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A joint blind order-detection and parameter-estimation algorithm for a single-input multiple-output (SIMO) channel is pre-
sented. Based on the subspace decomposition of the channel output, an objective function including channel order and channel
parameters is proposed. The problem is resolved by using a specifically designed genetic algorithm (GA). In the proposed GA,
we encode both the channel order and parameters into a single chromosome, so they can be estimated simultaneously. Novel GA
operators and convergence criteria are used to guarantee correct and high convergence speed. Simulation results show that the
proposed GA achieves satisfactory convergence speed and performance.
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1. INTRODUCTION

Many applications in signal processing encounter the prob-
lem of blind multichannel identification. Traditional meth-
ods of such identification usually apply higher-order statis-
tics techniques. The major problems of these methods are
slow convergence and many local optima [1]. Since the orig-
inal work of Tong et al. [1, 2], many lower-order statistics-
based methods have been proposed for blind multichannel
identification (see [3] and references therein). A common
assumption in these methods is that the channel order is
known in advance. However, such information is, in fact,
not available. Thus, we are obliged to estimate the channel
order beforehand. Though many order-detection algorithms
can be applied (e.g., see [4]) to solve this particular problem,
the approaches that separate order detection and parameter
estimation may not be efficient, especially when the channel-
impulse response has small head and tail taps [5].

To tackle this drawback, a class of channel-estimation al-
gorithms performing joint order detection and parameter es-
timation has been proposed [5, 6]. In [5], a cost function in-

cluding channel order and parameters is proposed. However,
the algorithm may not be efficient because the channel order
is estimated by evaluating all the possible candidates from 1
to a predefined ceiling. The method proposed in [6] is also
not a real joint approach since the order was separately esti-
mated by detecting the rank of an overmodelled data matrix.
In fact, this is very similar to the methods that applied a rank-
detection procedure to an overmodelled data covariance ma-
trix in [4]. Order estimation via rank detection may not be
efficient because it is sensitive to noise [4] and the calculation
of eigenvalue decomposition is also computationally costly.
In this paper, we propose a real joint order-detection
and channel-estimation method based on genetic algorithm
(GA). The GAs have been widely used in channel-parameter
estimation [7, 8, 9]. However, its application to joint order
detection and parameter estimation has not been well ex-
plored. Based on the subspace decomposition of the output-
autocorrelation matrix, we first develop a new objective func-
tion for estimating channel order and parameters. Then, a
novel GA-based technique is presented to resolve this prob-
lem. The key proposition of the proposed GA is that the
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channel order can be encoded as part of the chromosome.
Consequently, the channel order and parameters can be si-
multaneously estimated. Simulation results show that the
new GA outperforms existing GAs in convergence speed. We
also compare the performance of the proposed GA with the
closed-form subspace method which assumes that the chan-
nel order is known [10]. Simulation results show that the
proposed GA achieves a similar performance.

2. PROBLEM FORMULATION

We consider a multichannel FIR system with M subchan-
nels. The transmitted discrete signal s(n) is modulated, fil-
tered, and transmitted over these Gaussian subchannels. The
received signals are filtered and down-band converted. The
resulting baseband signal at the mth sensor can be expressed
as follows [1]:

L
Xm(n) = > hp(k)s(n— k) + bu(n), m=1,...,M, (1)
k=0

where b,,(n) denotes the additive Gaussian noise and is as-
sumed to be uncorrelated with the input signal s(n), h,,(n) is
the equivalent discrete channel-impulse response associated
with the mth sensor, and L is the largest order of these sub-
channels (note that the subchannels may have different or-
ders). Equation (1) can be represented in vector-matrix for-
mulation as follows:

X, (n) = Hys(n) +b,,(n), m=1,..., M, (2)
where

() = [Xn(1) Xp(n—1) - - xm(n—N)]T (3)

is the (N + 1) X 1 observed vector at the mth sensor,

T
bu(n) = [bu(n) bu(n=1) - bu(n=N)|"  (4)
is the (N + 1) x 1 additive noise vector, and

s(n) = [s(n) s(n—1) -+ s(n —L—N)]T (5)

isthe (N + L + 1) x 1 transmitted vector. The matrix

T |
Ho=| @ 5 (6)
0 hm,O hm,L

is the (N + 1) X (N + L + 1) transfer matrix of subchannel
hp(n).

We define an M(N + 1) x 1 overall observation vector as
x(n) = [xf(n) --- x1(n)]7, then the multichannel system
can be represented in matrix formulation as

x(n) = Hs(n) + b(n), (7)

whereH = [H] ---
all system transfer matrix and b(n) = [bl(n) ---
is the M(N + 1) x 1 additive noise vector.

If we define the output-autocorrelation matrix as Ry, =
E[x(n)x(n)T], then we have

HI T isthe M(N+1)x(N+L+1) over-
by (n)]”

Rxx = HRssHT + Rbb; (8)

where Ry, = E[s(n)s(n)T] isthe (N+ L+ 1) x (N +L+1)
autocorrelation matrix of s(n) and Ry, = E[b(n)b(n)T] is
the MN X MN autocorrelation matrix of b(n). In the follow-
ing, we will present an objective function based on the sub-
space decomposition of Ry,. To exploit the subspace prop-
erties, the following assumptions must be made [10]: the
parameter matrix H has full column rank, which implies
M(N +1) = (N + L+ 1) and the subchannels do not share
common zeros. The autocorrelation matrix Ry, has full rank.

The basic idea of subspace decomposition is to decom-
pose the R, into a signal subspace and a noise subspace. Let
A=Ay = -+ - = Ayn+) be the eigenvalues of Ryy; since H
has full column rank (N + L + 1) and Ry, has full rank, it im-
plies that the signal component of Ry, that is, HRxH, has
rank of N + L + 1. Therefore,

fori=1,...,N+L+1,
fori=N+L+2,...,M(N +1),

2
Ai>0'n

)

A,‘ = 072,
where o2 denotes the variance of the additive Gaussian noise.
If we perform the subspace decomposition of Ry, we get

R.. = UAUY = [U; U,] [Ag A ] [u.w]”, o

where A; = diag{Ay,..., AN++1} contains N + L + 1 largest
eigenvalues of Ry, in descending order and the columns
of U, are the corresponding orthogonal eigenvectors of
Ay ANsLs1, and A, = diag{AN+L+2, e /\M(NH)} contains
the other eigenvalues and the columns of U,, are the orthog-
onal eigenvectors corresponding to eigenvalue ¢2. The spans
of U and U,, denote the signal subspace and the noise sub-
space, respectively. The key proposal is that the columns of H
also span the signal subspace of Ry,. The channel parameters
can then be uniquely identified by the orthogonal property
between the signal subspace and the noise subspace [10], that
is,
H"U, = 0. (11)
Leth = [h1o -+ hyy -+ hao -+ hai]T contain

all the channel parameters. From (11), we propose an objec-
tive function as follows:

J(h) = |[H7U,||. (12)

In this objective function, the channel order is assumed
to be known. However, in practice this is not true. There-
fore, the channel order must be estimated beforehand. In this
paper, we estimate the channel order based on (12). Since
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the subchannels may have different orders, order estimation
refers to the largest. Note that the channel identifiability does
not depend on whether the subchannels have the same or-
der but on whether they have common zeros [10]. We show
that order estimation affects the number of global optima in
(12). It shows that J (h) has only one nonzero optimum when
the channel order is correctly estimated [10]. We study the
cases where the channel order is either under- or overesti-
mated based on (12).

If the channel order is overestimated, then J(h) will have
more than one nonzero optimum. For instance, let the esti-
mated order be L + 1; we define

hl, = [0 h;]T = [0 Pmo
B, = [h7 0]" = [Amo

hm,L] ! >

(13)
o1 O]T.

By constructing H!, H? from h},, h2, one can verify that H!,
H? will satisfy the following condition:

U'H! = Uln? = 0. (14)

This means that J(h) will have two linear independent
nonzero optima:

hy,]
']

h' = [n}”

(15)
b = B’
It is straightforward to show that if the channel order is
underestimated, then J(h) has no nonzero optimum. If this
is not true, from the above derivation, J(h) with correctly
estimated order will have more than one nonzero solution.
This contradicts the conclusion in [10].
Therefore, we can conclude that the optima of J (h) satisfy
the following conditions: optima of J(h) are

(i) more than one nonzero optimum overestimated order,
(ii) only one nonzero optimum correctly estimated order,
(iii) no nonzero optimum underestimated order.

Now let I denote the estimated order. Assuming that the
channel order is unknown, we propose to include / in the ob-
jective function of (12) and propose a new objective function
J(Lh) = [|[HYU,|. In order to let [ converge on the correct
order, the following conditions must be met:

(1) trivial solution, that is, h = 0, must be avoided,
(2) l'is more likely to converge to a small order.

Note that h has a free constant scale. If h is a solution of
(11), then #h, where # is an arbitrary constant, is also a solu-
tion of (11). A common technique to avoid a trivial solution
is to normalize h to ||h|| = 1 [5, 6, 10]. In this paper, we ex-
tend this constraint by proposing ||h|| > 1, and concentrate
on a special case. That is, we fix the first parameter of h to
h(1) = 1. Such a constraint is helpful in avoiding the com-
putation of normalization during iteration. Note that [ will
affect the objective value by using the number of elements
in h to compute it. A smaller / implies that fewer elements
are used. Consequently, it may result in a smaller objective

value. Therefore, such a constraint is also helpful in making /
converge to a smaller value.

To ensure condition (2), we suggest imposing a penalty
on J(I, h) when a larger estimate of channel order is achieved.
Practically, the objective value (J(I,h)) converges to a small
value rather than exact zero. Therefore, we apply the multi-
plication instead of addition. The following objective func-
tion is proposed:

J(Lh) =% - ||UH]|, (16)

where K scales the penalty and it must be guaranteed that
K =0.

3. GENETIC ALGORITHM

A GAisa “random” search algorithm that mimics the process
of biological evolution. The algorithm begins with a collec-
tion of parameter estimates (called a chromosome) and each
is evaluated for its fitness for solving a given optimization
task. In each generation, the fittest chromosomes are allowed
to mate, mutate, and give birth to offspring. These children
form the basis of the new generation. Since the children gen-
eration always contains the elite of the parents generation,
a newborn generation tends to be closer to a solution to the
optimization problem. After a few evolutions, workable solu-
tions can be achieved if some convergence criteria are satis-
fied. In fact, a GA is a very flexible tool and is usually adapted
to the given optimization problem. The features of the pro-
posed GA are described as below.

Encoding

Each chromosome has two parts. One represents the channel
order and is encoded in binary and the other represents the
channel parameters and is encoded in real value. Let (c, h)j-
(j = 1,...,Q) denote the jth chromosome of the ith genera-
tion where Q is the population size. The chromosome struc-
ture is as follows:

C1C) *++ Cs
[

hyhy - -+ hr (17)
[N )

binary-encoded order genes real value-encoded parameter genes

where the parameter chromosomes have the same structure
as h. Note that the length of order chromosomes decides the
length of parameter chromosomes and one should ensure
that the length of parameter chromosomes is greater than the
possible channel order.

Initialization

Normally, the initial values of the chromosomes are ran-
domly assigned. In the proposed GA, in order to prevent the
algorithm from converging to a trivial solution, as we have
shown in Section 2, the first parameter of h (i.e., the first gene
of parameter chromosomes) is fixed to h; = 1, where other
genes are randomly initialized.

Fitness function

In the proposed GA, tournament selection is adopted, in
which the objective values are obtained by computing the



760

EURASIP Journal on Applied Signal Processing

value in (16). Consequently, it is not necessary to map the
objective value to fitness value. Since the order chromosomes
have a very simple coding (in binary) and a smaller gene
pool, order chromosomes are expected to converge much
faster than the parameter chromosomes. Thus, we propose
to detect the convergence of order chromosomes and param-
eter chromosomes separately. However, it should be noted
that the objective values of (16) cannot directly indicate the
fitness of the order chromosomes. The fitness function for
order chromosomes is required and is defined as follows. The
fitness of an estimated order / is measured as the number of
chromosomes whose order is equal to I. The order fitness of
(¢, h)j— is denoted as

fci = cum’(D). (18)

The above fitness function is not used in tournament selec-
tion but only in the convergence criteria of order chromo-
somes.

Parent selection

A good parent selection mechanism gives better parents a
better chance to reproduce. In the proposed GA, we employ
an “elitist” method [8] and tournament selection [11]. First,
partial chromosomes of the present population, that is, the
p - Q best chromosomes, are directly selected. Then, the other
(1 —p) - Q child chromosomes are generated via tournament
selection within the whole parent population. That is, two
chromosomes are randomly selected from the parent’s pop-
ulation in each cycle. The one with the smaller objective value
is selected.

Crossover

Crossover combines the feature of two parent chromosomes
to form two child chromosomes. Generally, the parent chro-
mosomes are mated randomly [12]. In the proposed GA,
each chromosome contains two parts with different coding
technique. The order chromosome will decide how many el-
ements in the parameter chromosome are used to calculate
the objective value. Therefore, these two parts cannot be de-
coupled. The conventional methods that perform crossover
separately may not be efficient. Normally, the order chromo-
somes will be short. For instance, an order chromosome with
a length of 5 implies a searching space from 1 to 32, which
covers most practical cases of the FIR channels. Therefore,
the order chromosomes are expected to converge much faster
than the parameter chromosomes. We propose not to per-
form crossover on the order chromosomes but to use mu-
tation only. For the parameter chromosomes, crossover be-
tween chromosomes with different order is more explorative
(i.e., searches more data space). However, it may also dam-
age the building blocks in the parent chromosomes. On the
other hand, crossover between chromosomes with the same
order is more exploitative (i.e., it speeds up convergence).
However it may cause premature convergence. Since faster
convergence is preferable in blind channel identification, we
propose to mate chromosomes of the same order. For each

estimated order, if the number of corresponding chromo-
somes is odd, a randomly selected chromosome is added to
the mating pool.

Assume that the chromosomes are mated and a pair of
them is given as

(c, h); = (cica+ - cs, mhy - - 'hT);»
. i (19)
(¢h)i = (cica+ - - cs, by - - - hy),.

Leta, a; € [1, T] be two random integers (a; < a3), and let
Qay+15 - - - » 0, be ay — a; random real numbers in (0, 1), then
the parameter parts of the child chromosomes are defined as

i+l _ i i i
h] = ( Lj P hﬂl:j’ “a1+1ha1+1,j

+ (1 - (Xmﬂ)hluﬁl,k e Ocazhl

a,j

+(1- aaz)h;bk’ ;zﬂ,j T iT,j)’ (20)

i+l _ i i i
h" = ( Lk hay o Qe g
i i
+ (1 - “a1+1)ha1+1,]‘ s '“azhaz,k
i i i
+(1 - (xﬂz)haz,j’ a+Lk " 'hT,k)’

where a two-point crossover is adopted.

Mutation

A mutation feature is introduced to prevent premature con-
vergence. Originally, mutation was designed only for binary-
represented chromosomes. For real value chromosomes, the
following random mutation is now widely adopted [12]:

g=g+touo), (21)

where g is the real value gene, ¢ is a random function which
may be Gaussian or uniform, and y and ¢ are the related
mean and variance. In this paper, we use normal mutation
for the order genes. That is, we randomly alter the genes from
0 to 1 or from 1 to 0 with probability P,,. Normally, P, is a
small number. However, in the proposed GA, the value of the
order chromosome decides the used parameter genes for cal-
culating the objective function. Less value of order means a
lesser number of parameter genes and consequently less ob-
jective value. Therefore, in the start-up period of the itera-
tion, the order chromosomes are more likely to converge on
a small value where order is equal to 1. A large mutation rate
is adopted to prevent such premature convergence.

For the parameter part, a uniform PDF is employed.
Let as,a, € [1, T] be two random integers (a3 < a4), and
let Bas+15- .., Pa, be a4 — a3 random real numbers between
(=1, 1), then the parameter chromosomes of the child gener-
ation are defined as

hj-+1 = (hl, cens hu;» hg3+1 + ﬁa3+l/R e hll4

22
+/3ﬂ4/R"')ha4+1)~~~)hT)) ( )

where P is a predefined number and can be adjusted during
iteration to speed up the convergence.
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TaBLE 1: The GA configuration.

Population size

The length of order chromosomes

The length of parameter chromosomes

Penalty scale

Elite selection ratio

Mutation rate of order chromosome

Mutation scale of parameter chromosomes

Control parameters of the convergence criteria

Q 48
S 3
T 16
K 1
P 1/12
Pm 0.5
P 10.2tm100)
X 30
y 0.1
e 0.1
0 2

Convergence criterion

We propose a different convergence criterion for order chro-
mosomes and parameter chromosomes. The order chromo-
somes are considered to be converged if the gene pool is dom-
inated by a certain order, that is,

cum§ my- > (23)

other orders

cum}(l) < ycum§ ("),

where [P is the dominant order, cum(IP) is the number
of chromosomes with order [P, and y is a predefined ratio.
When the order chromosomes are converged, the mutation
rate of order chromosomes is set to zero (p,, = 0). The pa-
rameter chromosomes are considered to be converged if the
change in the smallest objective value within X generations
is small, that is,

(e h) — J(c h) | < ef(chY, (24)
where e is also a predefined ratio. Theoretically, the objec-
tive function in (16) has multiple minima that may have
overestimated orders. In order to cause the order chromo-
somes to converge on the correct channel order, we impose a
penalty on the chromosomes with greater order. Due to the
“random” nature of a GA, though in most cases the order
chromosomes can converge on the real channel order (see
the simulation result in Table 1), there is no guarantee that
the chromosomes will absolutely converge on the real chan-
nel order. Therefore, we propose to examine the converged
result to ensure correct convergence. If we let (¢, h)s be the
current converged result, the examination can be carried out
as follows (see the outer loop in Figure 2): reduce the or-
der of (¢, h)s by 1, fix the order, and run the proposed GA
again (note that this time the order chromosomes are fixed,
i.e., pm = 0). After a few generations, a new result denoted
as (¢, h)s; can be achieved. If the objective values of (¢, h)y
and (¢, h)y,, that is, J(c,h)s and J(c, h)s,, are close enough,
then we can decide that J(c, h),; has overestimated order and

(0+1)/(0-1)
](C;h)sl

A 0-1)/(0+1)

/.

J(e,h)s

FIGURE 1: Decision region for outer loop criterion.

reexamine J(c, h)y, using the same strategy. Otherwise, if the
drop from J(c, h)s to J(c, h)s is significantly large, the fol-
lowing inequality arises:

J(ch)a +](c, h)p)
0 .

The drop between J(c, h) and J(c, h), is considered to be
distinguishably large enough for us to say that (¢, h)s has
converged on the real channel order. From the inequality in
(25), one can draw two lines with slope of (6 + 1)/(6 — 1) and
(6 —1)/(0 + 1) (see Figure 1). The shaped region in Figure 1
shows the data space given by (25). The criterion set in (25)
is, in fact, an enumeration search. However, the order estima-
tion in the proposed GA does not solely rely on this enumer-
ation search. In the proposed GA, we have employed certain
strategies to give the order chromosome a better chance of
converging to the real channel order. The simulation result
also shows that in most cases the order chromosomes can
converge on (or close to) the real channel order (see Table 2).
The enumeration search is, thus, used to compensate for the
drawback of the GA.

[J(ch)a = J(ch)n| > ( (25)
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Start |

J

Configure the proposed GA
according to Table 1

L

| Initialize the chromosomes |

Perform the GA operations including
selection, crossover, and mutation

1

Evaluate the chromosomes by the
objective function (13) and the
order fitness function (15)

Reinitialize the

chromosomes

Check if the condition
in (20) is satisfied?

Set P, =0

Minus the order
chromosomes by 1
andset Py, =0

I
I
1
I
1
I
I
1
I
1
I
parameter !
I
I
1
I
1
I
I
1
I
1
I

Check if the condition
in (21) is satisfied?

Store the converged result

' Outer loop

Check if the condition
in (22) is satisfied?

Terminate

F1GURE 2: Flow diagram of the proposed GA.

The overall flow diagram of the proposed approach is il-
lustrated in Figure 2. It can be seen that the proposed GA has
an inner and an outer loop. The criteria in (23) and (24) in
the inner loop guarantee that a global optimum is achieved.
We have shown that this solution may have an overestimated
order. The criterion in (25) in the outer loop is used to re-
examine the solution reached and guarantee the correct esti-
mate.

It is important to note that although the order part and
the parameter part have a distinct representation, fitness
function, and convergence criterion, we encode the two parts
into a single chromosome rather than keeping two separate
chromosomes. This is because the order part decides how
many genes of the parameter chromosome should be used to
calculate the objective value and, therefore, these two parts
cannot be decoupled.

4. EXPERIMENTAL RESULT

Computer simulations are done to evaluate the performance
of the proposed GA. We use the same multichannel FIR sys-
tem as that in [9], where two sensors are adopted and the
channel-impulse responses are

h = [0.21 —0.50 0.72 0.36 0.21], o6
hy = [0.227 0.41 0.688 0.46 0.227].

Table 1 shows the configuration of the proposed GA. A large
population size is used in order to explore greater data space.
The searching space of channel order is from 1 to 8 (S = 3).
In the blind channel estimation, a model of FIR multichan-
nel is normally modelled by oversampling the output of a
real channel. A multichannel model with two subchannels of
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TaBLE 2: Estimated order in the first inner loop run.

5 6 7 8 Total
26 21 11 2 60
43.4% 35% 18.3% 3.3 100%

order 8 represents a real channel of order 16, which cov-
ers most normal channels. Note that order chromosomes of
length 3 can also map the searching space from 9 to 16. So,
in case no satisfactory solution is reached, one may remap
the order searching space (9-16) and rerun the algorithm.
A large mutation rate (p. = 0.5) is adopted to prevent pre-
mature convergence. To speed up the convergence of param-
eter chromosomes, we adjust P every 100 generations (see
Table 2), where | a| denotes the floor value of a.

A 25-dB Gaussian white noise is added to the output and
2,000 output samples are used to estimate the autocorrela-
tion matrix Ry,. Figure 3 shows a typical evolution curve. In
each generation, the average objective value and estimated
order of the whole population are plotted. From Figure 3,
one can see that the order chromosomes converge much
faster than the parameter chromosomes. They converge on
the true channel order in the first inner loop run (order = 5
in Figure 3). We store this converged result, reduce the order
by 1, set p,, = 0, and then begin another GA execution. After
the convergence (order = 4 in Figure 3), we evaluate these
two converged results (order = 5 and order = 4 in Figure 3)
by using the outer loop criterion in (25). Since there is an ex-
ponential drop between the two results, the condition in (25)
is satisfied. Thus, our algorithm stops and concludes that or-
der 5 is the final estimate.

The channel order is estimated by detecting the drop be-
tween two converged objective values, which may be simi-
lar to the traditional method where the eigenvalues of an
overmodeled covariance matrix are calculated and the chan-
nel order is determined when there is a significant drop be-
tween two adjoining eigenvalues [4]. However, our algorithm
is more efficient since the calculation of eigenvalue decompo-
sition can be avoided and it can be seen that the drop is much
more significant (an exponential drop).

Figure 4 shows an evolution curve where the channel or-
der is overestimated in the first inner loop run (order = 6
in Figure 4). In Figure 4, the objective values of the first two
converged results are quite close, which does not satisfy the
criterion set in (25). Further examination is thus required.
As above, we can get the third converged result (order = 4 in
Figure 4). By evaluating it with (25), we can draw the same
conclusion as from Figure 3.

When compared with existing work, the convergence
speed of the proposed GA is satisfactory since it can be seen
that a quite reliable solution can be reached in about 1,000
generations, whereas the algorithm in [9] converges after
2,000 generations (note that in [9] the channel order is as-
sumed to be known). In [8], an identification problem with
similar complexity is simulated. The algorithm converges af-
ter hundreds of generations, but it is nonblind and, there-

7

T g

5 S O 1
< 3 L 4
EESW

L -

o 4

2

8 v 3f 4
£E

0 100 200 300 400 500 600 700 800

Average J (¢, h) of the
population

10—4 1 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800

Generations

FIGURE 3: Evolution curves with correctly estimated order in the
first inner loop run.

10! . . T : :
100 f E
Order = 6
107! 3
= Order = 5
g
" 1072 4
Order = 4
1073 E
10—4 L 1 L Il Il
0 200 400 600 800 1000 1200
Generations

F1GURE 4: Evolution curve with overestimated order in first inner
loop run.

fore, the objective function is quite simple. It is important to
note that the convergence speed is affected by the complex-
ity of the target problem. A more complicated multichannel
will result in slower convergence speed. We simulate a multi-
channel system with four subchannels and find that the algo-
rithm converges after 1,000 generations. The effect of prob-
lem complexity seems to be a common problem of GAs and
needs further study.

Since the proposed GA needs to estimate the second-
order statistics of the channel output (the autocorrelation
matrix), it cannot be used directly in a rapidly varying chan-
nel. However, if some subspace tracking algorithm is em-
ployed (e.g., [13]), the noise subspace, that is, U, in (16) can
be updated when a new sample vector (x(n) in (7)) is re-
ceived. The objective function can be adapted according to
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FIGURE 5: Performance comparison.

the channel variation. In this case, the proposed GA may
be applied to a rapidly varying channel. However, this re-
quires further investigation and is beyond the scope of this
paper.

It is obvious that the computation is costly if the con-
verged order in the first inner loop run is much greater than
the real channel order. In the proposed GA, though there
is no guarantee that the order chromosomes are absolutely
converging on the real channel order in the first inner loop
run, we have proposed several strategies to make them con-
verge more closely. To illustrate the point, 60 independent
trials are done and we record the converged order in the first
inner loop run. Table 2 shows the results. The first row de-
notes the converged orders. The second row gives the times
where the order chromosomes converge on a certain order.
The third row shows the proportions. Table 2 illustrates that
at most times the order chromosomes converge to or close to
the real channel order (order 5 and 6 get about 80% of the
trials).

To evaluate the performance of the proposed GA, we
compare it with a singular value decomposition-based closed
form approach (SVD) that assumes that the channel order is
known [10]. Root mean square error (RMSE) is employed to
measure the estimation performance, which is defined as

[N
— >"||h; - k]|, (27)

i=1

where N; denotes the number of Monte Carlo trials and is
set at 50, and h; denotes the estimated channel parameters
in the ith trial. The comparison results are given in Figure 5.
It can be seen that the proposed GA achieves similar perfor-
mance with lower signal-to-noise ratio (SNR). At high SNR,
the performance of GA is worse, because the converged result
is not close enough to the real optimum. However, the per-

formance of GA can be improved by making it execute more
generation cycles.

5. CONCLUSIONS

Based on the SIMO model and the subspace criterion, a new
GA has been proposed for blind channel estimation. Com-
puter simulations show that its performance is comparable
with existing closed form approaches. Moreover, the pro-
posed GA can provide a joint order and channel estimation,
whereas most of the existing approaches must assume that
the channel order is known or treat the problem of order es-
timation and parameter estimation separately.
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