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Autonomous networks of sensor platforms can be designed to interact in dynamic and noisy environments to determine the oc-
currence of specified transient events that define the dynamic process of interest. For example, a sensor network may be used for
battlefield surveillance with the purpose of detecting, identifying, and tracking enemy activity. When the number of nodes is large,
human oversight and control of low-level operations is not feasible. Coordination and self-organization of multiple autonomous
nodes is necessary to maintain connectivity and sensor coverage and to combine information for better understanding the dy-
namics of the environment. Resource conservation requires adaptive clustering in the vicinity of the event. This paper presents
methods for dynamic distributed signal processing using an ad hoc mobile network of microsensors to detect, identify, and track
targets in noisy environments. They seamlessly integrate data from fixed and mobile platforms and dynamically organize plat-
forms into clusters to process local data along the trajectory of the targets. Local analysis of sensor data is used to determine a
set of target attribute values and classify the target. Sensor data from a field test in the Marine base at Twentynine Palms, Calif,
was analyzed using the techniques described in this paper. The results were compared to “ground truth” data obtained from GPS
receivers on the vehicles.
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1. INTRODUCTION

Distributed sensing systems combine observations from a
large area network of sensors, creating the need for platform
self-organization and the sharing of sensor information be-
tween platforms. It is difficult to integrate the data from each
sensor into a single context for the entire network. Instead,
groups of sensors in local areas collaborate to produce useful
information to the end user.

Our objective is to create a distributed wireless network
of sensors covering large areas to obtain an accurate repre-
sentation of dynamic processes occurring within the region.
Such networks are subject to severe bandwidth limitations
and power constrains. Additionally, we need to integrate data
from heterogeneous sensors.

Our goals are met through algorithms that determine the
characteristics of the target from local sensor data. They dy-
namically cluster platforms into space-time neighborhoods
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and exchange target information within neighborhoods to
determine target class and track characteristics. This differs
from other methods of decentralized detection such as [1, 2]
where the dimensionality of the sensor data vectors is re-
duced to the distinct number of target attributes. Once or-
ganized into clusters, sensors can combine their local knowl-
edge to construct a representation of the world around them.
This information can be used to construct a history of the
dynamic process as it occurs in the sensor field [3].

Our analysis is based on the concepts of a space-time
neighborhood, a dynamic window, and an event. A space-time
neighborhood centered on the space-time point (x0, t0) is the
set of space-time points

N(x, t) ≡ {(x, t) : ∣∣x − x0
∣
∣ ≤ ∆x,

∣
∣t − t0

∣
∣ ≤ ∆t

}
. (1)

The quantities ∆x and ∆t define the size of the neighbor-
hood. The space-time window contains all the data that was
measured within a distance∆x around x0 andwithin the time
interval t0 ± ∆t.

We can define a dynamic window around a moving point
g(t) as

ω(t) = {(x, t) : ∣∣x − g
(
t0
)∣∣ ≤ ∆x,

∣∣t − t0
∣∣ ≤ ∆t

}
. (2)

Ideally, if g(t) were the trajectory of the target, we would an-
alyze time-series data from sensors in the windowNe = ω(te)
to determine information about the target at time te.

The target trajectory g(t) is unknown. It is, in fact, what
we want to determine. We therefore look at closest-point-of-
approach (CPA) events that occur within a single space-time
neighborhood. A CPA event ei j is defined for platform i oc-
curring at the CPA time t j . The space-time coordinates of
the event are (xi(t j), t j), where xi(t) is the trajectory of plat-
form i.

We make the assumption that sensor energy increases as
distance from the source decreases. This is a reasonable as-
sumption for acoustic and seismic sensors. The CPA event
is therefore assumed to occur when there is a peak in sen-
sor energy. The amplitude of the event ai j is defined as the
amplitude of the corresponding peak. In order to filter out
noise, reflection, or other spurious features, we count only
peaks above a threshold and do not allow two events on a
single platform within the same space-time window. If data
from multiple sensors are available, they must be integrated
to determine a single peak time for the event.

For an event ei j , we analyze data from platforms in the
neighborhood N(xi(t j), t j). We define the set of platforms
that contain events in this space-time neighborhood as the
cluster of platforms associated with event ei j . These defini-
tions apply to both stationary and moving platforms and
seamlessly integrate both types. They can be used to deter-
mine target velocity as long as the platform trajectories are
known and the platform speed is small compared to the
propagation speed of the energy field measured by the sen-
sors. Platform locations can be determined by GPS and, for
stationary platforms, additional accuracy can be achieved by
integrating GPS signals over time.
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CPA buffer
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CPA
detector

Form
clusters

Receive
CPA

Sensor data
buffer

Sensor data

CPA event
clusters

Process
clusters Target

event

Figure 1: System overview.

The sets of parameters needed to identify targets are
called target events. They include xi: the target position, ti:
the time, vi: the target velocity, and {a1 · · · an}: a set of tar-
get attributes for target classification, which can be deter-
mined from the sensor data in a region around the space-
time point (xi, ti). A CPA event is detected by a platform
when the target reaches its CPA to the platform. Each CPA
will correspond a peak in the readings of our acoustic sen-
sors. We have developed an algorithm that limits data pro-
cessing to the platforms closest to the trajectory of the tar-
get rather than processing each CPA event. It evenly spreads
the processing out over the space-time range of the target
trajectory. All the platforms within the neighborhood of an
event are assumed to be capable of communicating with each
other.

The remainder of this paper is divided as follows.
Section 2 discusses the algorithm for platform clustering.
Section 3 discusses our velocity and position estimation al-
gorithm. Section 4 discusses our approach to target identi-
fication. Section 5 provides both simulated and real-world
experimental data that show that our approach produces
promising results for velocity approximation and target
recognition. Finally, Section 6 discusses our conclusions.

2. ALGORITHM FOR EVENT CLUSTERING

Nodes located within a given space-time window can form
a cluster. Both the time and spatial extent of the window
are currently held constant. The maximum possible spatial
size of the window is constrained by the transmission range
of the sensors. Each node contains a buffer for its own CPA
events, and a buffer for CPA events transmitted by its neigh-
bors. Figure 1 shows a simple diagram depicting the system
running in parallel on each platform.

The CPA detector looks for peaks in sensor energy as de-
scribed in Section 1. When it finds one, it stores the ampli-
tude, time, and platform position in a buffer, and broad-
casts the same information to its neighbors. When it receives
neighboring CPA events, it stores them in another buffer.
The form clusters routine looks at both CPA event buffers,
and forms event clusters as shown in Figure 1. The process
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For each local CPA event ki j = k(xi, t j)
For each neighboring CPA event nkl = n(xl, tk)

If nkl is in the neighborhood Nij = N(xi, t j)
Add nkl to the event setM

If the local peak amplitude a(ki j) ≥ a(nkl)∀nkl ∈M

Emit CPA event cluster F ≡ ki j ∪M

Algorithm 1: Form clusters pseudocode.

clusters routine determines the target position and velocity as
described in Section 3 and the target attributes as described
in Section 4.

3. VELOCITY AND POSITION ESTIMATION
ALGORITHM

Models of human perception of motion may be based on the
spatio-temporal distribution of energy detected through vi-
sion [4, 5]. Similarly, the network detects motion through the
spatio-temporal distribution of sensor energy.

We extend techniques found in [6] and adapt them to
find accurate vehicle velocity estimates from acoustic sensor
signals. The definitions shown below are for time and two
spatial dimensions x = (x, y); however, their extension to
three spatial dimensions is straightforward.

The platform location data from the CPA event cluster
can be organized into the following sets of observations:

(
x0, 0

)
,
(
x1, t1

) · · · (xn, tn
)
,

(
y0, 0

)
,
(
y1, t1

) · · · (yn, tn
)
,

(3)

where (x0, y0) is the location of event ki j (see Figure 1), which
contains the largest amplitude CPA peak in the cluster. We
redefine the times in the observations, so t0 = 0 where t0 is
the time of CPA event ki j .

We weighted the observations based on the CPA peak
amplitudes on the assumption that CPA times are more ac-
curate when the target passes closer to the sensor to give

(
x0, t0, w0

)
,
(
x1, t1, w1

) · · · (xn, tnwn
)
,

(
y0, t0, w0

)
,
(
y1, t1, w1

) · · · (yn, tn, wn
)
,

(4)

where wi is the weight of the ith event in the cluster. This
greatly improved the quality of the predicted velocities. We
defined the spatial extent of the neighborhoods, so nodes do
not span more than a few square meters and vehicle veloc-
ities are approximately linear [6]. Under these assumptions,
we can apply least square linear regression to obtain the fol-
lowing equations [7]:

x(t) = vxt + c1, y(t) = vyt + c2, (5)

Input: Time-sorted event cluster F of CPA values.
Output: Estimated velocity components vx and vy .
While |F| ≥ 5{

Compute vx and vy using event cluster F;
Compute rx and ry ; the vx and vy velocity

; correlation coefficients for F
If rx > Rx‖ry > Ry

{
Rx = rx;
Ry = ry ;
vx store = vx;
vy stored = vy ;

}
PopBack(F);

};

Algorithm 2

where:

vx =
(∑

i ti
)(∑

i xi
)− (∑i wi

)(∑
i xiti

)

(∑
i ti
)2 − (∑i wi

)(∑
i t

2
i

) ,

vy =
(∑

i ti
)(∑

i yi
)− (∑i wi

)(∑
i yiti

)

(∑
i ti
)2 − (∑i wi

)(∑
i t

2
i

) ,

(6)

and the position x(t0) = (c1, c2). The space-time coordinates
of the target for this event are (x(t0), t0).

This simple technique can be augmented to ensure that
changes in the vehicle trajectory do not degrade the quality
of the estimated track. The correlation coefficients for the ve-
locities in each spatial dimension (rx, ry) can be used to iden-
tify large changes in vehicle direction and thus limit the CPA
event cluster to include only those nodes that will best esti-
mate local velocity. Assume that the observations are sorted
as follows:

Oi < Oj −→
∣
∣ti − t0

∣
∣ <

∣
∣t j − t0

∣
∣, (7)

where Oi is an observation containing a time, location, and
weight and t0 is the time of the event ki j . The velocity el-
ements are computed once with the entire event set. After
this, the final elements of the list are removed and the veloc-
ity is recomputed. This process is repeated while at least five
CPAs are present in the set and subsequently the event sub-
set with the highest velocity correlation is used to determine
velocity. Fewer than five CPA points could severely bias the
computed velocity and thus render our approximation use-
less. Algorithm 2 summarizes our technique.

4. TARGET CLASSIFICATION

The sounds a vehicle produces are a combination of the
acoustic features of its components: its acoustic “finger-
prints.” We have developed an algorithm to identify the pres-
ence or absence of given features in a target vehicle trav-
eling through a sensor network. Once the vehicle type is
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Figure 2: Time series window.

determined, it is combined with velocity and position data
and broadcast over the network as a target event. This re-
quires much less bandwidth than transmitting the original
time series data.

The singular value decomposition (SVD) [8] is a ma-
trix decomposition that can be used to find relationships
within sets of data. When used to construct relationships be-
tween words and documents, this technique is called latent
semantic analysis (LSA). There is significant evidence that
LSA can be used to allow machines to learn words at a rate
comparable to that of school children [9]. LSA accomplishes
this by using SVD to infer relationships among members of a
data set.We believe that this concept can be applied to vehicle
identification.

Our identification algorithm combines Latent Semantic
Analysis [9] with Principal Component Analysis [10, 11] to
fuse semantic attributes and sensor data for target classifica-
tion. There are two algorithms: data processing and data clas-
sification. CPA event data are divided into training and test
sets. The training data are used with the data processing al-
gorithm and the test data are used with the data classification
algorithm to evaluate the accuracy of the method.

The training set is further divided into databases for each
possible value of each target attribute being used in the classi-
fication. Target attribute values can be used to construct fea-
ture vectors for use in pattern classification. Alternatively, we
can define “vehicle type” as a single attribute and identify the
target directly.

A 4- to 5-second window is selected around the peak of
each sample. All data outside the window is discarded. This
ensures that noise bias is reduced. The two long vertical lines
in Figure 2 show what the boundaries of the window would
be on a typical sample.

The window corresponds to the period of time when a
vehicle was closest to the platform. The data are divided into
consecutive frames. A frame is 512 data points sampled at
5 kHz (0.5 seconds in length) and has a 12.5% overlap (0.07
second) with each of its neighbors. The power spectral den-
sity of each frame is found and stored as a column vector of
513 data points (grouped by originating sample) with data

Unknown

Database feature
spanned subspace

Residual

Figure 3: Isolating qualities in the feature space.

Table 1: Quality of estimation.

Computed versus true velocity Percent

Percent within 1m/s 81%

Percent within 2m/s 91%

Percent within 5 degrees 64%

Percent within 11 degrees 80%

Percent within 17 degrees 86%

points corresponding to frequencies from 0 to 512Hz.
Target identification combines techniques from [11] and

makes use of an eigenvalue analysis to give an indication
of the distance that an unknown sample vector is from the
feature space of each database. This indication is called a
residual. These residuals can be interpreted as “a measure-
ment of the likelihood” that the frame being tested belongs
to the class of vehicles represented by the database [11]. The
databases are grouped by attribute and the residuals of each
frame within each group are compared. The attribute value
corresponding to the smallest total of the residuals within
each group is assigned to the frame. Figure 3 illustrates this
process.

5. EXPERIMENTAL RESULTS

We present two sets of results. Each demonstrates the qual-
ity of our techniques for estimating vehicle velocity in a dis-
tributed sensor field and identifying target characteristics.
The result set comes from data collected at Twentynine Palms
Marine Base during a field test and also from ideal data con-
structed in the lab for testing the velocity estimation algo-
rithm.

5.1. Velocity estimation

We present a verification of our clustering and velocity esti-
mation algorithms using data gathered at Twentynine Palms
Marine base located in California. A sensor grid was tested
there in August 2000.

We have analyzed the quality of our velocity estimation
algorithm using our field data and these results appear in
Table 1.



Dynamic Agent Classification and Tracking 375

Table 2: Classification.

Actual vehicle Classified numbers Percent correctly classified

AAV DW HV

AAV 117 4 7 94%

DW 0 106 2 98%

HV 0 7 117 94%
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Figure 4: Computed speed versus true speed (field test).

Figures 4 and 5 show plots displaying the quality of the
estimations.

We have also generated a simulated data set for testing
our velocity algorithm. The data set was generated using a
parabolic vehicle motion. Figure 6 shows activated sensors as
the simulated vehicle passed through a dense grid of pseu-
dorandomly distributed sensor platforms. Figures 7 displays
the results of our algorithm for vehicle speed.

The calculated vehicle speeds yielded a correlation of 0.99
against a line of y = 0.99x, where y is the calculated speed
and x is the simulated speed. The angle match is also ex-
tremely close.

5.2. Target identification verification

ARL evaluated its classification algorithms against the data
collected during the field test. Data are shown for three types
ofmilitary vehicles labeled AAV, DW, andHV. The CPA peaks
were selected by hand rather than automatically detected by
the software and there was only a single vehicle present in the
network at a time. Environmental noise due to wind was sig-
nificant. The data show that classification of military vehicles
in the field can be accurate under noisy conditions, as shown
in Table 2.

6. CONCLUSIONS

We have derived algorithms for target analysis that can iden-
tify target attributes using time-series data from platform
sensors.

We have described an effective algorithm for computing
target velocity. This velocity is critical for track formation
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Figure 5: Computed angle versus true angle (field test).
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Figure 7: Computed speed versus true speed (simulation).

algorithms like those proposed in [3]. We have described an
algorithm for accurate classification of military vehicles in
the field.

We have also provided experimental verification of our
procedures against field data using military vehicles and
acoustic sensors. We have determined quantitative measures
of the accuracy of the procedures.

Dense sensor networks over large areas contain massive
amounts of computing power in total, but may be restricted
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in bandwidth and power consumption at individual nodes.
Forming dynamic clusters around events of interest allows
processing multiple events in parallel over different local ge-
ographic areas. We have shown how networks can coordi-
nate platforms around tracks and provide relevant process-
ing with a minimum of bandwidth and power consump-
tion related to interplatform communications. This proce-
dure is scalable and takes full advantage of the parallelism
in the network. The same algorithms run in parallel on each
platform, making the procedure robust with respect to the
loss of individual platforms. In addition, our method al-
lows seamless integration of fixed and mobile heterogeneous
platforms.
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