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The goal of this paper is to reduce the decoding complexity of space-time block turbo-coded system with low performance degra-
dation. Two block turbo-coded systems with antenna diversity are considered. These include the simple serial concatenation of
error control code with space-time block code, and the recently proposed transmit antenna diversity scheme using forward error
correction techniques. It is shown that the former performs better when compared to the latter in terms of bit error rate (BER)
under the same spectral efficiency (up to 7 dB at the BER of 10−5 for quasistatic channel with two transmit and two receive anten-
nas). For the former system, a computationally efficient decoding approach is proposed for the soft decoding of space-time block
code. Compared to its original maximum likelihood decoding algorithm, it can reduce the computation by up to 70% without
any performance degradation. Additionally, for the considered outer code block turbo code, through reduction of test patterns
scanned in the Chase algorithm and the alternative computation of its extrinsic information during iterative decoding, extra 0.3 dB
to 0.4 dB coding gain is obtained if compared with previous approaches with negligible hardware overhead. The overall decoding
complexity is approximately ten times less than that of the near-optimum block turbo decoder with coding gain loss of 0.5 dB at
the BER of 10−5 over AWGN channel.
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1. INTRODUCTION

One of the major challenges in wireless communications is
the severe channel fading caused by multipath and move-
ment in radio link. Recently, in order to explore the improved
capacity of multiple-in multiple-out (MIMO) system over
flat Rayleigh fading channel [1], different transmit diversity
techniques have been developed to benefit from antenna di-
versity in the downlink while placing the diversity burden
on the base station [2, 3]. Although space-time block code
(STBC) has attracted a lot of attention, few papers have been
published on its hardware implementation. The authors in
[4] addressed the hard decoding of STBCs, which is based
on the maximum likelihood decoding algorithm presented
in [3].

STBC provides the maximum possible diversity advan-
tage for multiple transmit antenna system with a very low
complexity decoding algorithm. However, in order to achieve
significant coding gain, it should be concatenated with a

powerful outer code [5, 6, 7]. The current powerful error
control codes use iterative soft-input soft-output (SISO) de-
coding to achieve performance approaching Shannon limit.
Thus, the concatenated STBC decoder must provide soft out-
put, that is, the reliability information of the decision bit, to
the SISO block turbo decoder. Therefore, efficient soft de-
coding algorithm for STBC should be considered.

In [8], a near-optimum iterative algorithm for decoding
block turbo codes (BTCs) was proposed, which is based on
the chase algorithm [9]. Unfortunately, in spite of its near-
optimum performance comparable to convolutional turbo
code (CTC) [10], the decoding complexity is fairly high. In
order to offer a compromise between performance and com-
plexity, several complexity reduction schemes have been dis-
cussed and presented [11, 12, 13, 14, 15, 16].

More recently, the authors in [17] proposed to achieve
antenna diversity by directly mapping the turbo-coded bits
to the transmit antennas. This idea has also been extended
to BTCs [18]. Simulation results showed that in terms of
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Figure 1: Space-time block turbo-coded system (BTC-STBC system).

coding gains, BTCs associated with transmit and receive di-
versity (BTC-Diversity system) performs as well as CTC. In
this paper, the serial concatenation of BTC-STBC system is
simulated, which achieves additional coding gain compared
to BTC-Diversity system under the same spectral efficiency
(up to 7 dB at the bit error rate (BER) of 10−5 over quasistatic
channel with two transmit and two receive antennas). STBC
with code rate 1 is chosen to preserve the code rate of the
whole system.

In this paper, a new efficient decoding approach is pro-
posed for STBC. It introduces no performance degrada-
tion and requires much lower hardware complexity, which is
more suitable for real implementation. For the chosen outer
error control code, BTC, we also present a new power effi-
cient method which gains an extra 0.3 dB to 0.4 dB coding
gain compared to the scheme presented in [12]. The hard-
ware overhead is negligible. This implies that the complex-
ity of our new block turbo decoder is about ten times less
than that of the near-optimum block turbo decoder [19]
with a performance degradation of only 0.5 dB at the BER
of 10−5 over additive white Gaussian noise (AWGN) chan-
nel. Thus, the very large scale integration (VLSI) implemen-
tation of the space-time block turbo-coded system with low
complexity and acceptable error correction capability is pos-
sible.

This paper is organized as follows. In Section 2, two
space-time block turbo-coded systems are briefly introduced
and their performances are compared under the same spec-
tral efficiency over block fading or quasistatic fading channel
with two transmit and one or two receive antennas. Section 3
presents the complexity reduction approaches for soft de-
coding of STBC in the system with better BER performance.
Section 4 is devoted to the complexity reduction schemes for
the block turbo decoder. Section 5 provides the conclusions.

2. SPACE-TIME BLOCK TURBO-CODED SYSTEMS

In this section, space-time block codes with maximum like-
lihood decoding algorithm are briefly explained and the per-
formances of the two space-time block turbo-coded systems
are compared under the same spectral efficiency.

Assuming that flat Rayleigh fading matrix channel and
perfect channel state information is available, the log a pos-
teriori probability (LAPP) of the two transmitted symbols c1
and c2 for the STBC with two transmit antennas is given as

follows [5]:
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for the symbol c2, where r
j
t is the signal received at antenna j

at each time slot t, hi, j is the path gain from transmit antenna
i, 1 ≤ i ≤ n, to receive antenna j, 1 ≤ j ≤ m, and sk is the
possible complex constellation symbol.

2.1. BTC-STBC system versus BTC-Diversity system

Simple STBC concatenated with powerful forward error cor-
rection channel code as outer code is expected to provide sig-
nificant coding gain in addition to the diversity advantage.
The block diagram of space-time block turbo-coded system
is illustrated in Figure 1.

At the receiver end, the output from STBC decoder is the
LAPPs for each transmitted symbol. Before it is input to the
block turbo decoder, the log-likelihood ratios (LLRs) for in-
dividual bits have to be calculated, which resembles the re-
verse function of gray mapping in transmit antenna,
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)
. (4)
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Figure 2: BTC for transmit antenna diversity (BTC-Diversity system).

Another considered BTC for transmit antenna diversity
system is shown in Figure 2. This straightforward system
is chosen because it has recently drawn much interest and
achieves much better performance compared to the original
space-time trellis code [17]. Denoting the set of constellation
points by {ci}2Mi=1, the LLRs of bl, l = 1, 2, . . . , nM, usingm re-
ceived signals from n transmit antennas, can be obtained as
(see [17])
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whereN0 stands for the noise power spectral density. To sim-
plify the computation complexity, the following approximate
equation is used in our simulation:
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Both BTC-Diversity and BTC-STBC systems have much
flexibility since the block turbo decoder remains the same no
matter which type of modulation scheme or fading chan-
nel is employed. Nevertheless, BTC-STBC system has two
more building blocks (space-time block encoder and de-
coder). Furthermore, some modifications have to be made
to the STBC codec if the number of transmit antennas is in-
creased.

However, the overall complexity of the BTC-STBC sys-
tem is not increased as the LLR computationmodule is much
simpler. From (5) and (6), it is easily seen that the number
of computations N required to obtain the LLRs for each bit
in BTC-Diversity grows exponentially with the constellation
size 2M (N = 2M×n, where n stands for the number of trans-
mit antennas). On the other hand, for BTC-STBC system,
this number grows only linearly (N = 2M), instead of expo-
nentially, with the constellation size (see (1), (2), and (3)).

For example, if 16-QAM is adopted for both systems with
two transmit antennas, 256 comparison terms have to be cal-
culated for BTC-Diversity system, while only 16 comparison
terms need to be calculated for BTC-STBC system. This sig-
nificant hardware reduction is very attractive for VLSI imple-
mentation.

2.2. Performance comparison under the same
spectral efficiency

The considered BTC is composed of two identical system-
atic extended Hamming code [exHamming(32, 26, 4)]2 with
code rate R = 0.660. STBC is defined by the transmis-
sion matrix G2 as [2]. Helical interleaver as described in
[20] is employed in our simulation. For fair comparison,
the spectral efficiencies for the two systems are kept the
same. In the case of two transmit antennas, BTC-STBC sys-
tem transmits two symbols in two time slots while BTC-
Diversity system transmits two symbols in just one time
slot. Therefore, for 2R bits/s/Hz (1.32 bits/s/Hz), BTC-STBC
uses QPSK while BTC-Diversity uses BPSK modulation. For
4R bits/s/Hz (2.64 bits/s/Hz), BTC-STBC uses 16-QAMwhile
BTC-Diversity uses QPSK modulation. Here, R refers to the
code rate of BTC.

All the performance are evaluated over either the
block fading channel or quasistatic fading channel. Here,
block fading channel means that the path gains are con-
stant for consecutive L channel symbols, where L is
smaller than frame length (1024 bits for our considered
[exHamming(32, 26, 4)]2 code). These L adjacent symbols
are also called a faded block since they are affected by the
same fading value. On the other hand, quasistatic fading
channel means that the path gains are constant for a frame
and change independently from one frame to the next. Ac-
tually, quasistatic channel is a special case of block fading
channel, where L is equal to frame length. Two different L
values are simulated: 2 or 64. The case of L = 2 guaran-
tees the validity of the decoding algorithm of STBC, which
is based on the assumption that the path gains are con-
stant over two successive transmissions. While the case of
L = 64 indicates that there are four (half rate, 4R bits/s/Hz)
or eight (full rate, 2R bits/s/Hz) differently faded blocks per
frame.
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Figure 3: BER comparison for BTC-STBC system and BTC-Diversity system: 2R bits/s/Hz, 4 iterations, two transmit antennas, and (a) two
or (b) one receive antennas.

The BER comparison of the two transmit and two receive
antennas with 2R bits/s/Hz over different channels is shown
in Figure 3a.

As L increases, the SNR has to be increased accordingly to
maintain the same BER performance. At the BER of 10−5, the
advantage of BTC-STBC over BTC-Diversity system is only
around 1.5 dB over L = 2 and L = 64 block fading channels,
while this additional coding gain is up to 8 dB over quasistatic
channel.

Similar results are obtained for two transmits and one re-
ceive antenna case (Figure 3b). For the L = 2 block fading
channel, BTC-STBC system demonstrates additional coding
gain of 3 dB at the BER of 10−5. This extra coding gain is
6 dB over L = 64 block fading channel. More coding gain is
expected over quasistatic fading channel.

In Figure 4, spectral efficiency is increased to 4R bits/s/Hz
from 2R bits/s/Hz. Significant coding gains of BTC-STBC
system over BTC-Diversity system are also observed. At the
BER of 10−5, for two transmit and two receive antenna, the
coding gain is 2 dB over L = 64 block fading channel and
7.5 dB over quasistatic fading channel. It is interesting to note
that as L = 2, the performance of the two systems are com-
parable. For two transmit and one receive antennas system,
the coding gain is 4 dB over L = 2 block fading channel and
11 dB over L = 64 block fading channel.

3. COMPLEXITY REDUCTIONOF SPACE-TIME
BLOCK DECODER

In this section, a powerful efficient algorithm is described
for evaluating the bit LLRs in (3). As an example, the trans-
mission matrix for two transmit antennas G2 [2] and BPSK,
QPSK, and 16-QAM modulation schemes are adopted here.
Similar approaches can be easily applied to other transmis-
sion matrices and modulation schemes.

Denoting sk = sI+ jsQ, we can rewrite the decisionmetric
used for the LAPP computation in (3) as
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Figure 4: BER comparison for BTC-STBC system and BTC-Diversity system: 4R bits/s/Hz, 4 iterations, two transmit antennas and (a) two
or (b) one receive antennas.

From (7), further simplifications can be made as follows:

(1) the term α2 + β2 is common for all sk, thus, it can be
excluded from the comparisons;

(2) forM-PSKwith equal energy signal constellations, (γ+
1)(s2I + s2Q) can also be cancelled out. Then,

∧(bl
) = 2 max

sk|bl=1
(
αsI + βsQ

)− 2 max
sk|bl=0

(
αsI + βsQ

)
. (9)

From (9), it is observed that the bit LLRs for M-PSK are
only dependent on values of α, β and modulation scheme
which decides sI and sQ. In the following, the computation of
those bit LLRs for each considered modulation scheme will
be described, respectively.

3.1. BPSK andQPSK

The signal constellations for BPSK and QPSK are illustrated
in Figure 5. Gray mapping is assumed.

As seen in Figure 5, there is no complex signal for BPSK
constellations, that is, sQ = 0. According to (9), the bit LLR
for BPSK case is

∧(b) ≈ 2α− 2α(−1) = 4α. (10)

In a straightforward manner, the two bit LLRs for QPSK

are simplified as follows:
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3.2. 16-QAM

The signal constellations for 16-QAM are illustrated in
Figure 6. Gray mapping is also assumed.

For the 16-QAM case, due to the unequal signal energies
of constellations, the term (γ + 1)(s2I + s2Q) in (7) has to be
considered for comparisons. For the first bit b0, we have

∧(b0
) ≈ max

sk|b0=1
{
2
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.

(12)

Because the compared signal constellations are located
in four quadrants and symmetric, the most possible signal
constellation point to maximize the decision metric can be
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determined just by observing the signs of α and β. Therefore,
there are merely four cases. If α > 0 and β > 0,

∧(b0
) ≈ max
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= 4β − 8(γ + 1).

(13)

The reason for the second step is that the points s2 and
s3, s6 and s7 have the same sQ value. In the third step, the

two maximum terms can always be cancelled out since the
two finally chosen points will have the same sI values. By the
same method, ∧(b0) can be computed for three other cases,
that is, (i) α > 0 and β < 0, (ii) α < 0 and β > 0, and (iii)
α < 0 and β < 0. As another example, for α < 0 and β < 0
case,
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One general expression can be used to summarize all the re-
sults:

∧(b0
) ≈ sign(β)∗ 4β − 8(γ + 1). (15)

Similarly, the LLR for the second bit b1 is

∧(b1
) ≈ sign(α)∗ 4α− 8(γ + 1). (16)

However, for the other two bits b2 and b3, it is slightly
more complicated since the compared signal constellations
are not located in four different quadrants. For the fourth
bit b3, the eight compared signals are symmetric along the I-
axis. Thus, four of them can be eliminated by just observing
the sign of β. The remaining four points in each compared
group are always simultaneously in the lower or upper plane
and symmetric along theQ-axis. Consequently, sQ can always
be cancelled out, that is, ∧(b3) depends only on the sign, not
on the absolute value of β. If β > 0,
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Otherwise,
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}
.
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In this case, in order to further reduce the complexity, the
concept of “bias point” can be introduced as [4], which de-
pends on the variable γ. The four compared signals originally
within one quadrant are then separated into four new quad-
rants with the bias point acting as the new “origin.” The new
value of the signals are redefined by the difference between
its original real value and the corresponding bias point. By
observing the signs of the new value, the possible candidates
can be further reduced from four to one. For α, there are two
bias points, one is in the right-half plane and the other is in
the left-half plane. No bias point is needed to calculate β since
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it is already cancelled out in the decision metric. As a result,
the procedure to compute ∧(b3) has the following two steps.
First, calculate the bias points: bias = 2∗(1+γ), α′1 = α−bias,
α′2 = α + bias. Secondly, observe the signs of α′1 and α′2 to
compute the right soft output. Consequently, there are four
possible cases:

(1) if (α′1 > 0 and α′2 > 0),

∧(b3
) ≈ {2αsI − (γ + 1)s2I

}∣∣s3 −
{
2αsI − (γ + 1)s2I

}∣∣s1
= {2α∗ 3− 9(γ + 1)

}− {2α∗ (−1)− (γ + 1)
}

≈ 8α− 8(γ + 1);
(19)

(2) else if (α′1 > 0 and α′2 < 0),

∧(b3
) ≈ 2α(3)− 9(γ + 1) +

{
2α(3) + 9(γ + 1)

} = 12α;
(20)

(3) else if (α′1 < 0 and α′2 > 0),

∧(b3
) ≈ {2α− (γ + 1)

}− {2α∗ (−1)− (γ + 1)
} = 4α;

(21)

(4) else

∧(b3
) ≈ {2α− (γ + 1)

}− {2α∗ (−3)− 9(γ + 1)
}∧ (b3

)

≈ 8α + 8(γ + 1).
(22)

In a similar approach, the LLR for the third bit is cal-
culated. Nevertheless, the cancelled-out terms here are sI in-
stead of sQ:

∧(b2
) ≈ max

s0−s7
{
2βsQ − (γ + 1)s2Q

}−max
s8−s15

{
2βsQ − (γ + 1)s2Q

}
.

(23)

The bias points are bias = 2 ∗ (1 + γ), β′1 = β − bias,
β′2 = β + bias. Then, the soft output is

(1) if (β′1 > 0 and β′2 > 0), ∧(b2) ≈ 8β − 8(γ + 1);
(2) else if (β′1 > 0 and β′2 < 0), ∧(b2) ≈ 12β;
(3) else if (β′1 < 0 and β′2 > 0), ∧(b2) ≈ 4β;
(4) else ∧(b2) ≈ 8β + 8(γ + 1).

In other words, all the three variables α, β, and γ are
required to compute the LLRs for 16-QAM modulation.
However, through the bias point calculation approach, many
comparisons among half constellation size of signals have
been avoided.

3.3. Complexity analysis

In this section, the hardware complexity between the origi-
nal and proposed maximum likelihood decoding algorithm
will be compared. The complexity considered here is in terms
of the number of multiplications and additions for each de-
coded symbol. The following assumptions are used as in [4].

Table 1: Complexity comparison between original and proposed
decoding algorithm.

Total number of iterations BPSK QPSK 16-QAM

Original algorithm 28N − 2 32N + 6 68N + 34

Proposed algorithm 8N − 1 16N − 2 24N + 6

Computation reduction (N = 8) 72% 52% 66%

(1) The word length of the operands is N bits.
(2) Addition and subtraction or comparison are counted

as one operation and real multiplication or square op-
eration is counted as (N−1) operations. Multiplied by
2, 4, or 8 is neglected since it can be implemented as
simple shift operation in hardware.

(3) A complex multiplication is counted as 4 multiplica-
tions and 2 additions, that is, (4N − 2) operations, in-
cluding real or imaginary parts, each equal (2N − 1)
operations.

(4) The signal energies for BPSK and QPSK are assumed
to be known in advance and their computations are ex-
cluded from complexity count. For the 16-QAM case,
the signal energies and its multiplication with γ are
only counted for 4 instead of 16 times due to the in-
herent symmetry property.

The comparison results are displayed in Table 1. For ex-
ample, for BPSK case, in the proposed algorithm, only α
needs to be computed to obtain the soft output ∧(b). For
the symbol c1 in (8), the computation of the real part of

r
j
1h
∗
2, j and (r

j
2)
∗h1, j for two transmit antennas, j = 1, 2, needs

(2N − 1) × 4 = (8N − 4) operations. Three more additions
are necessary to obtain α, thus, the overall decoding com-
plexity is (8N − 4) + 3 = (8N − 1) operations. While in the
original algorithm, for the symbol c1, α + jβ for two trans-
mit antennas requires (8N − 1)× 2 = (16N − 2) operations.
Additionally, (2N − 1) × 4 + 1 = (8N − 3) operations for
γ and 2 × (N − 1) + 2 = 2N operations for each compared
signal sk; another three additions for final soft output are re-
quired (see (1) and (3)). The total number of operations is
(16N−2)+(8N−3)+2N×2+3 = (28N−2). By using sim-
ilar method, the total number of operations for QPSK and
16-QAMwith both the original and proposed algorithms can
also be obtained.

As observed in Table 1, the new proposed soft decod-
ing algorithm for STBC with two transmit antennas reduces
the total number of operations by 52% to 72%. Similar re-
sults are expected for other transmission matrices with more
transmit antennas. This significant computation reduction
will consequently cause much lower power consumption in
VLSI implementation.

According to our simulation results under various con-
figurations, the proposed simplified soft decoding approach
achieves exactly the same performance as the original max-
imum likelihood algorithm for space-time block decoder
shown in Section 2, which is omitted here. On the other
hand, for the details of BTC decoder, we refer the reader to
[19].



1342 EURASIP Journal on Applied Signal Processing

4. COMPLEXITY REDUCTIONOF BLOCK
TURBODECODER

Since our major goal in this paper is to reduce the decoding
complexity of the space-time block turbo-coded system, in
Section 3, the simplified decoding algorithm is already pro-
posed and evaluated for the space-time block decoder. In this
section, we investigate the complexity reduction issues for the
block turbo decoder.

4.1. Iterative decoding of BTCs based on
Chase algorithm

BTC is also called turbo product code, which is decoded
by sequentially decoding the rows and columns in order to
reduce the decoding complexity based on the Chase algo-
rithm [9]. The main idea of the Chase algorithm is to limit
the number of reviewed codewords to codeword subset Ω
formed by the following steps.

step 1: Determine p least reliable positions using channel in-
formation R.

step 2: Form the 2p binary n-tuple test patternsT at the p least
reliable positions.

step 3: Decode test sequences Zq = r ⊕ tq using an algebraic
decoder to form subset Ω.

To maintain the near-optimum performance, the itera-
tive SISO approach is employed. The soft input to the de-
coder R(m) is

[
R(m)

] = [R] + α(m)× [W(m)
]
, (24)

wherem is the decoding step, R is the received channel infor-
mation,W(m) is the extrinsic information input to the next
iteration, and α(m) is the scaling factor which takes a small
value in the first decoding step and increases as the BER tends
to zero. The extrinsic information is the difference between
soft output (normalized LRR) and soft input of the decoder
and is calculated as follows:

wj(m) =
∣∣R(m)− C

∣∣2 − ∣∣R(m)−D
∣∣2

4
× dj − r j(m) (25)

or

wj(m) = β × dj , (26)

when C does not exist in the considered subset, where D is
the maximum likelihood decoded (MLD) codeword, C is the
competing codeword of D, that is, C has also minimum dis-
tance to R but cj �= dj , and β is the empirically determined
reliability factor.

4.2. Complexity reduction techniques

For the block turbo decoder described above, we can see
that there are two major sources of complexity. If we con-
sider the decoding of a column of the matrix, the first source
lies in step 3 of the procedures to find the codeword subset
Ω. For this column, each of q = 2p formed test sequences
has to perform one syndrome decoding, that is, the decoding

complexity of one column for this procedure is q ×m times
the complexity of a syndrome decoder, where m stands for
the number of decoding steps.

The second source of complexity is the extensive compu-
tation of the extrinsic informationW(m) associated with the
MLD codeword D. For each wj , this procedure has to search
among the q codewords in the codeword subset Ω whether
there is a competing codeword C at the smallest distance
from R such that cj �= dj . Thus, D is unique to all symbols
of R, while C may be different for each symbol. If we find C,
then we use (25), else we use (26) to compute wj . The decod-
ing complexity of one column for this second procedure is
q×n×m times the complexity of an elementary compare and
save operation, where n stands for the block length. There-
fore, in order to reduce the complexity of the block turbo
decoder, we can either decrease the number of test patterns q
or simplify the extrinsic information computation.

4.2.1. Simplifying the extrinsic information
computation

We first look at the second possibility. To avoid searching the
competing codeword C for each symbol of the block code, it
can be replaced by the MLD codeword of last decoding step
D(m− 1) when computing the extrinsic information, which
is called gradient algorithm [12]. In terms of complexity re-
duction, this is a very clever way since the decoding complex-
ity of one column for the second procedure is reduced down
to n×m times the complexity of an elementary compare and
save operation, that is, the complexity is decreased by more
than ten times. Nevertheless, its drawback is that the replaced
competing codewordC = D(m−1) is not always a codeword.
The decoder guarantees that we have codewords along the
rows (columns) of the matrix in the current decoding step
but not along the columns (rows) in the next decoding step.
Thus, there is no guarantee thatW(m+1) has the same inter-
pretation in this gradient algorithm as in the near-optimum
one.

A new gradient algorithm is proposed to compute the ex-
trinsic information without searching the competing code-
word C extensively [15]. The main idea is to divide the
codeword matrix [D(m)] into codeword matrix for columns
[Dcol(m)] and for rows [Drow(m)]. We consider the mth de-
coding step of the BTC and suppose that we start by decod-
ing the columns of the BTC. For odd values ofm, the decoder
processes the columns of the block turbo code as follows:

wj(m + 1)

=
∣∣∣∣∣
∣∣R(m)−Dcol(m− 1)

∣∣2 − ∣∣R(m)−Dcol(m)
∣∣2

4

∣∣∣∣∣

× dcol j(m)− r j(m)
(27)

when dcol j(m) �= dcol j(m− 1), otherwise we use

wj(m + 1) = β × dcol j(m) with β ≥ 0. (28)
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while for even values ofm, the decoder processes the rows of
BTC

wj(m + 1)

=
∣∣∣∣∣
∣∣R(m)−Drow(m− 1)

∣∣2 − ∣∣R(m)−Drow(m)
∣∣2

4

∣∣∣∣∣

× drow j(m)− r j(m)
(29)

when drow j(m) �= drow j(m− 1), otherwise we use

wj(m + 1) = β × drow j(m) with β ≥ 0. (30)

Here is another interpretation of this algorithm. Since the
rows and columns of the BTC are always decoded alterna-
tively, one after another, the new proposed algorithm can be
equivalently considered as usingD(m−2) instead ofD(m−1)
to compute extrinsic informationW(m + 1):

wj(m + 1) =
∣∣∣∣∣
∣∣R(m)−D(m− 2)

∣∣2 − ∣∣R(m)−D(m)
∣∣2

4

∣∣∣∣∣

× dj(m)− r j(m),
(31)

form ≥ 2, when dj(m) �= dj(m− 2), otherwise we use

wj(m + 1) = β × dj(m) with β ≥ 0. (32)

When m < 2, the nongradient algorithm can be used. Com-
pared to the gradient algorithm in [12], this new algorithm
guarantees that the matrix [Dcol(m− 1)] or [Drow(m− 1)] is
always a codeword. As a result, the performance is better. In
fact, an extra 0.3 dB to 0.4 dB coding gain is obtained. The
hardware overhead is negligible since only one small buffer is
needed to store the single bit codeword information.

4.2.2. Reducing the number of test patterns

For the first possibility, using the algebraic structure of ex-
tended Hamming codes that consist of BTCs and the syn-
drome of a received word in a component code, one can show
that the required numberN(p, d) of test patterns is as follows
[11]:

(1) no error detection: N(p, d) = 2(p−1) + 1− p,
(2) single error detection: N(p, d) = 2(p−1),
(3) double error detection: N(p, d) = 2(p−1) + 1,

where p is the number of least reliable bits scanned in the
Chase algorithm and d is the number of algebraically de-
tected errors in a received word. In this way, the required
number of test patterns decreases from 2p to N(p, d). An-
other important feature of this reduction scheme is that it
eliminates only the unnecessary test patterns without chang-
ing the codeword subset Ω for a fixed p. Consequently, it re-
sults in no performance degradation.
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Figure 7: BER versus Eb/N0 of [exHamming(32, 26, 4)]2 using dif-
ferent gradient algorithms.

4.3. Simulation results

Two BTCs are considered for performance evaluation, one
is [exHamming(32, 26, 4)]2 with rate 0.660 and the other
is [exHamming(64, 57, 4)]2 with rate 0.793. All the perfor-
mance are evaluated on the AWGN channel with QPSKmod-
ulation. Before proceeding to the simulation results, we will
now give the different parameters used in our simulation:

(1) the number of test patterns q is 8 and are generated by
the p = 4 least reliable bits;

(2) α = [0.0, 0.2, 0.3, 0.4, 0.8, 0.9, 1.0, 1.0];
(3) β = [0.2, 0.4, 0.6, 0.7, 0.8, 0.9, 1.0, 1.0];
(4) the maximum iteration number is 4, which is equiva-

lent tom = 8 decoding steps.

The performance comparison between our new gradient
algorithm and that in [12] for the [exHamming(32, 26, 4)]2

and [exHamming(64, 57, 4)]2 BTC is shown in Figures 7
and 8, respectively. From these two figures, extra coding
gain can be clearly observed with our new gradient al-
gorithm using separate row and column MLD codeword
matrices compared with that using only one codeword
matrix. At the BER of 10−5, the extra coding gain is
0.4 dB for [exHamming(32, 26, 4)]2 BTC and 0.3 dB for
[exHamming(64, 57, 4)]2 at the 4th iteration.
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Figure 8: BER versus Eb/N0 of [exHamming(64, 57, 4)]2 using dif-
ferent gradient algorithms.

Compared to the original near-optimum algorithm us-
ing 16 test patterns, using only 8 test patterns introduces
negligible performance degradation (less than 0.1 dB for
both [exHamming(32, 26, 4)]2 and [exHamming(64, 57, 4)]2

block turbo code). It verifies the correctness of the statement
that reducing the number of test patterns from 2p down to
N(p, d) for extended Hamming codes introduces no perfor-
mance loss.

By implementing the proposed algorithm, the cod-
ing gain loss is reduced to 0.55 dB at the BER of
10−5 for the [exHamming(32, 26, 4)]2 code. For the
[exHamming(64, 57, 4)]2 block turbo code, the result is
even better and the degradation is only 0.5 dB at the 4th
iteration. This is a very good trade-off between complexity
and performance since it reduces the complexity of block
turbo decoder by more than ten times.

Other important complexity reduction issues such as
how to adaptively choose the scaling factors α and β under
various simulation situations and memory reduction tech-
niques have been addressed in [14, 15].

5. CONCLUSIONS

In this paper, a new efficient decoding scheme for the soft de-
coding of STBC is presented. It achieves the same optimum

performance with up to 70% hardware complexity reduc-
tion. This space-time block decoder providing soft informa-
tion makes its concatenation to any soft-input soft-output
decoder more flexible with much lower power consumption.
The simulation results using space-time block turbo-coded
system shows that the simplified algorithm is correct. Com-
pared to the most recent block turbo code for space-time
systems, this serial concatenation scheme is still more favor-
able in terms of bit error performance and complexity under
the same spectral efficiency. The decoding complexity reduc-
tion techniques are also explored for the considered block
turbo code, which include test patterns reduction and ef-
ficient alternative extrinsic information computation. Con-
sequently, the decoding complexity is reduced by approxi-
mately ten times with coding gain loss of 0.5 dB at the BER of
10−5 over AWGN channel. Thus, the VLSI implementation of
the space-time block turbo-coded system with low complex-
ity and acceptable error correction capability is possible.
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