous multipath CDMA).

(1) Using a suitable signal subspace tracking algorithm, for
example, NAHJ-FST, update the signal subspace components
Us[i], Λs[i], and σ2[i] at each time slot i using the uplink sig-
nals.

(2) Track the channels {fk}Kk=1 as follows:

z[i] = r[i]−Us[i]Us[i]Hr[i],

x[i] = SHk z[i],

k[i] = Σ[i− 1] x[i]
(
x[i]HΣ[i− 1]x[i]

)−1
,

fk[i] = fk[i− 1]− k[i]
(
x[i]H fk[i− 1]

)
∥∥fk[i− 1]− k[i]

(
x[i]H fk[i− 1]

)∥∥ ,
Σ[i] = Σ[i− 1]− k[i]x[i]HΣ[i− 1].

(42)

(3) Calculate the channel amplitudes via (34) using the channel
estimates, the signal subspace parameters, the known spreading
codes, and the known transmit powers.

(4) Using (15) and the information from steps (1), (2), and (3),
calculate � and setM = �−1.

(5) Differentially encode the downlink bit streams for each user
to form b[i].

(6) Transmit the precoded downlink signal x[i] = SMb[i].

(7) Perform matched filtering and differential detection at the
mobile units.

6. SIMULATION RESULTS

6.1. Analytical performance versus simulated
performance

Here, we compare the BER expression in (33) to simula-
tion results. We will also compare the analytical and simu-
lated performance to conventional receiver-based subspace
blind MMSE multiuser detection. The simulated system is a
QPSK modulated synchronous multipath CDMA system as
described in Section 2, that is,

bk[i] ∈
{
1 + j√

2
,
1− j√

2
,
−1 + j√

2
,
−1− j√

2

}
. (43)
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Figure 3: Comparison of analytical and simulated performance
results for transmitter precoding. Also presented for comparison,
is the analytical performance of (receiver-based) subspace blind
MMSE multiuser detection. The number of signal samples used to
construct the precoders and detectors is 2000.

The spreading codes for each user are m-sequences of length
15 and their shifted versions. The number of users in the
system is 10. The number of paths, induced by each user’s
channel, is L = 4. Each path delay is an integral number of
chip periods Tc, chosen with equal probability from the set
{0, Tc, 2Tc, . . . , (N − 1)Tc}. The fading gain for each users’
channel is generated from a complex Gaussian distribution.
The channel parameters are fixed for all simulations. Blind
channel estimation is performed on the uplink signals using
(10), where the exact noise subspace is replaced by an esti-
mated noise subspace obtained from an eigendecomposition
of the received signal, as in [9]. The frame length used for es-
timating the channel (and the precoding filter) is eitherM =
200 orM = 2000, as noted on the figures. As mentioned pre-
viously, there is an amplitude and phase ambiguity inherent
in (10). For now, they are assumed known. These ambiguities
are resolved in the adaptive implementation discussed next.

Figure 3 illustrates the best and worst BER performance
among the 10 users using (32) for the analytical performance
of transmitter precoding, and [9, equation (98)] for the ana-
lytical performance of receiver-based subspace blind MMSE
multiuser detection (denoted rx-mud:min and rx-mud:max
in the figure). The SNR is defined as Eb/(2σ2). Notice that
there is a very goodmatch between the simulated and analyt-
ical performance results for transmitter precoding. The pre-
viously mentioned performance penalty of transmitter pre-
coding relative to receiver-based multiuser detection is also
evident. The number of signal samples used to estimate the
channels and, hence,M is 2000.

The simulation parameters for Figure 4 are identical to
those for Figure 3 except that the number of signal samples
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Figure 4: Comparison of analytical and simulated performance
results for transmitter precoding. Also presented for comparison,
is the analytical performance of (receiver-based) subspace blind
MMSE multiuser detection. The number of signal samples used to
construct the precoders and detectors is 200.

used to estimate M and the receiver-based multiuser detec-
tor has been reduced from 2000 to 200. Although the perfor-
mance of subspace blind MMSE multiuser detection is still
superior, the error floor that appears, its performance does
not appear in the performance of transmitter precoding. It is
clear that an error floor must exist for both techniques since
the detector and precoder are estimated from noisy received
signals, but this result suggests that the performance of trans-
mitter precoding may degrade more gracefully than that of
subspace blind MMSE multiuser detection when the num-
ber of signal samples available diminishes.

Figure 5 contains plots of the analytical and simulated
SINR versus the number of signal samples used to construct
the precoder matrix for the best performing user. The ana-
lytical values are obtained from the SINR expression in (33).
The simulated values are taken from

SINRk =
∣∣E{zk[i] | bk[i]}∣∣2
E
{
Var

[
zk[i] | bk[i]

]} , (44)

where the expectations are replaced with time averaging and
where zk[i] is the decision statistics for user k at time slot
i. This figure also contains an indication of the theoretical
SINR when perfect channel information is available, that is,
forM = ∞. As was the case with the BER plots, there is good
agreement between the simulated and theoretical results.

6.2. Performance of adaptation implementation

Here, we examine the simulated performance of the adap-
tive implementation of transmitter precoding discussed
in Section 5. We consider the same K-user synchronous
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Figure 5: Analytical and simulated SINR results for transmitter pre-
coding. The SNR is fixed at 18 dB.
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Figure 6: Adaptation performance of adaptive transmitter precod-
ing.

multipath CDMA system used in the previous simulation
results, except that the modulation used is BPSK instead of
QPSK. The channel is kept constant during all simulations
and the SNR is fixed at 18 dB.

Figure 6 contains a plot of the average SINR for the first
four users versus the time index. Since we are using differen-
tial detection, the decision statistic for detecting bit i of user
k is

zk[i] = Re
{(
sHk rk[i− 1]

)H(
sHk rk[i]

)}
(45)

and the SINR is defined here as

SINR =
∣∣E{zk[i] | d∗k [i− 1]dk[i]

}∣∣2
E
{
Var

[
zk[i] | d∗k [i− 1]dk[i]

]} , (46)
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Figure 7: Steady-state performance of adaptive transmitter precod-
ing.

where the dk[i] represents the ith differentially coded bit for
user k. For these simulations, the expectation is replaced with
time averaging. During the first 1000 time slots, there are 7
users in the system. At time slot 1001, 3 users are added to
the system and at iteration 2001 and 6 users are removed
from the system. We see that the adaptive system rapidly ad-
justs (within 500 time slots) when users leave and enter the
system.

Figure 7 contains plots of the BER versus SNR. The sys-
tem has been allowed 500 received signal samples to reach
steady state before errors are accumulated. For compari-
son, this figure also contains plots generated with perfect
knowledge of the channel. It is tempting to compare this
figure to Figures 3 and 4, but it must be noted that the
blind adaptive implementation uses BPSK instead of QPSK
and differential encoding/decoding rather than coherent
detection.

7. CONCLUSIONS

In this paper, we have developed a transmitter precoding
strategy for the downlink of a CDMA system in fading multi-
path channels. The technique presented precodes the down-
link bits before spreading and transmission and is optimal
in the mean square error sense. We have presented a per-
formance analysis using tools developed for the analysis of
(receiver-based) blind multiuser detection. Also we have de-
veloped an adaptive implementation of the precoding strat-
egy that is able to adjust the precoding matrix as users en-
ter and leave the system. Simulation results indicate a very
close match between simulated and analytical performance.
We also see through simulation that the adaptive implemen-
tation is able to quickly and successfully adapt as users enter
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and leave the system. Future work will address asynchronous
multipath channels and cases where the uplink and down-
link channels are not identical, but only statistically highly
correlated.

APPENDIX

In this appendix, we prove Theorem 1. We begin with the
following lemma.

Lemma A.1 (see [9, Corollary 1]). Let f1 be the true channel
of user 1 and let f̂1 be the channel estimate given by (10). Then
there exists a phase factor e jφ such that

√
M
(
f̂1 −

∥∥f1∥∥−1e jφf1
)
−→ �c

(
0, β1

∥∥f1∥∥−2Q†1 , 0
)

(A.1)

in distribution asM →∞ with

β1
�= σ2hH1 UsΛs

(
Λs − ηIK

)−2
UH

s h1,

Q1
�= SH1 UnUH

n S1
(A.2)

and where the notation �c(µ,C, C̄) indicates a complex Gaus-
sian distribution with mean µ, Hermitian covariance matrix
C, and symmetric covariance matrix C̄.

Proof of Theorem 1. Let ∆M denote the differential of the
function M̂ [14, 21]. Then

∆M = −�−1∆��−1,

∆� =




sH1 ∆H1

sH2 ∆H2
...

sHK∆HK


 ,

∆Hk =
[
S1∆fk S2∆fk · · · SK∆fk

]
.

(A.3)

Now each ∆fk is asymptotically circularly Gaussian dis-
tributed by Lemma A.1. It follows that the same holds for
∆M, and since b is independent of M̂, this is also true for
∆Mb, and the theorem follows. It remains to calculate Cm.
To this end notice that

∆� =




sH1 S1∆f1 sH1 S2∆f1 · · · sH1 SK∆f1

sH2 S1∆f2 sH2 S2∆f2 · · · sH2 SK∆f2
...

...
. . .

...

sHK S1∆fK sHK S2∆fK · · · sHK SK∆fK


 . (A.4)

Then

ME
{
∆MbbH∆MH

} =ME
{
∆M∆MH

}
(A.5)

= �−1ME
{
∆��−1�−H∆�H

}
︸ ︷︷ ︸

D

�−H.

(A.6)

Here, we have

M[D]i, j

=ME




[
sHi S1∆fi sHi S2∆fi · · · sHi SK∆fi

]

×�−1�−H




sHj S1∆f
∗
j

sHj S2∆f
∗
j

...

sHj SK∆f
∗
j







(A.7)

=
K∑
k=1

K∑
l=1

[
�−1�−H]

k,ls
H
i SkME

{
∆fi∆fHj

}
SHl s j . (A.8)

We can disregard cross-correlation between different channel
estimates and, therefore, we have [X]i, j ≈ 0 for i �= j, and for
i = j, we have, by Lemma A.1,

ME
{
∆fi∆fHi

} = βi
∥∥fi∥∥−2Q†i . (A.9)

If we substitute (A.9) into (A.8) and compensate for the am-
plitude and phase factors, then (A.6) is equal to (24) and the
proof is complete.
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