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This paper describes the application of evolution strategies to the design of interacting multiple model (IMM) tracking filters in
order to fulfill a large table of performance specifications. These specifications define the desired filter performance in a thorough
set of selected test scenarios, for different figures of merit and input conditions, imposing hundreds of performance goals. The
design problem is stated as a numeric search in the filter parameters space to attain all specifications or at least minimize, in
a compromise, the excess over some specifications as much as possible, applying global optimization techniques coming from
evolutionary computation field. Besides, a new methodology is proposed to integrate specifications in a fitness function able to
effectively guide the search to suitable solutions. The method has been applied to the design of an IMM tracker for a real-world
civil air traffic control application: the accomplishment of specifications defined for the future European ARTAS system.
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1. INTRODUCTION of stationary signals, but solutions for nonstationary prob-

lems are not so consolidated yet. This is the case in the field
A tracking filter has the double goal of reducing measure-  we are dealing with in this paper, tracking aircraft trajectories
ment noise and consistently predicting future values of sig- from radar measurements in air traffic control (ATC) appli-

nal. This kind of problems has efficient solutions in the case  cations.
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The design of tracking filters for the ATC problem de-
mands complex algorithms, like the modern interacting
multiple model (IMM) filter [1]. These algorithms depend
on a high number of parameters (seven in the IMM de-
sign presented here) which must be adjusted in order to
achieve, as much as possible, the desired tracking filter per-
formance. IMM has proven certainly satisfactory perfor-
mance for tracking maneuvering targets, in relation to pre-
vious approaches. However, the relation between its input
parameters and final performance is far from clear due to
strongly nonlinear interactions among all parameters. There-
fore, no direct design methodology has been proposed to
generate the best solution for a specific application to date,
apart from manual parameterization and evaluation with
simulation.

Besides, real-world applications of tracking filters for
ATC usually address performance specifications defined over
an exhaustive set of realistic operational scenarios and cov-
ering a number of conflicting figures of merit. These two
characteristics, large table of specifications and application
of complex algorithms, make the design of modern tracking
filter a very complex problem.

In this paper, the authors expose a new methodology to
design and adjust tracking filters for ATC applications based
on the use of evolution strategies (ES) as an optimization
problem over a customized cost function (fitness function).
The method has been demonstrated by the design of a real-
world engineering application: a modern ATC system pro-
moted by EUROCONTROL for Europe, the ARTAS system.
Due to the high dimensionality of parameters’ space and the
large number of defined constrains (the operational scenar-
ios and performance figures sum up to 264 specifications for
ARTAS), an automatic procedure to search and tune the fi-
nal solution is mandatory. Classical techniques, such as those
based on gradient descent, were discarded due to the high
number of local minima presented by the fitness function.
ES have been selected for this problem due to their high ro-
bustness and immunity to local extremes/discontinuities in
the fitness function.

However, the selection of a fitness function taking ac-
count of all specifications is not so direct since all of them
should be simultaneously considered to guide the search.
The performance of ES has been analyzed in previous works
for sets of test functions, but its application to a real en-
gineering problem with hundreds of specifications, where
the fitness landscape’s properties are not well known, is
a harder task. A procedure has been proposed to build
this function, exploiting specific knowledge about the do-
main. Objectives with similar behavior in the search are
grouped first to select the worst cases for each group, and
then combine all of them in the final cost function. Re-
sults show that this procedure is able to find acceptable solu-
tions lowering the excess over some specifications as much as
possible.

The paper starts by presenting the design performance
constrains for ATC problems in Section 2 (particularized
for an industrial application, the ARTAS system) and a de-
scription of the IMM algorithm in Section 3. In Section 4,

we explain the proposed optimization method based on
ES. Finally, Sections 5 and 6 are aimed at discussing op-
timization results and characteristics of solutions minimiz-
ing the fitness function, and summarizing the main conclu-
sions.

2. SPECIFICATIONS FOR TRACKER MODULE
OF ARTAS SYSTEM

ARTAS [2] is the concept of a Europe-wide distributed
surveillance system developed by EUROCONTROL, relying
on the implementation of interoperable units coordinated
together. Each ARTAS unit will be in charge of processing all
surveillance data reports (i.e., primary and secondary radar
reports, ADS reports, etc.) to form a good estimate of the
current air traffic situation in its responsibility volume.

Each of the ARTAS units should fulfill a set of well de-
fined interoperability requirements to ensure a very high
quality of the assessed air situation that will be delivered to
the rest of the units. ARTAS defines, with a highly detailed
level, the required performance for all components, and es-
pecially for the tracker systems which process radar data.
To do this, it considers that the worst case of track perfor-
mance will be expected in the case that a tracker receives
only monoradar data, while other cases of fusion with extra
data situations lead to relatively better performance. There-
fore, the main emphasis is given to this monoradar case,
leaving the definition of performance for other cases as a
matter of specifying improvement factors. The most impor-
tant aspect considered for tracker quality definition is the
specification of track output quality in a set of well-defined
representative input conditions. These conditions are clas-
sified with respect to radar and aircraft characteristics be-
cause of the very different behavior of any tracker for vary-
ing input conditions. Radar parameters represent the accu-
racy and quality of available data, while target conditions
are the distance and orientation of the flight with respect
to radar, motion state of aircraft (uniform velocity, turn-
ing, accelerating), and specific values of speed and acceler-
ation.

Since it would not be possible to specify the performance
for all possible input situations, which would require an
enormous amount of figures, an area is defined in which the
performance is described by a limited amount of parameters
and some simple relations. Besides, since ARTAS will pro-
vide radar data processing basically for the control of civil
aircraft, the specifications consider the most representative
situations and the upper and lower limits of speed and accel-
erations in these conditions. ARTAS differentiates scenarios
for two basic types of controlled areas in ATC terminal ma-
neuvering area (TMA), covered by sensors with shorter re-
fresh period (4 seconds), moderate range (up to 80 nautical
miles or NM), and enroute area, and by sensors with longer
period (12 seconds) and larger coverage (up to 230 NM). We
have considered in this study the enroute area since the dif-
ficulty is higher to achieve the performance figures specified
in this situation, being the design process for other situations
completely similar.
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Out of all possible combinations, ARTAS has carried
out a choice containing the most important and realistically
worst cases. [t comprises a number of simple input scenar-
ios on which the nominal track quality requirements are de-
fined. The methodology specified for this evaluation is based
on Monte Carlo simulation with the input parameters (radar
and trajectory parameters) particularized for each scenario.
The trajectories in different scenarios vary in the following
features:

(i) orientation with respect to the radar (radial or tangen-
tial starting courses, starting at a short, medium, or
maximum range);

(ii) sequence of different modes of flight (uniform, turns,
and longitudinal accelerations);

(iii) values of accelerations (upper and lower limits);

(iv) values of speeds (upper and lower limits).

There are eight specified simple scenarios with uniform
motion, and twelve complex scenarios including initializa-
tion with uniform motion, transition to transversal maneu-
ver, and a second transition to come back to uniform motion.
When the target is far enough from the radar, a pure radial
approach to the radar leads to the worst case for transver-
sal and heading errors during maneuver transitions, since az-
imuth error (much higher than radial error) is projected over
these components. With a similar reasoning, a pure tangen-
tial approach is the worst case for longitudinal and ground-
speed errors during maneuvers. So, the scenarios basically
contain these two types of situations, varying in distance, ve-
locities, and acceleration magnitudes. The authors have con-
sidered a couple of scenarios with longitudinal maneuvers al-
though ARTAS does not specify performance for that type of
situations. The reason for this is that these operations ap-
pear in civil operations (especially in the TMAs) and the
filter is conceived to operate in real conditions. Otherwise,
the resulting tracking filter could be overfitted to transver-
sal maneuvers, but developing undesirable systematic errors
with longitudinal maneuvers. The specifications for longitu-
dinal scenarios were obtained extrapolating the ARTAS re-
lations for the new input conditions. The resulting 22 sce-
narios, to be taken into account in the design of tracking fil-
ter are shown in Figure 1 (a circle represents radar position
and a square the initial position of target trajectory). Since
the specifications depend tightly on the input conditions,
there is no a priori worst case scenario whose attainment
would guarantee all cases, but all of them have to be consid-
ered simultaneously in the design process. It must be taken
into account that the design of tracker will be done con-
sidering that all requirements will be met without interme-
diate adaptation of the tracker parameters once the tracker
has been tuned for the typical radar characteristics and con-
trolled volume (in this case, enroute area). The design will
provide a single set of parameters that would allow the fil-
ter to accomplish all the specifications in all the scenarios
considered.

For each of these scenarios, the performance of the
tracker should approach listed performance goal values un-

der the defined conditions. The accuracy requirements are
expressed as a function of several input parameters depend-
ing on each specific-tested scenario: groundspeed, range, ori-
entation of the trajectory with respect to the radar (radial
and tangential projection of velocity heading), magnitude of
the transversal acceleration, and magnitude of the ground-
speed change. There are four quality parameters in which
the requirements are defined: two for position (errors mea-
sured along and across trajectory direction, resp., longitu-
dinal and transversal errors) and velocity (errors expressed
in the groundspeed and heading components). All of them
are expressed with the root mean square errors (RMSE), es-
timated by means of Monte Carlo simulation. Similarly, ac-
curacy requirements are also defined for vertical coordinates,
but this work will address only the 2D (horizontal) filtering,
although similar ideas could be used for the design of a ver-
tical tracker.

There are three basic parameters characterizing the de-
sired shape of the RMS functions: peak value (RMSpv), con-
vergence value (RMScv), and time period of RMS conver-
gence to a certain level close to the final convergence value
(RMSpv + c*RMSpv). These values are specified for differ-
ent situations: initialization, transition from uniform motion
to turn, and transition to come back from turn to uniform
motion. Therefore, for each type of situation, the specifi-
cations are particularized according to the target evolution,
defining a bounding mask for each magnitude and scenario.
An example is indicated in Figure 2, with the transversal er-
ror obtained through simulation and the ARTAS bounding
mask for the scenario 10. Instead of measuring performance
along the whole trajectory in each scenario, only some inter-
est points in the aircraft trajectory will be assessed to guar-
antee that the measured performance attains the bounding
mask: convergence RMSE in rectilinear motion before and
after maneuver segments (CV1 and CV2), and maximum
RMSE during maneuver (PV).

The design of a tracking filter aims at attaining a sat-
isfactory trade-off among all specifications. The quality of
the design will be evaluated by means of simulation over
22 test scenarios, producing several types of trade-offs to
be considered. First, the different transitions in modes of
flight (uniform and maneuvers) impose a trade-off between
steady-state smoothing and peak error during maneuvers,
which always lead to conflicting requirements (the higher the
smoothing factor the higher the filter error during transi-
tions and vice versa). This is considered with the three rep-
resentative values for each scenario and magnitude: CV1,
CV2, and PV. Secondly, each one of the magnitudes eval-
uated (transversal, longitudinal, heading and groundspeed
RMS errors) could individually shift the design towards dif-
ferent solutions, and so all magnitudes must be considered
at the same time to arrive to a certain compromise. Fi-
nally, different design scenarios impose harder conditions
for different magnitudes (radial trajectories for transversal
and heading errors, etc.) so that all scenarios should be
taken into account. In Table 1, we indicate the arrangement
of specifications as they will be considered in the design.
Specifications s(-) are particularized for the three evaluation



Evolution Strategies to Design Tracking Filters 769

150 m/ 300 m/s
150 m/s 300 m/s TS ) 150 m/s
<= —————<—= ® T . <
65 NM 80 NM 215 NM
50 NM
1 2 4 5
, a=2.5 m/s? a=2.5 m/s?
300 m/s
A3SNM
150 m/s LIS NM 150 m/s 150 m/s 300 m/s
e <« - -3 R @ L
230 NM 65 NM 80 NM
200 NM 200 NM
6 7 8 9 10
a=2.5m/s? a=2.5m/s* a=6m/s2 a=6 m/s? a=6m/s?
150 m/s 300 m/s 150 m/s 300 m/s 150 m/s
[ L @ - | @ Ll @ |
215 NM 215 NM 65 NM 80 NM 215 NM
11 12 13 14 15
a=6m/s?
150 m/s 300 m/s 150 m/s
300 m/s 30 NM~
. 1. PR N
230 NM
_ 2
16 18 a=2.5m/s
1 30 NM 300 m/s
g e 300 | |
230 NM T
200 NM
21 22 g=1.2m/s?
FIGURE 1: Design scenarios for tracking filter.
TaBLE 1: Arrangement of design specifications.
Scenario Pvlongimdinal CVllongitudinal Cvzlongitudinal e theading CVlheading CVlheading
1 s(PVyy) s(CV1y) s(CV2yy) <o s(PVy)  s(CVly)  S(CV2y)
points (PV;;,CV1;;,CV2;;), for each assessed magnitude (i = each tested scenario (j = 1,...,22). Therefore, the total

{longitudinal, transversal, groundspeed, heading} ), and for number of specifications is 3 X 4 X 22 = 264.
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FIGURE 2: Specifications on tracker performance for each assessed
magnitude (meters).

3. IMM TRACKING FILTER FOR AIR TRAFFIC CONTROL

Since the specifications for ARTAS units require a very high
quality of output, the tracker in the core will have to apply ad-
vanced filtering techniques (IMM filtering, joint probabilis-
tic data association, etc.). In this section we briefly describe
the basic principles of IMM trackers, the proposed structure
for these application, and the basic aspects for the design
process.

3.1. General considerations

The IMM tracking methodology maintains a set of different
dynamic models, each one is matched to a specific type of
motion pattern, and represents the target trajectory as a se-
ries of states, with the sequence of transitions modelled as a
Markov chain. In our case, the states considered will be uni-
form motion, transversal maneuvers (both towards right and
left), and longitudinal maneuvers. To estimate the target state
(location, velocity, etc.), there is a bank of Kalman filters cor-
responding to the different motion models in the set, com-
plemented with an estimation of the probabilities that the
target is in each one of the possible states.

So, the elementary module in the tracking structure is a
Kalman filter [3] which sequentially processes the measure-
ments z[k], combining them with predictions computed ac-
cording to the target dynamic model, to update the estima-
tion of target state and associated covariance matrix X[k],
P[k], respectively (see Figure 3).

The IMM maintains tracks conditioned to each jth mo-
tion state, with different Kalman filters, x;[k], P;[k], and es-
timation of the probability that the target is in each of them,
ujlk]. One of the basic elements in this methodology is the
interacting process, which keeps all of them engaged to the
most probable one. The structure considered in this work is
shown in Figure 4, with four Kalman filters corresponding
to the four motion states considered. It takes as input the

state, together with estimated covariance matrix of errors,
x[k], P[k].

The IMM algorithm develops the following four steps to
process the measures received from the available sensors to
estimate the target state: intermode interaction/mixing, pre-
diction, updating, and combination for output.

(i) The tracking cycle for each received plot z[k] starts
with the interaction phase, mixing the state estimators
coming from each of the four models to obtain the new
inputs %,;[k] and P,;[k]. So, the input to each Kalman
filter is not directly the last update but a weighted com-
bination of all modes taking into account the mode
probabilities. This step is oriented to assure that the
most probable mode dominates the rest.

(ii) Then, the prediction and updating phases are per-
formed with the Kalman filter equations according to
the available models for target motion contained in
each mode.

(iii) The estimated probabilities of modes y;[k] are up-
dated, based on two types of variables: a priori transi-
tion probabilities of Markov chain p;;, and mode like-
lihoods computed with the residuals between each plot
and mode predictions A;[k].

(iv) Finally, mode probabilities are employed as weights to
combine partial tracks for final output. Besides, each
individual output and probability is internally stored
to process plots coming in the future.

3.2. Design of an IMM filter

The two basic aspects involved in the design of an IMM
tracking system which determine its performance are the
following: the number and type of models used in the set,
and transition parameters. The first aspect is dependent on
each tracking problem, and we have selected, as seen in
Section 3.1, a particular structure composed of four track-
ing modes reflecting the most representative situations in
civil air traffic: constant velocity, turns to right or left, and
longitudinal accelerations. They correspond to target states
0 = 1,2,3,4 in Figure 4. All modes interact within the IMM
structure to achieve the most proper response for each sit-
uation. Mode 1, 8 = 1, is a simple constant velocity model
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TaBLE 2: Parameters to adjust in the IMM design.
Parameter Description
pur Transition probability between uniform motion and transversal acceleration
puL Transition probability between uniform motion and longitudinal acceleration
pru Transition probability between transversal acceleration and uniform motion
Pu Transition probability between longitudinal acceleration and uniform motion
a Typical transversal acceleration for parametric circular models (6 = 2, 3)
0/ Plant noise variance for parametric circular models (6 = 2, 3)
o2 Plant noise variance for longitudinal models (6 = 4)

with zero plant variance noise. Modes for tracking transver-
sal maneuvers (turns), 8 = 2, 3, are filters with circular ex-
trapolation dynamics [4, 5], one for each possible direction.
They provide a highly adaptive response to transversal tran-
sitions, being one of the parameters to fix, in this filter, the
typical acceleration of target when performing turns. Finally,
mode 0 = 4 is a linear-extrapolation motion model with a
plant noise component projected along longitudinal direc-
tion. Since the target deviations along transversal direction
are covered by circular modes, this last model will quickly
detect and adapt to variations in longitudinal velocity during
accelerations and decelerations.

Each mode in the structure has its own parameters to
tune, and must be adjusted in the design process. Besides, the
transition probabilities between all possible pairs of modes,
modelled as a Markov chain, are directly related with the rate
of change from any mode to the rest. They have a very deep
impact in the tracker behaviour during transitions and the

“purity” of output during each type of motion, so the design
must also decide the most proper values for these parameters.
Since there are four modes, the transition probability matrix
Ppij» being defined each term as probability of the target arriv-
ing to state j at time k, given that the state at time k — 1 was
i, is

7P11 P12 P13 Pua
T[k] = D21 P22 P23 Poa
P31 P32 P33 P34
L P41 P42 P43 Paa

[1 - pur — pur 0.5 % pyur 0.5% pur  puL

_ pru 1-pru 0 0

pru 0 1 - pru 0

L pru 0 0 1-pw

(1)
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The number of parameters have been simplified by consider-
ing only as possible transitions between uniform motion and
the rest of modes. The parameters pyr, pur. are the probabili-
ties of starting transversal and longitudinal maneuvers, given
an aircraft at uniform motion, while the parameters pru, pru
are the probabilities of transitions to uniform motion, given
that the aircraft is performing, respectively, transversal and
longitudinal maneuvers.

It is important to notice that all parameters, those in
each particular model plus transition probabilities in Markov
chain, are completely coupled through the IMM algorithm
since partial outputs from each mode are combined and
feedback all modes. So, there is a strongly nonlinear inter-
action between them, making the adjusting process certainly
difficult. The whole set of parameters in the tracking struc-
ture is summarized in Table 2.

4. DESIGN OF FILTER PARAMETERS

The design of the particular IMM tracking structure ad-
dressed in this work, stated as adjusting the seven numeric
input parameters to fit filter performance within ARTAS
specifications, can be generally considered as a numerical op-
timization problem. We are searching for the proper combi-
nation of real input parameters that minimizes a real func-
tion assessing the quality of solutions as a cost f : V C
R7 — R. The final design solution x; € V should be a
global minimum of f, which means that f(xz) < f(x) for
any X € V C R’. The subspace V stands for the region
of feasible solutions, defined as those vectors representing
a valid IMM filter: parameters for probabilities must fall in
the interval [0, 1] and parameters for variances must be pos-
itive. These are the only constraints to be accomplished by
solutions during the search. Performance specifications are
not considered as constraints here, but they will be used as
penalty terms in the objective cost function. The cost would
achieve a minimum value of zero only in the ideal case of a
solution accomplishing all specifications, grading the rest of
possible cases with a positive global cost function that will be
detailed later.

4.1. Evolution strategies

In numeric optimization problems, when f is a smooth,
low-dimensional function, there are an available number
of classic optimization methods. The best case is for low-
dimensional analytical functions, where solutions can be an-
alytically determined or found with simple sampling meth-
ods. If partial derivatives of function with respect to input
parameters are available, gradient-descent methods could be
used to find the directions leading to a minimum. However,
these gradient-descent methods quickly converge and stop at
local minima, so additional steps must be added to find the
global minimum. For instance, with a moderated number of
global minima, we could run several gradient-descent solvers
to find the best solution. The problem is that the number
of similar local minima increases exponentially with dimen-
sionality, making these types of solvers unfeasible. In our par-
ticular case, besides a high-dimensional input space causing

multimodal dependence, we do not have an analytical func-
tion to optimize. It is the result of a complex and exhaus-
tive evaluation process implying the simulation and perfor-
mance assessment of tracking structure on the whole set of
22 scenarios defined. The evaluation of a single point in the
input space requires several minutes of CPU time (Pentium
111, 700 MHz). Besides, the evaluation of quality after all sim-
ulations is not direct but it should take into account system
performance in all scenarios and magnitudes in comparison
with the whole table of specifications. As we will see later,
multiple specifications (or objectives) will increase the num-
ber of solutions with similar performance, increasing there-
fore the complexity of the search.

For complex domains, evolutionary algorithms have
proven to be robust and efficient stochastic optimization
methods, combining properties of volume and path-oriented
searching techniques. ES [6] are the evolutionary algorithms
specifically conceived for numerical optimization, and have
been successfully applied to engineering optimization prob-
lems with real-valued vector representations [7]. They com-
bine a search process which randomly scans the feasible re-
gion (exploration) and local optimization along certain paths
(exploitation), achieving very acceptable rates of robustness
and efficiency. Each solution to the problem is defined as an
individual in a population, codifying each individual with a
couple of real-valued vectors: the searched parameters and a
standard deviation of each parameter used in the search pro-
cess. In this specific problem, one individual will represent
the set of dynamic parameters in the IMM structure, as in-
dicated in Table 2, (x;, ..., x7), and their corresponding stan-
dard deviations (01, ..., 07).

The optimization search basically consists in evolving a
population of individuals in order to find better solutions.
The computational procedure of ES can be summarized in
the following steps, according to the named “u + A” strategy
defined by Back and Schwefel [8], and particularized for our
problem:

(1) generate an initial population with y individuals uni-
formly distributed on the search space V;

(2) evaluate the objective value for each individual in pop-
ulation f(x;),i=1,..., 4

(3) Select the best parents in population to generate a set
of A new individuals, by means of genetic operators
of recombination and mutation. In this case, recombi-
nation follows a canonical discrete recombination [6],
and mutation is carried out as follows:

o/ = o;exp {N(0,A0)},
(2)

x; =x+N(0,0/),

where x; and o are the mutated values and N(0, o)
stands for a normal distribution with zero mean and
variance ¢;

calculate the objective value of the generated offspring
f(xi),i=1,...,A, and select the best g individuals of
this new set containing parents and children to form
the next generation;

~—

(4
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(5) Stop if the halting criterion is satisfied. Otherwise, go
to step (3).

We have implemented ES for this problem with a size of
50 + 30 individuals and mutation factor Ac = 0.9. The
fitness function will directly depend on the differences be-
tween RMS values of errors, evaluated through Monte Carlo
simulation, and ARTAS specifications for all scenarios and
magnitudes, as will be detailed next. It is important to no-
tice that simulations are carried out using common random
numbers to evaluate all individuals in all generations, en-
hancing system comparison within the optimization loop. In
other words, the noise samples used to simulate all scenar-
ios in the RMS evaluation are the same for each individual
in order to exploit the advantages coming from the use of
a deterministic fitness function. Besides, the number of it-
erations was selected to guarantee that confidence intervals
of estimated figures were short in relation to the estimated
values.

A basic aspect to achieve successful optimization in any
evolutionary algorithm is the control of diversity, but this
appropriateness will depend on the problem landscape. If a
population converges to a particular point in a search space
too fast in relation to the roughness of its landscape, it is
very probable that it will end in a local minimum. On the
contrary, a too slow convergence will require a large com-
putational effort to find the solution. ES give the higher im-
portance to the mutation operator, achieving the interesting
property of being “self-adaptive” in the sizes of steps carried
out during mutation, as indicated in step (3) of the algo-
rithm above. Before selecting an algorithm for optimization,
it is interesting to consider the point of view of the “no free
lunch” (NFL) theorem [9], which asserts that no optimiza-
tion procedure is better than a random search if the perfor-
mance measurement consists in averaging arbitrary fitness
functions. The performance of ES has been widely analyzed
under a set of well-known test functions [8, 10]. They are
artificial analytical functions used as benchmarks for com-
parison of representative properties of optimization tech-
niques, such as convergence velocity under unimodal land-
scapes, robustness with multimodality, nonlinearity, con-
straints, presence of flat plateaus at different heights, and so
forth. However, the performance on these test functions can-
not be directly extrapolated to real engineering applications.
The application of ES to a new problem, such as our com-
plex IMM design against multiple specifications where the
landscape properties are not known (it is not known even
if there is a global minimum or not), is a challenge open to
research.

4.2. Multiobjective optimization

The selection of the proper fitness function for this applica-
tion is the problem-dependent feature with the highest im-
pact on the algorithm (higher than the ES parameters such
as population size or mutation factor). Really, we should re-
gard this design as a multiobjective optimization problem,
where each individual objective is the minimization of differ-
ence between desired specification and assessed performance

in each specific figure of merit. When a problem involves si-
multaneous optimization of multiple, usually conflicting ob-
jectives (or criteria), the goal is not so clear as in the case of
single-objective optimization. The presence of different ob-
jectives generates a set of alternative solutions, defined as
Pareto-optimal solutions [11]. The presence of conflicting
multiple objectives leads to the fact that different solutions
cannot be directly compared and ranked to determine the
best one, but the concept of domination appears for com-
parisons. A solution x; is dominated by a second one x; if
X, is better than x; simultaneously in all objective functions
considered. In any other case, they could not be strictly com-
pared. Taking into account this concept of domination, a
Pareto-optimal set P is defined as the set of solutions such
that there exists no solution in the search space dominating
any member in P.

Some multiobjective optimization techniques have the
double goal of guiding the search towards the global Pareto-
optimal set and at the same time covering as many solutions
as possible. There are several proposed evolutionary methods
[12] that address this goal by maintaining a population di-
versity to cover the whole Pareto front. This fact implies first
the enlargement of population size and then specific proce-
dures to guarantee guiding the search to the desired optimal
set with a well-distributed sample of the front. Among these
procedures, we can mention methods, such as selection by
aggregation and so forth, switching the objectives during the
selection phase to decide which individuals will appear in the
mating pool. Zitzler et al. [12] analyze and compare, over
some standard test analytical functions, some of the most
outstanding multiobjective evolutionary algorithms.

From the authors point of view, the peculiarities of the
problem dealt with, namely, the complexity and computa-
tional cost of evaluation function together with the consid-
erable number of specifications, preclude the application of
techniques to derive the whole Pareto set. We have consid-
ered a weighting sum on partial goals to build a global fitness
function:

M
Minimizes Z wifi(X). (3)

i=1

As indicated by Deb [11], this type of approaches with
weighted sums converge to particular solutions of Pareto
front, corresponding to the tangential point in the direction
defined by the vector of weights. The general idea is illus-
trated in Figure 5 for a simplified case with only two objective
functions f; and f,. The shaded area is an example of finite
image set of the feasible region by objective functions f; and
2, being the set of nondominated solutions (Pareto front, P)
represented with a bold line. No solution in the image set has
simultaneously lower values in f; and f, than any point in
P. A pair of weights define a direction for search in space of
objective functions, leading to the tangential point for each
solution.

However, a large number of specifications will make the
weighted summation cumbersome, being difficult that all
objectives are simultaneously considered to guide the search.
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FIGURE 5: Solutions with a weighted sum method.

In our specific problem, we should fix a weighting vector
with 264 components. A variation is proposed to reduce the
number of objectives in the sum by exploiting knowledge
about the problem. Basically, objectives with similar behav-
ior are grouped to select a “representative” per group, the
one with the worst value, so that it guarantees that all ob-
jectives in the group are represented in the final function. If
we consider Table 1 with the whole set of specifications, we
are going to select the worst case for each column, leaving
only 12 terms in the summation. It is important to notice that
this maximum operation will break the linearity of function
with respect to objectives and will make the landscape de-
pend on each specific input vector. A trajectory of solutions
in the search process may jump along different goal functions
if the scenarios with the worst case change. The justification
comes from the fact that each magnitude has certain depen-
dence with the input parameters similar in all scenarios, so a
single representative is enough to be considered in the opti-
mization. Besides, the selection of the worst case assures that
if the method can satisfy that term, all the scenarios will be
simultaneously accomplished.

Taking into account this consideration, the fitness func-
tion, which assesses the quality of a solution as the degree
of attainment performance figures with respect to specifica-
tions, is presented next. The following details have also been
considered.

(i) It assesses the excess over the specification for each
performance figure, penalizing a solution as the er-
ror increases, but once the error is below the speci-
fication, the cost is zero. This is so because there is
no additional advantage if the RMSE decreases more
after the required values are attained. This is imple-
mented for each magnitude by means of the expres-
sion R(p; — s(pi)), where p; is the ith performance fig-
ure (RMSE), s(p;) the specification, and R(-) the ramp
function:

R(x) = x, x>0, (4)

0, x<0.

(ii) Different physical magnitudes (errors in position,
heading, and groundspeed) have the same importance,

100 aae—

150 p———

Excess over specifications
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F1GURE 6: Evolution of fitness and performance in each specific ob-
jective.

and so are normalized with the specification value,
defining a partial cost for ith figure,

¢ = R(ipi —pSi(Pi)) (5)

(iii) In order to add some flexibility in the trade-off be-
tween maneuver and uniform motion performances,
weighting factors o, are included. They allow us to vary
the priority of these performance figures, in the case
where all of them cannot be attained at the same time,
defining therefore a cost per jth scenario,

clsj) =3 {“PVR<PVJ(1_>VS(JI;VJ)>

i=1

CVI,']' —S(CVL']')> (6)

+ acviR
v < N (CVI,])
CVZ,‘]‘ - S(CVZ,‘]')
tacviR| — = | (>

oV < N (CVZ,J)
where the subindex i represents each interest mag-
nitude (longitudinal, transversal, groundspeed, and
heading) and j the scenario index.

(iv) Finally, considering the set E of all the scenarios where
the performance figures are evaluated (in our example,
the 22 scenarios indicated in Figure 1), the worst case
scenario is j, for each figure of merit and selected time
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FIGURE 7: Performance and ARTAS specifications for scenario 12.

instant (PV, CV1, and CV2). Therefore, the final goal
function to be minimized is as follows:

4 . max PV,] — S(PV;]) >:|
Z{ PV j€E |:R< (PV,‘j)

i=1
CVI,'J' - S(CVI,‘J')
+ _ 7

v T [R( s(CV1y) 7)

n R CVZ,‘]' - S(CVZ,']')
acv2 r}leabgc N (CVZij) ’

So, this function considers the relative excesses over
specifications for all performance figures, each one as-
sessed in the worst case scenario.

5. RESULTS

In this section, the results obtained along the optimization
process to adjust the filter parameters according to ARTAS

specifications are presented and analyzed. They have been
obtained particularizing expression (6) to the case of a weight
of 1 for all magnitudes apy = acy1 = acyz = 1.

First, Figure 6 summarizes the evolution of best individ-
ual in the population (the one with the lowest value of fit-
ness), indicating graphically the accomplishment of specifi-
cations along the generations. Each design objective is pre-
sented by a row in the diagram, while the best individual for
each generation appears in each column. The grey level of
position (i, j) in the image indicates the quality of the fitting
to the ith specification of the best individual for the jth gen-
eration. The grey level represents linearly the relative excess
over the restriction (no excess is presented as white, 100%
or higher excess as black), which is the partial cost function
related with this constraint. Therefore, a completely white
column means that the optimization process has found a
set of parameters able to fulfil all design restrictions, while
a complete white row means that all best individuals in this
optimization exercise are able to fulfil the specification for
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FIGURE 8: Performance and ARTAS specifications for scenario 13.

this magnitude and situation. Below, the fitness function
computed from the whole set of partial costs as indicated in
Section 4 is plotted. This kind of figure serves not only to
see the convergence of the optimization process graphically,
but also to see the most demanding performance criteria to
be accomplished and to compare the suitability of a prede-
fined tracking scheme (with some free design parameters)
for a certain tracking problem. Applying exactly the same
proposed methodology, we could have performed the opti-
mization exercise with an alternative IMM structure, or even
with a different tracking technique with open design parame-
ters, and compared after designing the process its capabilities
against specifications.

As it can be seen, the optimization process makes the
overall figure lighter from the initial generations (left) to
the end of the optimization (right), achieving a trade-off
point to accomplish as many specifications as possible. The
highest improvement is carried out in the first 80 genera-
tions, with very slight modifications from that point until the

end. The rows with a darker profile indicate higher difficulty
to attain that specification together with the rest. So, sce-
narios 12 and 13, corresponding to specifications 133-156,
present the worst performance after the optimization. The
specific performance values and ARTAS bounding masks for
these scenarios, corresponding to transversal maneuvers at
215NM, v = 300m/2, a = 2.5m/s?, (scenario 12) and at
65NM, v = 150m/2, a = 6.0m/s?, (scenario 13), are in-
dicated in Figures 7 and 8. The magnitudes with worst per-
formance are the transversal and heading errors (peak val-
ues) during transversal maneuvers. The peak value of head-
ing error is the globally worst figure in the set, more than
100% over specification. Besides, as it can be seen, the con-
vergence error values for some of the magnitudes in these
scenarios are practically tangent to specifications, indicat-
ing that the optimization process has effectively considered
all of them to arrive to the final trade-off solution. So,
this method selects the parameters adapting system behav-
ior to the bounding mask. This is apparent not only for the
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presented scenarios with worst cases but for all design sce-
narios as well.

Different runs of the global optimization process (using
different random seeds to generate individuals in the initial
population) were carried out to analyze the consistency of
the solutions obtained. The results of ten independent runs
are indicated in Figure 9, presenting only the best individual
in population after optimization (instead of the whole evo-
lution process) and the final values of fitness achieved.

As it can be seen, different runs led to solutions quite con-
sistent in terms of overall fitness and whose specifications are
presenting problems to the filter (always those in scenarios
12 and 13). However, the specific vector solutions found af-
ter optimization in each run had significant differences, indi-
cating that fitness function probably has a multimodal land-
scape, even after having selected a particular set of weighting
factors among specifications, o = 1.

Since it is not possible to represent fitness landscape with
seven dimensions, the following analysis was carried out. The
three solutions with closest fitness values, resulting from runs
1, 2, and 5, were selected to be combined and to generate a
grid of linear combinations (convex hull) as follows:

¥ -5+l -6) +pE - m). (8)

The fitness landscape for a grid with «,  varying in the inter-
val [—1.5,0.5], in steps 0.1 units, is indicated in Figure 10. It

FiGure 10: Fitness landscape for linear combinations of three solu-
tions.
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FiGure 11: Fitness landscape projection over horizontal plane and

B =0.

can be seen that the fitness is practically flat over the particu-
lar region of search space represented by linear combinations
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(really, there are much more solutions with similar fitness
values that are presented in Figure 10; they are only partic-
ular cases of linear combinations). The particular solutions
1, 2, and 5 correspond to the points (0, 0), (1,0), and (0, 1) in
plane. In Figure 11, the projection on «f plane is presented
with grey levels, where the feasible region in «ff plane can
be clearly separated. All solutions within the convex combi-
nations of solutions «, § in [0, 1] are feasible. Besides, the
2D graphs corresponding to the paths connecting all pairs
of solutions are presented in Figures 11 and 12. As it can
be seen, the solutions found by algorithm are effectively lo-
cal minima of fitness function in spite of the fact that the
function is almost flat in this region of convex linear combi-
nations. This shows that the algorithm is capable of finding
appropriate solutions, and confirms the fact that we have a
multimodal function even after having combined the mul-
tiple restrictions in a scalar function. Different runs arrived
to different local minima in a region where the relative dif-
ference between minima can be practically neglected, so all
solutions can be taken as good design points for the adopted
criterion. The algorithm was carried out with different crite-
ria (for instance, the penalty of RMSE peak values being ten
times higher than convergence RMSE), achieving results con-
sistent with the preferences: all specifications with the highest
priority were first accomplished, leading to higher errors in
the other specifications.

6. CONCLUSION

In this paper, we have described a methodology based on ES
for the design of IMM-tracker techniques to accomplish a
considerably large set of predefined specifications.

An exhaustive set of test scenarios with performance
specifications for each and a specific IMM structure with
open parameters are the input to solver. The procedure may
be summarized as performing an optimization over the pa-

rameters space, using ES, defining as the fitness function one
combination of partial excesses over specifications that takes
into account some knowledge about the problem in the form
described in Section 4. This fitness function summarizes the
attainment of all interest accuracy statistics for the different
interest times (steady state, start and end of maneuvers, etc.)
in all design scenarios. The evaluation involved the costly
Monte Carlo simulation, as specified by ARTAS, to calcu-
late accuracy statistics, although the methodology is open for
the inclusion of other possible evaluation methods for IMM
tracking filters, such as the one described in [9].

This method has been successfully used in a monoradar
application, leading to a significant improvement over previ-
ous nonsystematic approaches for the same problem. Even
more, the form of fitness function described serves as a
method for relaxing constraints: those more important for
us are provided a higher weight in (6), and those not so im-
portant a lower weight.
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