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Blind signal separation can easily find its position in audio applications where mutually independent sources need to be separated
from their microphone mixtures while both room acoustics and sources are unknown. However, the conventional separation
algorithms can hardly be implemented in real time due to the high computational complexity. The computational load is mainly
caused by either direct or indirect estimation of thousands of acoustic parameters. Aiming at the complexity reduction, in this
paper, the acoustic paths are investigated through an acoustic similarity index (ASI). Then a new mixing model is proposed. With
closely spaced microphones (5-10 cm apart), the model relieves the computational load of the separation algorithm by reducing
the number and length of the filters to be adjusted. To cope with real situations, a blind audio signal separation algorithm (BLASS)
is developed on the proposed model. BLASS only uses the second-order statistics (SOS) and performs efficiently in frequency

domain.
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1. INTRODUCTION

In recent years, blind signal separation (BSS) has grasped
the attention of lots of researchers because of its numer-
ous attractive applications in speech processing, digital com-
munications, medical science, and so on. BSS, within the
framework of independent component analysis (ICA) [1, 2],
deals with the problem of separating statistically indepen-
dent sources only from their observed mixtures while both
the mixing process and source signals are unknown.

For acoustical applications, it can be used to extract indi-
vidual audio sources from multiple microphone signals when
several sources are simultaneously active [3]. In other words,
it becomes possible, for instance, in a teleconferencing sys-
tem, to pick up one desired speech signal under a relatively
low signal-to-noise ratio (SNR) (so called “cocktail party ef-
fect”).

For a certain combination of source-sensor positions,
instead of solving three-dimensional wave equations, the

acoustic transmission from the source to the sensor can be
simply described using an impulse response, which is ob-
tained by measuring the signal received by the sensor after
a sound pulse has been emitted from the source. An example
is shown in Figure 1.

Thus, an acoustic mixing process in a reverberant envi-
ronment can be modelled as

x[k] = (h* s)[k], (1)

where s[k] = (si[k],..., sa[k])T and x[k] = (x; [K], ..., xa[k])T
denote the vectors of audio sources and microphone signals,
respectively, and

hii[k] hi2[k] hin (k]
hlk] = | SR (2)
hui k] hu2[k] hun k]
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is a transfer function matrix whose element /;; expresses the
room impulse response (RIR) from the jth source to the ith
microphone, k is the discrete-time index which corresponds
to the sampling moment, * denotes linear convolution and
()T denotes matrix transpose. Here we assume the numbers
of sources and microphones are the same and the environ-
ment is noise free.

The sources can be separated either by inverting the
transfer function matrix h[k] after having obtained the es-
timate of the individual h;; (known as forward model meth-
ods), or by directly finding a demixing matrix G[k] which
satisfies (G * h)[k] = I[k]P, where I[k] is a diagonal trans-
fer function matrix and P denotes a matrix of permutation
(known as backward model methods).

In principle, a sound pulse emitted from the source will
be reflected infinite times by the walls and other obstacles, so
an IIR filter seems to be suitable to describe the characteris-
tics of an RIR. However, as shown in Figure 1, an RIR reveals
a decaying waveform so that after a certain number of taps
the residual signal becomes too weak to be detected by the
sensor (e.g., human ears). Therefore, in practice, an FIR fil-
ter can be a quite acceptable approximation. In audio separa-
tion and many other applications, an FIR filter, for instance,
having 1000-2000 taps with 8 kHz sampling frequency in a
usual office, gives a good performance. An FIR filter is pre-
ferred because it provides much convenience when applied
in digital signal processing.

For RIRs of such a considerably long length, in both for-
ward and backward model methods, audio separation be-
comes a huge task due to the estimation of thousands of co-
efficients. It gets even more challenging in real-time imple-
mentations which are often needed in audio signal process-
ing.
In this paper, aimed at the feasibility of real-time appli-
cations, a simplified mixing model is proposed which takes
advantage of acoustic propagation similarities. In literature,
amodel which is close to the proposed one has also been used
in signal separation analysis, especially in 2 X2 case, for exam-
ple, in [4, 5, 6]. By only considering the antidiagonal terms
in the mixing matrix, the theoretical analysis of BSS became
much more simplified. However, its feasibility has never been
explicitly studied from an application point of view. In [4],
two possibilities were given. One was that, two sources were
standing near their own sensors so that only the transfer
functions in two coupling paths (antidiagonal terms in the
mixing matrix) should be taken into account; the other was
that, in an anechoic, isotropic, and homogeneous environ-
ment, a coupling path could spatially equal the direct path in
cascade with an auxiliary path. The latter resembles the form
of the proposed model in this paper. In general, these two hy-
potheses will not hold in a natural reverberant environment.
Besides, the noncausality introduced during the simplifica-
tion has not been considered, which is inevitable according
to the analysis in Section 4. Another paper that should be
mentioned is [7], where the authors used a compact (1 cm)
microphone array in order to describe the difference between
the acoustical paths with a pure time delay. The signal sepa-
ration was done in two stages: first separation by estimating
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FIGURE 1: An example of an impulse response between two points
in a room.

and inverting the delay matrix and further separation with
a feedback network. The idea is somewhat related, but we
replace the pure delay with a filter of which the characteris-
tics will be carefully studied. The proposed model provides
the possibility of achieving signal separation in one step and
relieving the excessive constraints on the dimension of the
microphone array. On the basis of the new model, a BSS al-
gorithm is described which only uses second-order statistics
(SOS) and is efficiently realized in frequency domain. By ap-
plying the simplified mixing model, it is shown that the num-
ber of filters to be estimated is reduced to some extent. Be-
sides, the taps of filters are significantly decreased in the case
where microphones are intentionally closely placed. Several
other advantages are mentioned as well. As a whole, they ef-
fectively give a possibility to a real-time implementation of
audio source separation.

The remainder of this paper is organized as follows.
In Section 2, concentrating on a 1-speaker-2-microphones
system, we study the similarity between acoustic paths by
defining an acoustic similarity index (ASI). Section 3 gives a
simplified mixing model for blind audio source separation
in both time and frequency domain. In Section 4, a non-
blind speech signal separation scheme is designed in order
to demonstrate the feasibility of the proposed model. To be
able to cope with a real audio signal separation problem, we
develop an adaptive BSS algorithm for the new mixing model
in Section 5. Finally, Section 6 gives the conclusions.

2. SIMILARITY OF ACOUSTIC PATHS
2.1. Room impulse responses

An RIR describes the characteristics of a propagating path
when a sound propagates from its source to a sensor (say
a microphone). The bandwidth needed for an RIR differs
according to a specific application. For voiced speech, the
upper bound drops below 4 kHz. Therefore, in speech sig-
nal separation, a sampling frequency f; of 8 kHz is adequate.
Without extra indication, f; = 8kHz will be used in this

paper.
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Throughout the whole paper except for the experiments
on the recorded real-world data, we employ a Matlab pro-
gram “Room” [8], which applies the image theory [9], to
generate RIRs. This choice is made for several reasons.

(1) The experimental environment is clean and we are able
to have accurate control over the experimental con-
ditions, such as the room dimensions, wall reflection
coefficients, and, especially, the subtle changes of the
source and microphone positions.

(2) The image solution of a rectangular enclosure, like
the office environment, rapidly approaches an exact
solution of the wave equation as the walls of the
room become rigid. Under typical conditions, the fre-
quency range of 100 Hz—4 kHz, wall reflection coeffi-
cients greater than 0.7, and both source and micro-
phone not close to the wall, it does not introduce se-
rious problems into the final result [9].

Now let us have a close look at the characteristics of an
RIR. The room dimensions are uniformly adopted as 4m X
5mx3 m (widthxdepthxheight), like that of a normal office.
Placing one of the ground corners at the origin of a three-
dimensional coordinate system, we can express any location
in the room with a triplet (x, y, z), with x, y, and z the width,
depth, and height, respectively. By default, the sources and
microphones are located at the plane of z = 1.5m.

Listed in Figure 2 are two RIRs with different wall re-
flections, corresponding to an almost anechoic environment
with a reverberation time Tgy = 0.116 second and a strongly
reverberant environment with Ty = 0.562 second. The re-
verberation time Ty is defined as the time needed for the
sound pressure level to decay by 60 dB when a steady-state
sound source in the room is suddenly switched off [10]. The
first observation is that the RIR with Tgg = 0.562second
has much denser reflections and much longer decaying time
than that with Tgg = 0.116second. The second is that
the RIR with Tgy = 0.562second becomes nonminimum
phase. Usually a nonminimum phase RIR occurs when a
microphone picks up an echo stronger than the direct sig-
nal. This can happen in a strongly reverberant environ-
ment, as shown in this case, and also when a microphone
is placed more closely to a wall or other obstacles than to the
source.

2.2, Susceptibility of a room impulse response

Due to the wide range of wavelengths (from about 17 mm
to 17 m) and the low propagating speed of a sound, a slight
change of the source or sensor position may influence the
fine structure of the impulse response significantly.

To study this susceptibility, consider a 1-speaker-2-
microphone setup in the aforementioned room. The RIRs
from the speaker at (xs, ys,z;) to the microphone 1 at
(x1, y1,21) and 2 at (xy, ¥2,22) are described by hy; [k] and
hy1 k], respectively. Both are of length Ly. A difference room
impulse response (DRIR) Ahy; [k] can be defined as

hai[k] = (Ahyy * hiy) [K]. (3)

The DRIR is used to describe the variation of the RIR
when the microphone position is shifted from (x;, y1,21) to
(%2, ¥2, 22). It is exists in the form of an IIR filter as

Ahyi[k] = (ha1 % b)) [K]. (4)

For convenience of later analysis and processing, we like to
express it in the form of an FIR filter. We understand from
Section 2.1 that an RIR could lose the minimum phase char-
acteristic in certain acoustical conditions. So, without any
prior knowledge, we have to assume h; [k] a nonminimum
phase FIR filter. The impulse response of its stable inver-
sion will be a noncausal infinite double-sided converging se-
quence. After the convolution in (4), Ahy; [k] also becomes a
noncausal double-sided IIR filter. The exception arises only
when the zeros of h1;[k] outside the unit circle are cancelled
by those of hy; [k], which is unlikely to happen in reality. To
make it suitable for practical use, we execute two operations:
first shift it by a delay of T samples, and then truncate it such
that

Ahy[k] = Tre{ (hay * hi) [k — 7]}, (5)

where Trc{-} denotes the truncation that cuts off all the taps
before k = 0 and after k > L. The relationship between
Ahy [k] and Ahy; [k] can be written as

Ahyi [k — 7] = (Ahyy + €21) (K], (6)

€21[k] denotes an error filter varying with different choices of
7 and L, obviously €;; — 0 with 7, L — . Convolving both
sides of (6) with hy; [k] and using (3), we have

hoi[k — 7] = (Ahyy * hyy) [k] + €5 [K], (7)

where €X (k] = (€21 * hi1)[k]. When the parameters 7 and
L are chosen large enough so that the term €;;[k] becomes
negligible for certain applications, (7) can be simplified as

h21 [k — T] =~ (Ahz] *k h]])[k], (8)

where the tilde in Ahy;[k] has been omitted for simplicity
of expression. Therefore, from now on, Ahy; [k] denotes a
causal FIR filter of length L. To distinguish, we denote the
IIR Ahy, [k — 7] in (6) as AhS, [k].

In the following simulation, we study the feasibility of the
above expression in various acoustical situations. Depicted
in Figure 3a is the simulation setup, where the source and
one microphone stand still to fix hy; and the other micro-
phone moves along the hollow arrow to give various hy;’s.
We use the efficient block frequency domain adaptive filter-
ing (BFDAF) algorithm for the DRIR estimation. The block
diagram of the estimation scheme is plotted in Figure 3b. The
input signal s[k] is white and the delay adopted is always half
the filter length, that is, 7 = L/2. The simulation is done
with Tgo = 0.116second, 0.270 second, and 0.562 second,
corresponding to a weakly, a mildly, and a strongly rever-
berant environment, respectively. The results are recorded in
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F1Gure 2: Comparison of zero distributions. Left column (Tg = 0.116 second): (a) RIR, (c) zero distribution at the z plane, (e) zooming in
the area with broken lines in (c). Right column (Ts = 0.562second): (b) RIR, (d) zero distribution at the z plane, (f) zooming in the area
with broken lines in (d).
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FIGURE 3: The acquisition of the DRIR Ahy;: (a) the simulation
setup in the room, (b) the block diagram of the acquisition scheme.

Figure 4a, where the mean square error (MSE) at the vertical
axis is defined as

T 2
MSE = lim 10log ZTI?T lelk+1]] o
koo St |yl +1]] 9)

elk+1] = yalk+11 — ik + 1],

where T denotes a certain number of samples chosen for av-
eraging. The corresponding h;;’s are also plotted in Figure
4b. In fact, the residual signal e[k] in (9) satisfies

elk] = (€5, * s)[k], (10)

which reflects the normalized modelling error when we ex-
press hy; as hyp convolved with an FIR Ahy;.

For a given filter length L, two facts can be observed.
First, the more reverberant the environment is, the more
modelling error exists. This phenomenon may be intuitively
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FIGURE 4: The feasibility study of the expression in (8). (a) Magni-
tude of the residual signals. (b) RIRs in the three acoustical condi-
tions.

explained as follows. With the increase of reverberation, the
RIR gets longer; besides, its inverse becomes double sided
and both tails take quite some time to converge due to the fact
that its zeros tend to distribute more closely to the unit circle,
and even exceed it in the case of a large reverberation. This
can be seen in Figure 2d. Thus, truncating in (5) introduces
more errors. Secondly, the further the two microphones are
placed away from each other, the more modelling error we
have. This trend happens rapidly, especially when the micro-
phone spacing increases from 1 cm to 20 cm. We will analyze
this in more detail in Section 2.3.
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For practical applications, one cares mostly not about the
existence of this error, but how small it should be so as to
provide a satisfactory result to a specific application. In au-
dio signal separation, despite a certain modelling error intro-
duced when the expression (8) takes place, the separation can
still be achieved in the sense that the cross talk left is inaudi-
ble or not disturbing any more to human ears. Therefore, by
defining a DRIR Ah;,, we have effectively related the RIR h,
to h 11-

2.3. Acoustic similarity index

The second fact above suggests that as two microphones get
closer, a similarity may start to play a role between the two
acoustic paths, despite the susceptibility of an RIR. It sim-
plifies the description of the DRIR and in turn decreases the
modelling error in (7). These two aspects are not conflicting
because whether the similarity or difference prevails depends
on the accuracy of our interest. Let us have a closer look at
several DRIRs with Tgg = 0.270 second obtained in the last
simulation, which is considered to be a normal situation.

With d = 1cm, the DRIR appears like a pure time de-
lay (Figure 5a), and accordingly, its amplitude frequency re-
sponse looks quite flat in the most part of the spectrum and
really fluctuate only at a limited number of high frequency
components (Figure 5b). When the spacing increases, be-
sides the central tap, more taps start to grow in magnitude so
that more frequency components get influenced (Figures 5c,
5d, 5e, and 5f). This is understandable because as d increases
the low frequency components of a sound signal see propa-
gating path difference later and less than the high frequency
components due to their longer wavelengths. The simulation
implies that in general the characteristics of RIRs are not
very much influenced by a small shift (within 5cm in this
case) of the objects because the wavelengths of the audio sig-
nals (greater than 9 cm for voiced speech) are well above this
scale. The two acoustical paths before and after the shift can
be regarded to be alike up to a time delay.

Now we are in the position of defining an ASI that re-
flects the degree of this similarity. We put the coefficients of
Ahy [k] in a vector ¢ = [cy, ..., cz]T. The ASI can be defined
as

2
c— EmE
ASI[hn,hn] = CXp‘| - M}: (11)
||Em£||2

where E,, represents a matrix with one at the m-mth posi-
tion and zeros elsewhere, and E,.c = [0, ..., ¢m» . .., 0]T where
m = argmax;{|c;|}. The exponential part expresses the ra-
tio between the power of the central tap and the sum of the
powers of the rest, which, in frequency domain, can be inter-
preted as the flatness of the spectrum. The nonlinear func-
tion exp{-} isadopted in order to reflect the rapid drop of the
ASI as soon as the DRIR starts to differ from a pure time de-
lay. We calculate the corresponding ASI values for the DRIRs
obtained in the last subsection and record them in Figure 6a.

For all situations, the general trend is the same: the ASI
decreases as the microphone spacing d increases. When d ap-
proaches zero, the ASI approaches one, the highest value of

the similarity. It can be obtained from (11) with Ahy; a sin-
gle pulse in that case. In an almost anechoic environment,
the ASI keeps very close to one even with d large up to 20 cm
(solid line). It is because any RIR resembles a single-pulse-
like form due to very few reflections, so that any two RIRs
can be similar regardless of the object positions. While in
more reverberant cases the ASI declines drastically at the first
several centimeters (dashed and dotted lines), and after that
it stays almost zero, meaning that the similarity between the
two acoustic paths has gone.

Through the following analysis, we can see a bit more
how the ASI varies according to the shape of an RIR. Suppose
we have two RIRs, each of two taps, and they are written in z
domain as

hi (Z_l) =z P+ t’lz_(P‘Jrgl),

(12)
hyy (Zfl) =z P+ T’2Z7<p2+g2),
where we assume 1 > r,r, > 0, the time delays p; and g;
(i = 1,2) are positive integers, and p; < p,. By means of long
division, we get

Ahy (z7') = 7:?1 Ej:i;

— Z*(Pz*Pl) + rzz’(PZ’P1+g2) _ rlZ*(PZ*P1+g1)

_ rlrzz*(pz*PlJrngrgl) + rIZZ*(PZ*PﬁZgl) e,
(13)

The first term is the so-called central tap. Since the rest of
the taps converge in magnitude, the next couple of terms be-
come very critical for determining the ASI. If the microphone
spacing d is so small that g, = g holds, then we have

Ahm(z_l) =z (PP ¢ (ry — n)z—(pz—p1+g1)

—ri(ry— 1)z PP (1)
The values of the side taps are reduced because of the sub-
traction (r, — r1). When r; and r, are comparable, meaning
that the two RIRs are quite similar, the reduction could be
very significant. This will lead to a high ASI value. Other-
wise, it will be very much likely to get a low ASI except that
the values of r; (i = 1,2) themselves are much smaller than
one, for instance, in the case of a very weak reverberation.
This rough analysis is basically also applicable to the practi-
cal situations although the expression gets more complicated
because of the longer RIRs.

Hence, in order to get a higher ASI value, we have to ei-
ther let the environment less reverberant or make the mi-
crophones more closely spaced. These two effects can be ob-
served in Figure 6a.

Naturally, the fact that with a small microphone spac-
ing a DRIR looks single-pulse like provides a possibility to
use less filter taps. We repeat the simulation in Figure 4 with
Teo = 0.270 second and various L’s. The results are plotted in
Figure 6b. Three microphone spacings are chosen. For d =
0.5cm, the modelling error stays below —18dB even with
L < 150. The reason is that the DRIR resembles a single pulse
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Figure 5: The DRIRs for different microphone spacing d with Tgy = 0.270 second. Left column: impulse responses in time domain, (a)
d=1cm, (c)d =5cm, (e) d = 20 cm. Right column: corresponding amplitude responses in frequency domain, (b) d = 1c¢m, (d) d = 5cm,

(f) d =20 cm.

so much that most of side taps can be practically neglected.
The ASI equals 0.89, reflecting the high similarity of the two
RIRs. For d = 2 cm, the MSE needs L > 750 to remain below
—20 dB since the tail of the DRIR includes stronger taps and,
when truncated, significant errors will occur. Correspond-
ingly, the ASI decreases to 0.58. For d = 10cm, the ASI is
0.03, meaning actually that no similarity exists. The conclu-
sion is that for a certain MSE requirement, fewer taps are
needed with a smaller microphone spacing.

We must point out that the simulation results indicate

some general rules, but these concrete numbers can fluctu-
ate in different acoustical environments. For instance, for the
same microphone spacing d, the ASI value can be different
with the variation of the distance w from source to micro-
phone. In the former simulations, the w was set around 2 m.
Here we change the w to see how the ASI changes accord-
ingly. The results are obtained with Ty = 0.270 second and
plotted in Figure 7.

When the w is smaller than 1 m, the ASI becomes above
0.5 even with 10cm microphone spacing (compared to
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the RIRs). The source-to-microphone distance w equals 2 m in both
figures.

ASI = 0.03 with w = 2m), meaning that the similarity starts
to play a role. The reason is that when the microphones move
to the source, the RIRs tend to be minimum phase because
the distance w is small compared to that from the micro-
phones to the walls so that the direct sound is more likely to

ASI
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Figure 7: The ASI and MSE versus the source-to-microphone dis-
tance w in different microphone spacings.

be dominant over the reflections. This leads to shorter RIRs
as well as their inverses. Consequently, the ASI becomes high.
This provides us with another possibility to acquire a high
ASI value. An interesting phenomenon can be observed that,
for d = 5cm, the ASI begins to increase at a low level when
w is larger than 2 m. It can be explained by the effect that a
certain microphone spacing becomes relatively small if the
microphones move away from the source, resulting in an in-
crease of the ASI. This effect is always there, but until the w
gets large enough, it does not prevail over the other oppo-
site effect that ASI decreases due to the nonminimum phase
tendency of RIRs.

In general, the simulation results indicate that one should
expect a more single-pulse-like DRIR within 5-10 cm mi-
crophone spacing under the normal room acoustics, corre-
sponding to an ASI value above 0.5.

3. ASIMPLIFIED MIXING MODEL

In the case of a high ASI, introducing a simplified mixing
model becomes very attractive to audio signal separation
which usually suffers from high complexity. To derive the
new model, we first generalize the relationship in (8) to the
case of n sources and n microphones
hlk — 7] = (Ahyy x hy)[k], ml=1,....,n, m+1,
(15)

where the modelling error is omitted. Then we can rewrite
the model in (1) as

xlk =] = (Ah*$)[K], (16)

where x[k — 7] = (x1[k = 7],..., xu[k — T])T, ' [k] = ((h1; *
sOLkL ..., (B * s,)[K])T, and

0:[k]  Ahpy[k] Ahy,[k]
Ah[k] = : : (17)

Ah[k] Ahya[K] 8. (k]



Exploiting Acoustic Similarity for Audio Signal Separation

1099

For convenience of the latter expression, §[k — 7] is written
as 0, [k] representing a time delay of 7 samples. Since the mi-
crophones should be closely spaced relative to each source, a
microphone array will be a reasonable solution. The compo-
nents in the vector s’ are mutually independent due to the as-
sumed independence between the sources, so the signal sep-
aration can be achieved after obtaining the estimation of the
mixing matrix Ah[k].

Using this simplified model in audio signal separation
has several specific advantages.

(1) What we attempt to recover are the signals propagating
and arriving just in front of the microphones before
mixing, that is, the sources convolved by the RIRs from
their emitting points to the respective microphones,
which often sound more natural than the clean sources
themselves when there is not too much reverberation
present.

(2) The number of filters to be estimated is reduced from
n?ton(n—1).

(3) Furthermore, with the existence of the similarity be-
tween acoustic paths, fewer coefficients are required to
describe Ahy,’s because they appear very much like a
single-pulse function. As a result, the computational
load for the mixing model estimation can be signifi-
cantly reduced.

As seen in (16), in a reverberant environment, micro-
phone signals are convolutive mixtures of original sources.
For much more efficient implementation, we will transform
the problem into the frequency domain so as to realize signal
separation simultaneously for every frequency component as
in the case of an instantaneous mixing [11, 12].

The discrete Fourier transform (DFT) allows us to ex-
press circular convolutions as products in frequency domain,
while in (16) linear convolutions are assumed. A linear con-
volution can be approximated by a circular convolution if
L < N, where N denotes the number of points within one
data frame in the DFT. Also a linear time shifting in Ak can
be approximated by a circular time shifting if 7 < N. There-
fore, we can write approximately

X(wi p = 1) ~ AH (i) S (wi, p),

i— 1 (18)
wi:(lN—)Zn, i=1,...,N,

where w; denotes the ith frequency component;
)_((wi)p_‘[) = (Xl(wbp_T):---:Xn(wi:P_T))T (19)

represents the DFT of the microphone signals where
Xm(w;, p — 7) comes from the DFT of the vector of signals
from the mth microphone, that is,

Xulp—1] = (Xmlp—7)...,xmlp—-7+N - 1])T, (20)

starting at p — 7 and of length N, which is given by

N-1
Xm(wip—1) = Z e 1%, [p— T +k]; (21)
x=0

S'(w;, p — 1) is obtained from the vector of the filtered source
signals s’ [k] in the same way as X (wj, p — 7); A¥(w;) denotes
the frequency domain counterpart of the filter matrix Ah[k]
and can be expressed as

e Jjorr  AHy,(w;)

A¥(w;) = : : o (22)
AH,; (w;) e T

where (AH,(w1), AHp(wy), ..., AHuy(wy))T represents the

Fourier transform of the mith (m,l = 1,...,n, m # [) DRIR

Ahy,[k] of length L.

4. SIGNAL SEPARATION IN THE 2 x 2 CASE

In this section, we take a 2-speaker-2-microphone system as
an example to demonstrate the feasibility of the proposed
mixing model in speech signal separation.

A simulation scheme of the separation is shown in
Figure 8. The left diagram expresses the parameter measur-
ing part where two BFDAF algorithms are used in parallel,
and the right describes the separation part. The A~![k] acts
as a postprocessing filter that is the inversion of

Alk] = (820 = Ahoy * Ahuo) [K], (23)

where Ah;; must be measured when only s; is active, so the
measurement may be first done with two sources made alter-
natively active, and after convergence of the filter parameters,
the separation is then switched on. If we rewrite the mixing
process in (16) without the modelling error as

xl[kr]> ( (ST Ah?z) ((I’lu *51)[k])

= s 24
(xz[k —a) " \ang 6 )\ wsyk)r @Y
where Ah? (k] (m # I) denotes the IIR DRIR that makes

huilk] = (AR, * hy)[k] accurately hold, after the demixing
in Figure 8, we have

S~’1[k] et 821 — Ah]z ES Ahgl
(%[k]) “AE ( 8, % €

« (]’111 >k Sl) [k]
(]’lzz B S 52) [k] ’

where €,1[k] = (AR, — Ahy)[k] (m # ) denotes the mod-
elling error as defined in (6). When the modelling errors are
zero, the separation part in Figure 8 functions exactly as an
inversion of the mixing process and a perfect signal separa-
tion will be achieved. The cross talk left depends on the mag-
nitude of nonzero modelling errors.

The separation may be implemented efficiently in fre-
quency domain as well. Its corresponding frequency domain
structure is given in Figure 9, where the input x; to the FFT
block is the vector of the ith microphone signals obtained

(ST kX €12
02 — Ahyy % ARS,

(25)
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F1Gure 8: The signal separation scheme (2 x 2 case).
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F1GURE 9: The separation implemented in frequency domain (2 X 2 case).

by buffering N consecutive data samples. The operations be-
tween FFT and IFFT blocks equal the inversion of the mix-
ing matrix in frequency domain given in (18). One can see
that the separation is independently operated for each fre-
quency component w;, which converts the convolutively mix-
ing problem into an instantaneous one.

As mentioned in Section 2.1, the time delay 7 is intro-
duced for the causal stable inversion of a nonminimum phase
RIR. In general one can simply let 7 = L/2, but it is not
necessarily like that. The proper choice of 7 relies on sev-
eral factors, for instance, the wall reflection and the distance
between sources and microphones. In particular, if the re-
verberation is quite weak and the audio source is located
close to its microphone (say within several 10 centimeters),
7 may be chosen as zero since in this case RIRs are normally
minimum phase. The advantage is that less taps are needed
or with the same taps one can provide the right tail with
more freedom, which probably gives more significant infor-
mation. The detailed experimental results can be found in
[13].

As for the postprocessing filter A™1, it again concerns the

inversion of a nonminimum phase filter. To solve the prob-
lem, one possibility is simply moving it away (correspond-
ingly omitting the term 1/(e~%“" — AHy,(w;)AHy (w;)) in
Figure 9) because it has nothing to do with the effectiveness
of the separation; the other possibility is keeping it there to
improve the sound quality at the cost of introducing another
extra time delay.

In order to evaluate the separation result with respect to
different filter lengths L’s under different ASI values, we de-
fine the following separation index (SI):

Sy |§mlk+ql]?

SI,, = lim 101log - , (26)
ke Sa-r |silk+q]|’
where only s, is active, m, | = 1,2, m # [,
[ — SI; '2|" ST, (27)

and T is a proper time period. If a white noise is assumed as
an input signal, by using (25), the SI may be also expressed
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F1GURE 10: The SI versus the number of taps for DRIR. (a) The sim-
ulation environment (Tsy = 0.27 second). (b) The results in three
different microphone spacings.

in z domain as
SI; =10log [(f [A (27 [z = Ahp(z ) AR, (271)]
X M (271) |2dz)

x @ 1A (2 )2 "€ (2 ) i (27) |2dz)_l}.
(28)

In the current case where the sources are known to be
alternatively active, one is able to get the DRIRs with only
one source present, which makes the separation nonblind,
so the SI value in fact indicates the maximum separation ef-
fect one can achieve when using the simplified mixing model
with some given L and 7. In real BSS, extra modelling errors
will exist due to nonoptimal estimation of DRIRs. Thus the
SI will no longer reach its maximum. By definition, the SI is
equivalent to an SNR or an SIR (signal-to-interference ratio)
normally used in literature.

The simulation is done as described in Figure 10a. The
reverberation time in the room is set as Tgg = 0.27 second
and input signals are white noise sampled in the frequency
of 8 kHz. The results are plotted in Figure 10b. For a better
comparison, the highest SI values of the three microphone
spacings are normalized to be the same. In all cases, the SI de-
creases with the reduction of the filter taps, which coincides
very well with (28). For the same filter length, the SI with
d = 0.5cm is higher than that with d = 5cm by more than
5 dB. That is because the DRIR in the former case resembles a
single pulse due to the high similarity of the acoustical paths
(ASI = 0.85). It makes possible a considerable filter length
reduction. The SI with d = 10 cm is about 3 dB lower than
that with d = 5cm, meaning that the acoustic similarity dis-
appears further.

Two conclusions can be drawn. First, thanks to the sim-
ilarity between the acoustical paths, the computational load
of the audio signal separation can be significantly relieved,
while the separation effect stays still reasonably good (above
20dB). This gives us an opportunity to implement an au-
dio signal separation in real time. Secondly, with large micro-
phone spacings, a satisfying separation can be still acquired
if the DRIRs are provided with enough taps. Hence, the pro-
posed mixing model is also suitable for a normal use where
microphones are not closely spaced, having the advantage of
less filters to estimate.

Notice that the proposed model remains feasible as long
as the difference between acoustical paths is distinguishable.
A too small microphone spacing (d < 1cm) gives little path
difference to low frequency components of sources. A higher
accuracy (more bits in digital signal processing) during sam-
pling helps, but will be limited by the background noise level.
The small path difference can accumulate after a number
of reflections, so it reveals itself strongly in the reverbera-
tion part. However, since the signal power decays exponen-
tially, the path difference becomes “invisible” especially at
the presence of noise. Obviously, the separation fails when
microphones are placed at the same point since no differ-
ence can be detected regardless of the given accuracy. In the
case of a large spacing (d > 10cm), the time delay of the
arrival of the direct sound can help to “build” a path differ-
ence to avoid the spatial aliasing of high frequency compo-
nents.

To be able to cope with a more complicated situation, for
example, with moving speakers, in the next section, an online
adaptive separation algorithm will be developed specifically
for the simplified mixing model.
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5. ADAPTIVE BLIND SIGNAL SEPARATION
ALGORITHM

In literature, to achieve BSS, a variety of approaches based
on different methodologies and theories have been proposed,
which in general fall into two categories. If sources are sta-
tionary, Gaussian processes, it can be shown that blind sepa-
ration is impossible in a certain sense. By stipulating non-
Gaussianity on source signals, one can apply higher-order
statistics (HOS) evaluation to realize separation. The meth-
ods in the first category are characterized by computing HOS
explicitly [14, 15, 16, 17], or implicitly [18, 19], ML [20], IN-
FOMAX [21], MMI [22], and NM [23] to achieve separa-
tion. While in the other category, with the help of some extra
constraints, SOS is proved to be sufficient to determine the
mixing process, for instance, additional time-delayed corre-
lations [24], sources of different spectra [15, 25, 26], spectral
matching and FIR constraints on mixing process [27], and
nonstationary sources [28].

In this paper, by taking advantage of the nonstationarity
of the audio sources, we develop an adaptive blind audio sig-
nal separation (BLASS) algorithm in frequency domain only
based on SOS evaluation. Apparently, from the application
point of view, an SOS method is preferred due to its less com-
putational complexity and stronger robustness to noise.

Some first theoretical proof of how the BSS problem of
nonstationary sources can be solved only using SOS has been
given in [28]. We are not going to look at that further be-
cause it is out of the scope of this paper. Roughly speaking,
the point is on the fact that, with the help of nonstationarity,
one is able to do decorrelation through time to eliminate the
ambiguity of the mixing (or demixing) model.

5.1. Agradient descent rule

Recalling the proposed mixing model in frequency domain
from (18), after having obtained the mixing matrix A¥(w;),
the separated signals for each frequency component can be
written as
S'(wi, p) = AH (wi) X (wir p = 7),
-1 (29)
(i-1) N,

w; = N Zﬂ,izl,...,

We construct an objective function as follows:

2
Z | w“ ml |
1 m#l

z (S (@i p)S™ (w5 p))) |
m#l

Il
T Mz T Mz F'Mz

ml|’

Z A% (wl) (wl’ _T)A% (wl
m#l

(30)
where

Rx(wbp - T) <X(wixp - T)XH((U:',P - T)}’ (31)

()" and (-)~H denote the complex conjugate and transpose
of a matrix and the inversion of the resulting matrix, respec-
tively, Ry(w;, p — 7) and Ry (w;, p) represent the power matrix
of X and S’ for each frequency component. Basically they are
the function of a different p because of the nonstationarity of
audio signals. The objective function is in fact the sum of off-
diagonal elements in the power matrix of the signal vector '
over all the frequency components, reflecting the cross power
spectra between the demixed signals. Due to the mutual in-
dependency of the sources, J(p) should reach its minimum.
Therefore, the mixing matrix may be learned by means of a
gradient descent algorithm

AH (w;, p+1)

~ (32)
= A¥(w;, p) +#[ -

d](n)
OAF* (w,»)

A%(w,)—A%ie(w,-,m]’

where 9] (n)/0AH* (w;) = (9] (n)/dAH(w;))* and (-) de-
notes the complex conjugate of a matrix, and y is a positive
factor that determines the rate of updating. The gradients in
(32) are given by

dJ(p)
BA%(wi)
= _Z{A%iH(wi) [Ry (wis P) —diag {Ry (wj, P) HRy (w;, P)}*)
(33)
Ry (wi, p) = AH " (wi) Re(wy, p) AKH (w)), (34)

where diag{-} denotes taking the diagonal elements of a ma-
trix and putting them at the corresponding positions of a
zero matrix.

5.2. Constraints on the gradients

There are two constraints on the gradients during parame-
ter updating. The diagonal elements in each gradient matrix
0J(p)/0AH (w;) must be zero because the parameters have
been known as a constant e 7“7 or 1 (r = 0) on the diag-
onal of the mixing matrix A§€(wi, p), so the first constraint
is

) | _3p)

1) J(p)
(Gl{ame(w,-) = 9% (w) i)}' (35)

- diag { AT (w

Secondly, the gradients have to be constrained in order to
make the time domain solutions satisfying Ah[k] = 0 for k >
L. This is important for the expression in (18) to have a good
approximation. Thus we use the following constraint [29]:

9/ (p) 9/ (p)

(2) o -1
o) T e 09
where
d/(p)
aﬁml(w)
() T (37)

_ ( 9 (p)

9/ (p)
OAH i (w1)” 0AH i (w2)" """ 0AH i (wy) )
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Z is an N X N diagonal matrix with Z; = 1 for i < L and
Zii = 0 for i > L, F denotes the Fourier matrix operating
DFT, and accordingly F~! operates IDFT.

As well known, the side effect of the frequency domain
separation is that one cannot guarantee that the frequency
components used to reconstruct the time domain output
come from the same source because any permutation of the
coordinates at every frequency will lead to exactly the same
J(p). If the permutation appears, generally the spectra of the
estimated filters will become nonsmooth. Forcing zero coef-
ficients for k > L in time domain equivalently smooths their
spectra through a convolution with a sinc function in fre-
quency domain. Therefore, the permutation problem can be
effectively removed by applying the constraint ¢(2),

In addition, there is another point which may have not
been realized in previous literature. If one of the sources does
not have any power at a certain frequency component w;,
the separation fails because A§€(w,~) is singular and therefore
A%~ (w;) does not exist. The smoothing of the spectrum by
%2 helps to remove the zeros so as to relieve the problem to
some extent.

5.3. Practical approximation

Although in general audio signals are nonstationary, it is still
said that human voice has temporally stationary structure
within a few 10 milliseconds [30]. This means it is possible
to use time averaging to approximate the SOS needed in our
algorithm:

;T
Ry (wi, p) = T Z X(wi p+q) X" (winp+q), (38)
q=-T

where T is properly chosen to make the averaging within the
stationary period. Formula (38) is only needed for the ini-
tialization of the power matrices. During the adaptation the
power estimates are updated using

Ri(w;, p+1) = aRy(w;, p)

F (1= X (05 p+ DX (05 pr1). O

The forgetting factor & may vary from zero to one depending
on the degree of nonstationarity. Additionally, to reduce the
computational complexity further, the inversion of the ma-

trix AK(w;, p) may be approximated by

AF (w0, p+ 1)
~ A%_l (wi» P)
= AT (w0 p) [ATC (@5 p + 1) = AT (@5 p) IATE (i p)

(40)

when it does not vary greatly for each update, for instance,
already close to the optimum.

5.4. Causality issue

Some extra attention must be paid to the separation done
in (29). The inversion of the mixing matrix A¥(w;) con-
cerns the causality because its equivalent operation in time

30 T T T T T

25 F

20 - / 1

SI (dB)

10 1 1 1 1 1
200 400 600 800 1000

Filter taps (sample)

— d=10cm
---- d =100cm

FiGgurg 11: The SI versus the tap number L given to the DRIRs
(Tso = 0.27 second, T = 7. = 0).

domain needs the inversion of an FIR filter, which is proba-
bly of nonminimum phase. The postprocessing filter A~![k]
mentioned in Section 4 is an example in the 2 X 2 case. In
particular, A[k] is very likely to be nonminimum phase with
a nonzero 7. Since we can express A ! (w;) as

adj A% (w;)

-1 = —Z 7
A (@) det A% (w;)’

(41)

if we simply omit the denominator that has nothing to do
with the separation, which is equivalent to skipping the fil-
tering by A~! in time domain, the noncausal problem can
be avoided. However, this will cause some signal quality loss,
and being more serious, make the dependence of the gradi-
ents on the mixing matrix much more complicated than in
(33), which leads to high computational complexity. To keep
the expression of (33) concise and systematic, we therefore
introduce another time delay 7. and let

A¥ (wi) = AV (w;) el (42)

where 7. < N still holds. Accordingly, the separation done
in (29) is replaced with

S (wi, p) = A¥ (wi) X (wi, p — 1)

. 43

= AH e 1 (w;) X (wiy p — T). (43)
It can be easily proved that this modification has no impact
on the objective function J(p), and thus the expression in
(33) will remain the same.

5.5. Experimental results

In this section, the BLASS algorithm based on the proposed
simplified mixing model is applied on both synthetic and
real-world audio signal separation. First a blind separation
experiment with synthetic signals is done. A piece of hu-
man speech and a piece of music, both lasting 15 seconds,
are mixed artificially with four RIRs generated in “Room.”



1104

EURASIP Journal on Applied Signal Processing

0.5 B

0.4 4

h11(t)

0.2 B

001- 4 HM MMAMMW

0 200 400
Filter taps (sample)

0.8 - E

0.6 - 4

0.4 4

Ahya(t)

0.2+ B

_0.2 1 1 1
0 100 200
Filter taps (sample)

0.4 i

0.3 E

ha (1)

0.2 | 4

001- A Ah L WMW

1 1
0 200 400
Filter taps (sample)

0.8 1

0.6 E

0.4 - 4

Ahy (1)

_02 1 1 1
0 100 200

Filter taps (sample)

F1GURE 12: The artificially generated RIRs and the DRIRs obtained by the BLASS.

The same setup as described in Figure 10a is used except
that the source-to-microphone distance w reduces to 1 m. As
seen from Figure 7, this increases the ASI from below 0.05 to
above 0.6 in the case of Ty = 0.270 second and d = 10 cm.
The sampling frequency f; is 8 kHz and the four RIRs have
1024 taps each. The signal-to-signal ratio of the sources is
set to almost 0 dB. After the BLASS finishes the separation,
we take the DRIRs that have been identified and use (26)
and (27) to calculate the SI. According to the definition, two
sources are switched on alternatively for the SI calculations.
We repeat the separation with various number L of taps given
to the DRIRs. The results are plotted in Figure 11.

One can observe that in the case of a small microphone
spacing, the SI value almost stays the same as L varies from
more than 1000 to around 100, while with a large micro-
phone spacing, the SI declines by about 8 dB. The curves
manifest that the length L of the DRIRs needed for sig-
nal separation can be considerably shortened because of the
existence of acoustic similarity between sound propagating
paths. From the upper curve, we also see the dependence of
the separation performance on the length L of the DRIRs.
Too few parameters are not sufficient to perform the separa-
tion, while too many parameters bring larger misadjustment
in estimation, which only exchanges with a limited amount
of increase in adaptability. In Figure 12, the artificially gen-
erated RIRs and the two DRIRs obtained by the BLASS are

shown in the case of d = 10cm. The RIRs are truncated in
order to show fine structures of the early reflection parts. Be-
cause of the symmetry of the setup in Figure 10a, we just plot
two RIRs. The difference between the spectra of the speech
and the music (shown in Figure 13a) causes different shapes
of resulting DRIRs, which ideally should be identical. Never-
theless, with a single-pulse-like shape, the DRIRs still imply
a strong acoustic path similarity.

Also plotted in Figure 13b is the SI values calculated
for each frequency component, where we take the resulting
DRIRs in the case of d = 10cm and L = 1024 and use white
noise as sources. The dashed line describes the average sep-
aration level for different frequencies. From there, one can
see that with d = 10 cm, high frequency components of the
sources are separated better than low frequency ones. One
reason is that from around 1.4 kHz down to 800 Hz, the mu-
sic signal is quite dominant, and below 800 Hz the speech
prevails, which is not good for separation. The other rea-
son could be that the 10 cm microphone spacing provides
acoustic path differences for separation to the low frequency
components (greater than 25 cm in this particular case) not
as sufficient as to the high-frequency components. This has
been briefly discussed also at the end of Section 4. Therefore,
depending on different acoustic environments, the micro-
phone spacing to be chosen will be always a trade-off between
generating path similarities and differences.
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FIGURE 13: (a) The spectra of the sources. (b) The frequencywise SI
values.

To show the effectiveness of the BLASS algorithm for
real-world data, we design the following experiment with
recorded audio signals. The signals are recorded in a room
illustrated in Figure 14 with dimensions of about 3 m x4 m x
3 m (width x depth X height). The same pieces of speech and

Curtain
d=20cm \
53
w=1m

FIGURE 14: The room for real-world audio signal recording.

music as in the synthetic data experiment are played by two
loudspeakers simultaneously and recorded with two micro-
phones. The microphones and loudspeakers are placed as de-
picted in the figure. The panels hanging on the walls and the
curtain can be flipped to choose the smooth or the coarse
side. Different combinations lead to different acoustic envi-
ronments. In this experiment, we use the coarse sides of the
panels and the curtain in order to acquire a mild reverber-
ation. The reverberation time, being averaged over various
positions, is Tgp = 0.335second. With different tap num-
bers L given to DRIRs, the BLASS algorithm is applied to
the recorded microphone signals and the results are shown
in Figure 15.

One can see that the SI curve in Figure 15a reveals the
pattern similar to that in Figure 11 with d = 10 cm. The SI
value stays around 20 dB as L decreases from 1024 to about
300, and the best separation appears with L ~ 380. This
is understood when we look at the DRIRs acquired by the
BLASS in Figure 15b. They have stronger and more dense
side taps than the DRIRs obtained with synthetic data in
Figure 12, but they still look quite single-pulse like, which in-
dicates significant similarities existing in acoustic paths and
allow the reduction of filter taps. The best SI is 5dB lower
than that with the synthetic data because of the more com-
plex acoustic environment in the real world, while the corre-
sponding number of taps is about 150 more since the acous-
tic similarities reduce due to a larger microphone spacing
(d =20cm).

Finally, we apply the BLASS to one of the recordings pro-
vided in [31] that are normally considered as benchmarks.
Two speakers have been recorded speaking simultaneously.
Speaker 1 says the digits from one to ten in English and
speaker 2 counts at the same time the digits in Spanish (uno,
dos, ...). The recording has been done in a normal office
room. The distance between the speakers and the micro-
phones is about 60 cm in a square ordering. The sampling
frequency is 16 kHz. Take L = 128 and 7 = 7, = 0 because
the RIRs are likely to be minimum phase in such a source-to-
microphone distance. One piece (around 1.5 second) of the
mixtures and the corresponding separated signals are shown
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F1Gurek 15: (a) The SI versus the tap number L given to DRIRs, 7 =
= 0. (b) The DRIRs acquired by the BLASS.

in Figure 16. In Figure 17, we plot the two DRIRs obtained by
the BLASS. Inspecting by sight or by hearing, one can hardly
find any separation performance loss with the reduced filter
number and shortened filter length. This confirms the state-
ment in Section 4 that the proposed model is in general also
applicable to the case of large microphone spacings provided
that the filter length L is properly chosen.

An overview of the experiment results is given in Table 1,
where Nijer and Neoor denote the number of filters and the
number of filter taps to be adjusted, respectively. SI loss
means the separation degradation due to the use of the pro-
posed model instead of a conventional model. The total

rated signals with BLASS.

number of filter coefficients needed to achieve a compara-
ble performance is considerably reduced. In Figure 18, one
can see more generally the reduction of the needed filter taps
as the number of sources/microphones n increases, where

Ncoef,pro _ ﬁ _ E (44)
Neoef,con 7

Neoet,pro and Neoef,con Tepresent the number of filter taps
needed for the proposed model and a conventional model,
respectively, and f8 is the ratio between the filter lengths used
in these two models provided that the separation perfor-
mances are comparable. With a large number of sources, the
ratio Neoef,pro/Neoef,con approaches f3.

Other experimental aspects with real-world data can be
found in [32], where the BLASS has been implemented on
a TTI TMS320C6701 DSP system and is able to realize audio
signal separation in real time.
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TABLE 1: An overview of the experiment results regarding the reduction of the total filter taps.

Data type Mixing model Niiter L Neoer SL loss
Synthetic normal 4 1024 4096 negligible
proposed 2 ~250 ~500
Own recorded normal 4 1024 (expected) 4096 (expected) negligible
Real world proposed 2 ~400 ~800
Benchmark normal 4 1024 (expected) 4096 (expected) Hardly recognized by hearing
proposed 2 128 256
T T T T T T 1 . . . .
° 0.9+ g
o
Z 0.8} ;
a
: ol _
2 06f 1
0 20 40 60 80 100 120 =~ 0.5 g
Filter taps (sample) g 04l |
(@) = osl 1
0.2 W |
0.1F ]
0.4 | i
,-8 0 ' ' ' '
2 o2} J 5 10 15 20 25
g« The number of sources/microphones n
< 0
ol —— =075
' . . . . . . - =05
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Filter taps (sample)
(b)

Ficure 17: The DRIRs acquired by the BLASS. (a) Ahj,[k].
(b) Ahy [K].

6. CONCLUSIONS

In this paper, the concept of acoustic similarities existing be-
tween two propagating paths of a sound is presented. In or-
der to quantitatively describe the similarity, an acoustic simi-
larity index (ASI) is defined and studied. There are three ways
to increase the ASI value, which are (1) reducing the micro-
phone spacing, (2) making the environment less reverberant,
and (3) decreasing the source-to-microphone distance. Then
a new mixing model of a multispeaker-multimicrophone
setup is proposed. The model is proved to be feasible in prac-
tice and can be applied to simplify an audio signal separa-
tion problem. With a reasonably high ASI, for example, by
means of closely spacing microphones (within 5-10 cm), the
model can relieve the computational load of the separation
algorithm by considerably reducing the number and length
of the filters to be adjusted. It is also applicable in the normal

FiGgure 18: Reduction of the total filter taps using the proposed
model.

microphone spacings if the filters are provided with enough
taps. Therefore, the implementation of a blind audio signal
separation (BLASS) is used specifically for the proposed al-
gorithm.

In principle, various BSS algorithms can be designed on
the proposed model. As an example, in this paper, we have
developed a BLASS in order to cope with real and more com-
plicated situations. BLASS only uses the second-order statis-
tics and performs efficiently in frequency domain. Its effec-
tiveness is shown by the separation results of both synthetic
and real-world signals.
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