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Organizing images into semantic categories can be extremely useful for content-based image retrieval and image annotation.
Grouping images into semantic classes is a difficult problem, however. Image classification attempts to solve this hard problem by
using low-level image features. In this paper, we propose a method for hierarchical classification of images via supervised learning.
This scheme relies on using a good low-level feature and subsequently performing feature-space reconfiguration using singular
value decomposition to reduce noise and dimensionality. We use the training data to obtain a hierarchical classification tree that
can be used to categorize new images. Our experimental results suggest that this scheme not only performs better than standard
nearest-neighbor techniques, but also has both storage and computational advantages.
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1. INTRODUCTION

The proliferation of the worldwide web has given easy ac-
cess to an explosively growing volume of visual data. Unfor-
tunately, this data on the web is both scattered and unstruc-
tured, making search and retrieval of information difficult.
Such requirements have created great demands for effective
and flexible systems to manage digital images/videos (e.g.,
[1, 2, 3, 4, 5, 6]). Large digital libraries, which are built by
collecting resources from different sites [5, 7, 8], can make
searching relatively easier.

Most of the above systems generate low-level image fea-
tures such as color, texture, shape, motion, and so forth,
for image indexing and retrieval. This is partly because low-
level features (e.g., color histograms, texture patterns) can be
computed automatically and efficiently. However, the seman-
tics of images, with which users prefer most of their inter-
action, are seldom captured by low-level features. Currently,
there is no effective method to automatically generate good
semantic features of an image. One common compromise is
to obtain some semantic information through manual an-
notations. Since visual data contains rich information, the
manual annotation process may be subjective and inconsis-
tent. In addition, it is difficult to capture the content of an

image using words, not to mention the tedious manual la-
bor involved in such a process. Another recent innovative
approach, taken by the IMKA system [6], utilizes a medi-
anet framework which combines the low-level features and
semantic concepts in the same network and supports per-
ceptual and semantic relationships among concepts, as the
wordnet does.

Image classification

Image classification attempts to classify images into seman-
tic categories by using low-level image features, and there-
fore, bridges the gap between high-level semantics and low-
level features. The categorization of images into classes can
be helpful both for semantic organizations of digital libraries
and for obtaining automatic annotations of images.

The classification of natural imagery is quite hard in gen-
eral since real images from the same semantic class may have
large variations (see Figure 1) and images from different se-
mantic classes might share a common background (such
as images from “clouds” and “aviation,” and images from
“waves” and “dolphins and whales” in Figure 1). These issues
limit the applicability of object-based and knowledge-based
approaches.
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Figure 1: Sample images from various classes.

A common approach to image classification involves ad-
dressing the following three issues: (i) how to represent an
image, (ii) how to organize the data, and (iii) how to clas-
sify an image. Acquiring “nice” features and carefully mod-
eling, the feature data are vital steps in this approach. Com-
mon features include color, texture, and shape information

of an image. Some also integrate visual information and text
accompanying an image [3, 5, 9].

As noted before, image classification can lead to a se-
mantic organization of a digital database. Though this type
of organization can be done in several ways, a hierarchical
approach has multifold advantages, (i) easy browsing and
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navigation through the database, (ii) efficient retrieval, and
(iii) ergonomically friendly presentation of the database. For
instance, webseek, a web image search engine [7], uses hier-
archical semantic structure for collecting and searching im-
ages from the web. The image categories and hierarchies are
preset by human design. Such an approach were also taken
by [10, 11] with very limited categories.

Our approach
In this paper, we propose a new scheme for automatic hi-
erarchical image classification. We assume that a training
set of images with known class labels is available. We use
an easy-to-compute low-level feature, banded color correl-
ograms, which has been shown to be effective and efficient
for content-based image retrieval [12]. Using banded color
correlograms for the training images, we model the feature
data using singular value decomposition (SVD) [13] and con-
structing a classification tree. Once the classification tree is
obtained, any new image can be easily classified. Our recur-
sive method for constructing the classification tree is sum-
marized below.

At each level of the classification tree, we aim to choose
the best modeling of the training data. We first eliminate the
noise (or irrelevant variations) from the feature vectors us-
ing SVD (or two-mode factor analysis). This step not only
reduces the dimensionality of the feature vectors but also re-
arranges the feature space to reflect the major correlation
patterns in the data and ignores the smaller, less important
variations.1 Using this noise-tolerant SVD representation,
we next classify each image in the training data using the
nearest-neighbor algorithm with the first neighbor (which
is the image itself) dropped (this is similar to leave-one-out
cross-validation scheme). Based on the performance of this
classification, we then partition the set of classes into two
subclasses such that the intra-subclass association is maxi-
mized while simultaneously the inter-subclass disassociation
is minimized. This is accomplished using normalized cuts
[15]. Finally, the subclasses and those training images that
were correctly classified with respect to the subclasses are
worked upon recursively to obtain a hierarchical classifica-
tion tree, with the hope of improving the classification per-
formance.

Notice that a different SVD representation is used at each
level of the tree. This flexibility in our method gives us the
freedom to choose the size of the SVD representation as de-
manded by each level, which in turn is dictated by the char-
acteristics of classes involved.

We test our method on 11 fairly representative classes of
Corel images. These 11 image classes are aviation photogra-
phy, British motor car collection, Canadian Rockies, cats and
kittens, clouds, dolphins and whales, flowers, night scenes,
spectacular waterfalls, sunsets around the world, and waves.
These images contain a wide range of content (scenery,
animals, objects, etc.) and colors.

1SVD has been successfully used in latent semantic indexing for docu-
ment retrieval [14].

We test our scheme using banded color correlograms and
color histograms as features and compare our method to the
nearest-neighbors algorithm directly applied to both color
features. Our results suggest that this hierarchical scheme is
able to perform consistently better than the already effective
nearest-neighbor algorithm (see [16]). The classification tree
we obtain also conforms with the semantic content of the 11
classes. Our results also suggest that correlograms have more
latent semantic structures (than histograms) that can be ex-
tracted by SVD procedure.

Organization

The rest of the paper is organized as follows. Section 2 briefly
describes the previous work in automatic image classifica-
tion. Section 3 contains a brief description of the banded
color correlogram we use in our experiments; Section 4 out-
lines how to use SVD to model feature vectors; and Section 5
describes our hierarchical classification method. Section 6
contains our experimental results and Section 7 concludes
our discussions.

2. RELATEDWORK

Since classification itself is a long-studied research area, dif-
ferent classifiers can be tried on image classification (e.g.,
k-nearest neighbor, decision trees, Bayesian nets, maximum
likelihood (ML) analysis, maximum a posterior (MAP) anal-
ysis, linear discriminant analysis, neural networks, etc.). Not
much work has been done on how to organize or select fea-
tures. In the following, we review some previous work in im-
age classification.

Vailaya et al. [11] use block image features and binary
MAP classifier. An Image is first divided into blocks, and fea-
tures are extracted from individual blocks. A few codebook
vectors are used to estimate the class-dependent Gaussian
mixture densities of the observed features. The image classes
are organized by the following predefined hierarchical cate-
gories: the first level is indoor/outdoor; the second level for
outdoor images is city/landscape; the third level for land-
scape images is sunset/mountain-forest; and the last one is
to classify mountain/forest. These hierarchical five classes are
fairly distinguishable from one another in terms of color and
texture compared to the eleven classes in Figure 1, which are
used for our test data. The binary classification at each level
is over 90%. If the error propagation is included, the average
classification accuracy of the five classes is degraded to 84%.

The configural recognition scheme proposed by Lipson et
al. [17] is a knowledge-based scene classification method. A
model template, which encodes the common global scene
configuration structure using qualitative measurements, is
hand crafted for each category. An image is then classi-
fied to the category whose model template best matches the
image by deformable template matching. The average per-
centage of correct classification on four classes of scenery
(snowy mountains, snowy mountains with lakes, fields, and
waterfalls) is about 64%. Torralba and Oliva [18] also use
templates, which are trained from linear discriminant filters
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that take account of spatial information. Degrees of natural-
ness, verticalness, and openness are used to classify city cen-
ters, skyscape, mountain, and beach scenes.

Carson et al. [16] propose a new representation for im-
ages. Each image is thought to consist of several blobs; each
blob is coherent in color and texture space.2 All the blobs
in the training data of 14 image categories are clustered into
about 180 “canonical” blobs using Gaussian models with di-
agonal covariance. Each image is then assigned a score vec-
tor which measures the nearest distance from each canoni-
cal blob to the image. These score vectors are used to train
a decision-tree classifier. The results of this method are com-
pared to color histograms with the decision-tree classifier. In-
terestingly, the color histograms seem to perform better than
blobs.3

All the above works have only focused on visual fea-
tures. Gevers et al. [10] try to integrate visual and textual
features for web image classification. The textual informa-
tion extracted from HTML tags is not always helpful for
classification. For example, experiments of classifying im-
ages into portraits/nonportraits show that the textual infor-
mation does not help much. This is due to the inconsis-
tent textual descriptions. In the case of classifying photo-
graphic/synthetic images, the visual and textual features con-
tribute equally to the classification. Hence, the composite
features achieve better accuracy for this task. Paek et al. [9]
also integrate visual and textual features for photograph clas-
sification. Text is extracted from accompanying text of im-
ages contained in news articles. The standard TF*IDF vectors
are generated from text information, and a parallel OF*IIF
vectors are produced from visual information. The OF*IIF
vectors are supposed to be based on objects (which are par-
allel to words) in images although the real implementation
in [9] used cluster centroids of 8 × 8 image blocks. The in-
tegrated vectors improves over the individual ones by about
3% in performance of an indoor/outdoor classification.

3. BANDED COLOR CORRELOGRAMS

In this section, we briefly review the banded color correlo-
grams that we use in our experiments.

If we treat the color histogram as a probability distribu-
tion of colors in an image, we ask the following question: pick
any pixel p1 of the image � at distance k away from p1, pick
another pixel p2, what is the probability that p2 has the same
color as p1? The answer gives us the conditional probability
distribution that depicts the spatial correlation between the
same color pixels. The color correlogram describes how this
spatial correlation of colors changes with distances. We give
the formal definitions below.

Let I be an n1 × n2 image. The colors in I are quantized
into m colors c1, . . . , cm. For a pixel p = (x, y) ∈ I , let I(p)

denote its color. Let Ic
∆= {p | I(p) = c}. Thus, the notation

2This is one kind of color- and texture-based image segmentation me-
thod.

3Several explanations were given for this performance degradation.

p ∈ Ic is synonymous with p ∈ I , I(p) = c. For convenience,
we use the L∞-norm to measure the distance between pixels,
that is, for pixels p1 = (x1, y1) and p2 = (x2, y2), we define

|p1 − p2| ∆= max{|x1 − x2|, |y1 − y2|}. We denote the set
{1, 2, . . . , n} by [n]. The size of I is denoted by |I| = n1n2.

Histogram
The color histogram (henceforth histogram) h of I is defined
for i ∈ [m] by

hci(I)
∆= Pr

p∈I
[
p ∈ Ici

]
. (1)

Thus, hci(I) gives for any pixel in I , the probability that the

color of the pixel is ci. Given the count Hci(I)
∆= |{p | p ∈

Ici}|, it follows that hci(I) = Hci(I)/(n1n2).

Autocorrelogram
Let a distance set D be fixed a priori (e.g.,D ⊆ [min{n1, n2}]).
Let d = |D|. Then, the autocorrelogram of I is defined, for
i ∈ [m] and k ∈ D, as

α(k)ci (I)
∆= Pr

p1∈Ici ,p2∈I
[
p2 ∈ Ici |

∣∣p1 − p2
∣∣ = k

]
=
∣∣{p1, p2 ∈ Ici |

∣∣p1 − p2
∣∣ = k

}∣∣
Hci(I) · 8k

.
(2)

Given any pixel p of color ci in the image, α(k)ci gives the prob-
ability that a pixel at a distance k from the given pixel has
the same color of p. (The factor 8k is due to the properties
of L∞-norm used to compute the distance between pixels.)
Note that the size of the autocorrelogram is md. Since local
correlations between colors are more significant than global
correlations in an image, a small value of d is sufficient to
capture the spatial correlation.

We now define the banded autocorrelogram as

βci(I)
∆= 1
k

k∑
k′=1

α(k
′)

ci (I). (3)

This measure computes the local density of color ci’s correla-
tion with itself, thus suggesting one kind of a local structure
of colors. Note that the size of banded autocorrelogram ism,
that is, the same as that of histogram. We use β(I) to denote
the banded autocorrelogram of I , treated as vectors in anm-
dimensional space.

We use the L1 (or the city-block) distance measure for
comparing histograms and banded autocorrelograms be-
cause it is simple and robust. For simplicity, we will address
banded autocorrelograms merely as correlograms for the re-
mainder of the paper.

4. SINGULAR VALUE DECOMPOSITION

In this section, we briefly review the SVD that we use for or-
ganizing image feature vectors.

Without loss of generality, letm ≥ n. For anm×nmatrix
A, the SVD of A is given by A = UΣVT (see [13]), where
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(i) U is anm× nmatrix, and Σ, V are n× nmatrices;
(ii) U and V are column orthonormal, that is, UTU =

VTV = In;
(iii) Σ = diag(σ1, . . . , σr , 0, . . . , 0), where r = rank(A) and

the singular values are σ1 ≥ σ2 · · · ≥ σr > 0.

The first r columns of U and V together with the
nonzero singular values actually are the eigenvectors and the
r nonzero eigenvalues of AAT and ATA, respectively. Several
efficient algorithms exist to compute the SVD of a matrix,
especially if the matrix is known to be sparse.

The SVD of a matrix can be used to obtain lower-rank
approximations of the matrix. If we take the first k columns
of U and V (denoted by U[k] and V[k]) and the leading k × k
submatrix of Σ (denoted by Σ[k]), and define

Ak
∆= U[k]Σ[k]V

T
[k] =

k∑
i=1

UiΣi,iV
T
i , (4)

then Ak is the best rank k approximation of A, that is,

min
rank(B)=k

|A− B|2 =
∣∣A− Ak

∣∣
2 = σk+1. (5)

This property of the SVD helps to obtain a good trade-off
between the quality of approximation and the size of the ap-
proximation (i.e., k). (To compute Ak, we use the MATLAB
built-in function SVD.)

The advantages of SVD are nicely exploited in latent se-
mantic indexing (LSI) for document retrieval [14]. The SVD,
in some sense, derives the underlying structure that is hidden
in A. The approximation Ak can be thought of as dampening
the noise and that is present in the original matrix A. When
SVD is applied to feature vectors, it not only eliminates the
noise in the feature vectors but also reduces the dimension of
the feature when k < m.

We outline our approach of using SVD with correlo-
grams. Let � = {I1, . . . , In} denote the set of training images
and let m be the number of color quantizations. We define

the matrix Ai, j(�)
∆= βci(I j). We compute the SVD of A(�)

to be A(�) = UDVT . Let Ak = U[k]Σ[k]V
T
[k] be an approxi-

mation to A. We can choose U[k] as the basis for the new k-
dimensional feature space. Then, V[k] is the new representa-
tion for the correlograms in this reduced feature space.When
we have a new image that needs to be classified, we first com-
pute its correlogram q, then project q onto the reduced fea-
ture space by computing

q′ = q ·U[k] · Σ−1[k]. (6)

Now, the question is how to choose k for the approximation.
We use the following heuristic to pick the k. Note that we
want to find the best approximation Ak such that the SVD
representation of correlograms gives the best classification
results using nearest-neighbor rule. Instead, we compute the
classification for each k between the number of classes (i.e., c)
to an upper limit k∗ and choose the best k in this range. Now,
we show how to choose k∗. Notice that the singular values of

A correspond to the eigenvalues of AAT , which is the corre-
lation matrix of local color density for the training images.
We set k∗ to be the k∗th biggest eigenvalue within 2% of the
maximum eigenvalue, that is, we ignore those correlations
whose values are less than 2% of the maximum correlation.4

Note that, in the above SVD method, histograms can be
used instead of correlograms. We will see (Section 6) that
the performance with correlograms is much better than with
histograms.

5. THE HIERARCHICAL CLASSIFICATION SCHEME

Image classification is the problem of classifying images into
known semantic classes. Let � = {C1, . . . , Cc} be the image
classes known as a priori. We assume that we have a set �
of training images whose class membership is known and we
set � of images that need to be classified. We want to build
a classification tree from training images. At each level of
the classification tree, we aim to choose the best modeling
of the training data. We first use SVD to eliminate the noise
from the training data as described in Section 4. We then
classify each image in the training data using the nearest-
neighbor algorithm with the first neighbor dropped (similar
to the leave-one-out cross-validation scheme). Based on the
performance of this classification, we then split the classes
into two subclasses such that the intra-subclass association is
maximized while simultaneously the inter-subclass disasso-
ciation is minimized. This is accomplished using normalized
cuts [15]. Finally, the subclasses and those training images
that were correctly classified with respect to the subclasses are
worked upon recursively to obtain the hierarchy in the clas-
sification tree, with the hope of improving the classification
performance.

5.1. Confusionmatrix

We construct the matrix A(�) as indicated in Section 4 and
compute its SVD: A(�) = UΣVT . Then, we choose the best
approximation Ak that gives the best classification of � on
itself. The details are the following.

For an image I ∈ �, and C(I) is the class of I , let βk(I)
denote the k-dimensional reduced SVD representation of I .
We consider each I ∈ � as a query and obtain the class C′(I),
where

C′(I) ∆= C
(
arg min

J∈�\{I}
{∣∣βk(I)− βk(J)

∣∣}). (7)

In other words, C′(I) is the class assigned by the nearest-
neighbor classification when all images other than I itself are
considered. Intuitively, this procedure helps to find the best
association patterns between the classes of SVD.

Now, the c × c confusion matrixM is then defined by

Mi, j = size of
{
I | C(I) = Ci, C

′(I) = Cj
}
. (8)

4There is no good heuristic for choosing k. The rule of thumb is finding
the k that gives the best performance [19].
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The diagonal entries ofM are the number of images that are
correctly classified, while the off-diagonal entries are themis-
classifications. The average percentage of correct classifica-
tion is just the sum of the diagonal entries (trace (M)) di-
vided by the size of �.

5.2. Normalized cuts

We now show how to partition the confusion matrix M on
the basis of maximizing the interclass association and mini-
mizing the intraclass disassociation simultaneously. First, we
review some basic definitions from graph theory.

Given a weighted graph G = 〈V,E〉 with w(u, v), being
the weight of an edge (u, v), the mincut is defined to be a
partition of V = V1 ∪V2 such that

cutw
(
V1, V2

) ∆=
∑

(u,v)∈V1×V2

w(u, v) (9)

is minimized. Mincuts can be computed in polynomial time
using network flow techniques.

The confusionmatrixM defines a natural directed graph.
The mincut in this graph corresponds to a partition of the
classes into M1 and M2 such that the number of misclassifi-
cations among these classes is minimized. A partition of M
according to the mincut, however, sometime favors cutting
small sets [20], that is, one of V1 or V2 is very small. This
problem is considered in [15], where normalized cuts are in-
troduced.

Formally, the normalized cut is given by the best partition
of V = V1 ∪V2 that minimizes

ncutw
(
V1, V2)

∆= cutw
(
V1, V2

)( 1
cutw

(
V1, V

) + 1
cutw

(
V2, V

)).
(10)

The partition based on normalized cut is shown to have
the property that minimizes the disassociation between the
groups and maximizes the association within the group.

Define the diagonal matrix M′
i,i =

∑
j Mi, j . Normalized

cuts can be computed reasonably well and efficiently by com-
puting the second smallest eigenvalue of the system defined
by (M −M′)x = λM′x and using some additional heuristics.
The details can be looked up in [15].

We use normalized cuts to partition M into M1 and M2,
accordingly, we obtain a partition of the classes � into �1

and �2.

5.3. Classification tree

Using the normalized cuts, we can build the classification
tree recursively. Given the original set of classes �, we com-
pute the partition � = �1 ∪ �2 based on normalized cuts.
We define �1 = {I ∈ � | C′(I) ∈ �1, C(I) ∈ �1} and
�2 = {I ∈ � | C′(I) ∈ �2, C(I) ∈ �2}. In this way, the
images that are misclassified across �1 and �2 are not con-
sidered from now on.We then recursively work on classifying
�1 (resp.,�2) with�1 (resp.,�2) as the set of classes (see [21]
for detailed algorithm).

Sunsets around
the world

Flowers

Night scenes

Aviation CloudsCats
and kittens

Dolphins
and whales

Spectacular
waterfalls

Waves
Canadian
rockies

British motor
collection

Figure 2: The classification tree obtained from the first training set
using correlograms. The dotted lines indicate the trimmed portions.

5.4. Trimming

Sometimes, the performance of the classification on the
training data does not always improve level by level using re-
duced SVD representations. This is because some variations
that are important to a set of classes may be removed by the
SVD reduction. In this case, it does not pay off to recursively
split such classes. Notice that this scenario can be detected
automatically by comparing the performance of the tree be-
fore and after trimming on the training set. More precisely,
we perform a trimming procedure on the tree we obtain from
the algorithm in the following manner: if the classification
correctness of a node in the tree is higher than that of its two
children, then we trim both the children; otherwise we keep
the child with the higher correctness than the node itself and
trim the other child. For instance, Figure 2 shows a classifica-
tion tree (corresponding to our sample set) with the trimmed
portions marked.

6. EXPERIMENTS AND RESULTS

6.1. Experiments

We choose 11 image classes from Corel collections: avia-
tion photography, British motor car collection, Canadian
Rockies, cats and kittens, clouds, dolphins and whales, flow-
ers, night scenes, spectacular waterfalls, sunsets around the
world, and waves (for some samples, see Figure 1). These im-
ages contain a wide range of content (scenery, animals, ob-
jects, etc.), colors, and lighting conditions. We delete some
images in each class which are inconsistent with the rest of
the class (as in [16]) and leave 90 images in each class. Since
we use the nearest-neighbor rule with the classification tree,
we want to make sure that the color distributions of training
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images and test images are more or less the same. Therefore,
we randomly shuffle the images in each class and take 70 im-
ages as the training set and the rest 20 images as the test set.
By doing so three times (to ensure fairness), we obtain three
sets of training data and test data.

To compute color histograms and color correlograms, we
quantize the RGB color space into 8 × 8 × 8 = 512 colors
(3 bits for each color channel).5 This level of quantization is
good enough for the SVD to extract the underlying structure,
while not being too big (unlike 6912 colors used in [16]) so
as to affect efficiency.

6.2. Results

We test both color correlograms and color histograms on the
hierarchical classification approach and compare the hierar-
chical approach with the nearest-neighbor classification. The
three classification trees from three training sets are more or
less the same and are consistent with the color content of
the 11 classes. We only present the tree from the first data
set (Figure 2). For the sake of simplicity, we abbreviate the
names for the 11 classes: aviation (A1), British motors (B1),
Canadian Rockies (C1), cats and kittens (C2), clouds (C3),
dolphins and whales (D1), flowers (F1), night scenes (N1),
spectacular waterfalls (S1), sunsets around the world (S2),
and waves (W1). From the classification tree, we see that A1
and C3 share the same parent because of the same sky back-
ground; similarly, W1, S1, and D1 are grouped together be-
cause of the same water background.

The confusion matrices for different methods are shown
in Table 1, Table 2, and Table 3. The classification behavior
of the classification tree is quite different from the nearest-
neighbor. The classification tree is better than the nearest-
neighbor in that (i) the overall number of misclassifications
between classes is smaller and (ii) the overall number of cor-
rect classifications is larger.

The average percentage of correctness of the three test
sets is summarized in Table 4. With correlograms and the
classification-tree scheme, the average accuracy of classify-
ing 11 image classes is about 82%, comparable to the 84%
accuracy in [11] for a hierarchy of 5 image classes.6 The re-
sults show that the hierarchical method is consistently better
than the nearest-neighbor classification, and the color correl-
ogram is consistently better than the color histogram.

Using the simple nearest-neighbor (NN) classification,
the correlogram performs 3% better than the histogram;
using the classification tree (CT), the correlogram performs
21% better than the histogram. Using the classification tree,
the correlogram improves 3% over the nearest-neighbor; it
improves 7% over the nearest-neighbor on the histogram.
Note that the average data size of the SVD representations is
about fifteen, 3% of the original size. The average number of
nonleaf nodes in the classification trees is five after trimming.

5We also tried the HSV color space. The results do not change much.
6It is not meant to compare numbers here because the data set are differ-

ent.

Table 1: Class-confusion matrix for trimmed classification tree
(correlogram).

A1 C3 C1 D1 W1 B1 C2 S1 F1 N1 S2

A1 17 0 0 3 0 0 0 0 0 0 0

C3 2 15 0 0 0 0 2 0 0 0 1

C1 0 2 16 2 0 0 0 0 0 0 0

D1 0 1 0 17 0 0 1 1 0 0 0

W1 0 1 1 4 13 0 0 1 0 0 0

B1 0 0 0 0 0 20 0 0 0 0 0

C2 0 0 0 0 0 0 20 0 0 0 0

S1 0 1 0 2 0 0 0 17 0 0 0

F1 1 0 0 0 0 1 1 0 17 0 0

N1 0 0 0 0 0 0 1 0 0 18 1

S2 0 0 0 0 0 1 0 0 2 0 17

Table 2: Class-confusion matrix for the nearest-neighbor classifi-
cation (correlogram).

A1 C3 C1 D1 W1 B1 C2 S1 F1 N1 S2

A1 16 1 0 2 0 0 1 0 0 0 0

C3 1 14 0 0 0 0 1 2 0 0 1

C1 0 0 15 5 0 0 0 0 0 0 0

D1 0 1 0 19 0 0 0 0 0 0 0

W1 0 0 0 2 17 0 0 1 0 0 0

B1 0 0 0 0 0 14 4 2 0 0 0

C2 0 0 0 0 0 0 20 0 0 0 0

S1 0 1 0 2 1 0 0 16 0 0 0

F1 1 0 0 0 0 0 2 0 14 1 2

N1 0 0 0 0 0 0 1 0 0 19 1

S2 0 2 0 0 0 0 0 0 0 2 16

Table 3: Class-confusion matrix for the nearest-neighbor classifi-
cation (histogram).

A1 C3 C1 D1 W1 B1 C2 S1 F1 N1 S2

A1 14 0 2 0 1 0 2 1 0 0 0

C3 0 13 1 2 0 0 3 1 0 0 1

C1 0 1 16 0 2 0 1 0 0 0 0

D1 0 0 0 17 2 0 1 0 0 0 0

W1 0 0 0 3 16 0 0 1 0 0 0

B1 0 0 0 0 0 17 1 1 0 1 0

C2 0 0 0 0 0 0 20 0 0 0 0

S1 0 1 0 0 2 1 0 16 0 0 0

F1 0 0 0 0 0 1 1 0 18 0 0

N1 0 0 0 0 0 0 1 0 0 13 6

S2 0 2 0 0 0 0 0 3 0 2 13

Therefore, the computation and storage of the data for the
classification saves about 85%, which is significant.
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Table 4: Correctness classification on three data sets.

NN CT(Trim)

1 2 3 1 2 3

Hist. 0.786 0.746 0.786 0.696 0.677 0.668

Corr. 0.818 0.800 0.786 0.850 0.805 0.823

Remark 6.1. We notice from the results that the color his-
togram performs consistently worse with the classification
tree than with the nearest-neighbor, while the color correlo-
gram performs consistently better with the classification tree
than with the nearest-neighbor. This suggests that correlo-
grams have an underlying latent semantic structure (local
color density). Color histograms do not seem to have such
a property.

7. CONCLUSIONS AND FUTUREWORK

In this paper, we propose a hierarchical image classifica-
tion method based on an automatic constructed classifica-
tion tree. We use banded color correlograms as visual fea-
tures and the SVD on the correlograms to extract a latent
semantic structure of images for classification into semantic
categories. SVD not only reduces the dimensionality of fea-
tures but also removes the noise in the data. At each level
of the classification tree, SVD is used to best model the data
in terms of lowest classification errors. The data of a nonleaf
node is then divided by the normalized cuts, which maxi-
mizes the intra-subclass variation while simultaneously min-
imizes the inter-subclass variation, to obtain the best classifi-
cation results.

Our tests on 11 classes of Corel natural scene images
show that our method using this scheme and a classification
tree not only performs better than the nearest-neighbor clas-
sification but also saves much computation and data storage.
In addition, the results also suggest that the correlogram is
more suitable for the image classification task than the color
histogram. It will be interesting to use feature-weighting tech-
niques [22] and textual information to further assist SVD to
get latent semantic structures from training data. The inte-
gration of visual and textual features in our framework needs
to be studied.
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