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The problem of restoring an image by its Fourier transform is considered when the Fourier transform contains phase distortions.
The nature of these distortions and their values are arbitrary. The criterion for the quality of the phase distortion estimates is
suggested. It can be used to select the image which is mostly like the true one. The nature of the true image is also arbitrary.
The only condition for the true image is that it is real and positive for all the points of the restored area. The other condition
for the task is that the recovered image is calculated as the absolute value of the inverse Fourier transform. The algorithm for
the search of the compensating phases satisfying the criterion is not considered for the general case; however, the task of the
radar imaging based on the wideband signal and the time synthesis of the aperture is treated in detail. The physical basis for
the task is a wideband pulse radar signal reflected by a moving object. As a result, a two-dimensional aperture is synthesized
along the range, due to the super resolution, and along the velocity, according to the motion of the object. The radar signals
are received by a single receiver. The image is reconstructed on the basis of these signals by using the maximum likelihood
technique. The method uses the coherent processing of the signals. In practice, the coherence can be destroyed (due to some
atmospheric turbulence or equipment instability, due to some inaccuracy in defining the motion). We assume that the objects
to be observed are located at the far zone. For this task and on the basis of the suggested criterion, we develop an approximate
algorithm for searching the best compensating phases in the radar signal. The quality of the images is tested with the help of
simulation.
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1. INTRODUCTION

A lot of tasks in optics, tomography, radar, and astronomy
are connected with image recovery by using the Fourier spec-
tra. The synthesis of the procedures for performing image fil-
tering, enhancement, restoration, and segmentation presup-
poses similar tasks. These spectrum data include some am-
plitude and (or) phase distortions of various types very of-
ten. The problem of compensating these distortions with the
aim of achieving high quality of image restoration is actual,
and different techniques were suggested to solve this prob-
lem both in radar science [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
and in optics [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22]. It
is important to notice that in the Fourier optics, one of the
most topical tasks is the problem of simultaneous restora-
tion of the optical response function and of the object image
in the presence of some phase distortions related to atmo-
spheric turbulences. In the latter case, the restoration task is
a problem of blind deconvolution, but not that of the Fourier
spectrum restoration. Nevertheless, in the tasks of coherent
optics, such as laser optics, the problem of the Fourier spec-
trum restoration may be quite topical.

As for the radar imaging, the works which are most
close to our subject consider the synthetic aperture autofocus
methods. One approach is to choose a range cell, containing
a bright scatterer [8]. For a complex target, that does not have
a bright scatterer, the estimation of the pulse-to-pulse phase
difference of the reference point can be calculated by taking
the phase differences for each range cell and averaging them
with the weights proportional to the amplitudes of the sig-
nal in each of the range cells [2]. The alternative approach
suggests selecting only the range cells with strong scatter-
ers [3, 4, 9]. Another method, based on the image contrast,
has also been proposed for synthetic aperture autofocusing
[5, 6]. In [1], the estimation of the complex phase vector was
formed by the exponential function of the phase rather than
the phase itself. In [7], the eigendecomposition of the signal
vector covariancematrix is used for correcting some aperture
phase errors.

During the recent 5–7 years, a powerful theory of
constructing mathematical objects (signals, functions, and
images) in a vector space, satisfying some multiple con-
straints, was developed. It is named “vector space projection
method” [23]. All the constraint spaces are convex and have
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a nonempty space of intersection. The basic idea of the so-
lution is as follows: an initial vector (i.e., an initial object) is
being projected to each of the sets of constraints step by step.
The unitary projecting to the full set of restrictions completes
the first iteration. The vector, which is obtained after the it-
eration, is considered to be the initial one for the next itera-
tion. The iterative process converges to the vector, satisfying
all the constraints simultaneously. This theory was success-
fully applied to the filter design tasks with the classical con-
straints: passband fluctuations, stopband attenuation, tran-
sition band behavior, and filter length (length of the impulse
response) [24, 25]. In [26], the task of synthesis, a desirable
form of the far-field radiation pattern, is resolved. A task of a
self-healing in the arrays antennas is also considered.

The presented paper considers the case when there are
no amplitude distortions, but the phase distortions are pre-
sented in the Fourier transform. The nature of these dis-
tortions and their values are arbitrary. The criterion for the
quality of estimating the phase distortions is suggested and
it can be used to select the image mostly close to the true
one. The nature of the true image is also arbitrary. The con-
dition for the task is that the recovered image is calculated
as the absolute value of the inverse Fourier transform. The
algorithm for the search of the compensating phases satis-
fying the criterion is considered for the task of the radar
imaging by using the wideband signal and the time synthe-
sis of the aperture. For this task on the basis of the sug-
gested criterion, we will develop an approximate algorithm
for finding the best compensating phases in the radar signal.
The quality of the images is tested with the help of simula-
tion.

2. CRITERION FOR FINDING THE BEST IMAGE
OBTAINED AS A RESULT OF THE INVERSE
FOURIER TRANSFORM

We assume that the object to be reconstructed is placed in
the far Fraunhofer zone, so that the received field is a plane
space wave and the image Ê(�s ) is being constructed as the
inverse two-dimensional Fourier transform of the received
field F̂(�R),

Ê(�s ) = 1
(2π)2

∫
Ω�R

F̂
(�R) exp (− jk0�R�s

)
d2�R. (1)

Here, k0 = 2π/Λρ, where Λ is the wavelength of the signal,
ρ is the range, Ω�R is an area of the receiving aperture, �s is a
coordinate vector in the object space, and �R is a vector in the
Fourier space.

Suppose that the received field F̂(�R) is distorted and is

connected with the true field F(�R) by the relationship

F̂
(�R) = exp

(
jθ
(�R))F(�R). (2)

Here, θ(�R) is the function of the phase distortions. In this
case, the inverse Fourier transform (1) produces a distorted
image.

We can take any arbitrary estimation of the phase distor-

tions θ̂(�R) and include this estimate as a compensating mul-
tiplier in the expression (1). As a result, we get the next ex-
pression for Ê(�s ) instead of (1):

Ê(�s ) = 1
(2π)2

∫
Ω�R

F̂
(�R) exp (− jk0�R�s

)
exp

(− jθ̂
(�R))d2�R.

(3)

The function θ̂(�R) is unknown and must be found.
Further, we will designate the true image E(�s ) and will

limit the considerations to the images E(�s ), for which

E(�s ) = A(�s ) exp
(
jϕ0
)
, ϕ0 = const. (4)

According to (3), we can determine the estimate of the mod-
ulus Â(�s ):

Â(�s ) = ∣∣Ê(�s )∣∣
= 1

(2π)2

∣∣∣∣∣
∫
Ω�R

F̂
(�R) exp (− jk0�R�s

)
exp

(− jθ̂
(�R))d2�R

∣∣∣∣∣.
(5)

Suppose that we can do a complete exhaustive search among

the possible estimates of phase distortions θ̂(�R) and we have
no prior knowledge about the true function

A(�s ) = ∣∣E(�s )∣∣, (6)

so, for every new function θ̂(�R), we get a new function Â(�s )
according to (5). Which of these functions Â(�s ) in the pro-
cess of the search should be chosen as the best one?

In Appendix A, we show that in this case the best func-
tion Âbest(�s ) among all possible Â(�s ) satisfies the condition

∫
Ω�s
Âbest(�s )d2�s ≤

∫
Ω�s
Â(�s )d2�s, (7)

where Ω�s is the area, a priori occupied by the object.
So, the best estimation of the image must provide the

minimum to the integral over the area of restorationΩ�s com-
pared to all other estimates.

The first impression that the trivial result Âbest(�s ) ≡ 0 is
the solution to the task is a mistake, since, according to (2)
and (5), the spectrum of Êbest(�s ) is equal to

F̂best
(�R) = exp

(
j
(
θ
(�R)− θ̂best

(�R)))F(�R), (8)

and Parseval’s theorem gives

∫
Ω�s
Â2
best(�s )d2�s =

∫
Ω�s

∣∣Êbest(�s )∣∣2d2�s
= 1

(2π)2

∫
ΩR

∣∣F(�R)∣∣2d2�R
=
∫
Ω�s
A2(�s )d2�s.

(9)
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So, the full energy of the image remains constant in the pro-

cess of exhaustive search of phases θ̂(�R).

3. THE TASK OF THE RADAR IMAGINGWITH THE
DISTORTED SIGNAL PHASES

We consider a single radar transmitter, which radiates
the pulse signals un(t) (n = 1, . . . , N) at the moments
t1, t2, . . . , tN in the direction of the object under observation,
where N is the number of emitted pulses and un(t) is the
shape of a complex pulse signal, emitted by the transmitter.

For example, the shape un(t) can be written as

un(t) = u
(
t − tn

)
= exp

(
− α · (t − tn

)2
+ j
(
ω
(
t − tn

)
+ ∆ω · (t − tn

)2))
.

(10)

Formula (10) corresponds to a Gaussian pulse with the car-
rier frequency ω and the linear frequency modulation.

The shape (10) is not necessary; the basic condition is
that the pulse un(t) should have a wideband of frequency
modulation.

Let �Robj(tn) be the position of the center of object’s masses

at time tn and �R0 is the location of the radar receiver in the
coordinate frame with the origin in the center of the Earth.

For each moment tn, we have �en which is the normalized
vector of viewing the object from the receiver:

�en = A−1obj
(
tn
) �Robj

(
tn
)− �R0∣∣�Robj

(
tn
)− �R0

∣∣ , (11)

where Aobj(tn) is the matrix of object’s rotation around its
center of masses and A−1obj(tn) is the inverse matrix.

We will not consider the problems of estimating the
rotation parameters and tracking objects here. We assume
that they have already been solved accurately enough in
[1, 2, 3, 4, 5, 6, 27]. We assume, as well, that the orbital mo-
tion of the object produces the synthesis of the aperture in
time. Thus, we assume that Aobj(tn) is the unit matrix.

The complex video signal Zn(λ) (n = 1, . . . , N) with the
pulse number n at the output of the matched filter of the
radar receiver can be presented as, (in the far zone) [2, 28,
29, 30],

Zn(λ) =
∫
SLIGHT

E∗(�s ) exp
(
jω2�e T

n ·
�s
c

)

· C0

(
λ− 2�e T

n ·
�s
c

)
d2�s exp

(− jθn
)
+mn(λ)

= Z̄n(λ) +mn(λ).
(12)

Here, SLIGHT is the area of the object surface irradiated by
transmitter,C0(λ) is the autocorrelation function of the radar

pulse (the expression for it is given below),�s is the coordinate
vector of some element of object’s surface, d2�s is the element
of the surface in the coordinate frame connected with the ob-
ject center of masses, E(�s ) is the complex-reflected signal of
the scatterer located on the surface of the rough object in the
point �s, λ is a range (in time representation) with respect to
the center mass (after the compensation of the motion of the
mass center), mn(λ) is the additive complex Gaussian noise
at the output of the filter as in the function of time λ with
power σ2noise and zero average and �e T

n is the transposed vector
of observation. In (12), θn is the phase distortion, generated
by the atmosphere on the way receiver-object and back.

Besides, the phase distortion may be caused by the phase
instability in the receiver. Some additional source of phase
distortions is the uncertainty of the motion of the object
mass center evaluation. The motion of the center of masses
gives shifts both to the position of each signal and to its
phase. If the phase shift, caused by this motion, is not accu-
rately enough compensated [1], this will lead to some phase
distortions of signals.

Further in (12), c is the velocity of light, ω is the carrier
frequency of the radar signal, and N is the number of pulses
used in processing. Each signal Z̄n(λ) is the middle value of
video signal.

The autocorrelation function C0(λ) in (12) can be ex-
pressed through the form of pulse u(t) as follows:

C0(λ) =
∫∞
−∞

u∗(t)u(t − λ)dt, (13)

E(�s ) in (12) is unknown.
We will designate the modulus of the function

A(�s ) = ∣∣E(�s )∣∣ (14)

as the unknown radar image of the object. It should be con-
structed by using the signals Zn(λ) (n = 1, . . . , N).

The form of the receiver diagram is not included in (12),
because we assume that it is wider than the dimensions of
the object, and the tracking of the object is accurately enough
performed.

This task is a classical one in the radar tracking theory
and practice [10, 11, 31, 32, 33, 34]. The most significant re-
sults of the radar imaging practice by using wideband signals
are presented in [32, 35, 36, 37, 38]. Here, we are developing
the approach to the restoration of the coherence in the radar
signals investigated earlier in [10, 11].

4. MAXIMUM LIKELIHOODALGORITHM

Assuming that the noisemn(λ) is statistically independent of
different numbers n, we can write the logarithm of the likeli-
hood function for all the signals Zn(λ) (n = 1, . . . , N):

LnP = − 1
σ2noise

N∑
n=1

∫ λmax

λmin

∣∣Zn(λ)− Z̄n(λ)
∣∣2dλ. (15)

Here, λmin is the minimum value of λ among the arguments
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of all the signals Zn(λ) (n = 1, . . . , N), and λmax is the maxi-
mum value of λ among the arguments of all the signals Zn(λ)
(n = 1, . . . , N).

The maximum likelihood estimate of E(�s ) can be ob-
tained from the equations

δLnP

δ ReE(�s )
= 0,

δLnP

δ ImE(�s )
= 0. (16)

These equations are the functional derivatives of the func-
tional LnP with respect to the functions ReE(�s ) and ImE(�s ).

Appendix B proves that the solution of (16) gives the es-
timation of Ê(�s ) (to a constant factor):

Ê(�s ) = 1
N

N∑
n=1

Z∗n
(
τn(�s )

)
exp

(− j
(
θ̂n − ωτn(�s )

))
. (17)

Here, θ̂n is the estimation of the phase distortions while

τn(�s ) = 2�e T
n ·

�s
c
, (n = 1, . . . , N) (18)

is the time delay of the number n signal from the surface
point of the object corresponding to�s.

To determine the coordinate frame of the image Ê(�s ), we
will introduce the axes of the coordinate frame�s. The Y-axis
is directed as the average line of sight (and upwards in all the
pictures). In other words, the direction of the Y-axis coin-
cides with the direction �eN/2. So,

�e�s,Y = �eN/2. (19)

The X-axis is directed as the projection of the average (over
all the pulses) object velocity vector to the plane, orthogonal
to the vector �eN/2:

�e�s,X =
�vN/2 −�eN/2

(
�eN/2 ·�vN/2

)
∣∣�vN/2 −�eN/2(�eN/2 ·�vN/2)∣∣ . (20)

Here, �vN/2 is the vector of the object velocity in the coordi-
nate frame, connected with the center of the earth, in which
the vector �eN/2 is determined. The Z-axis is orthogonal to the
axes X and Y . The vector �e�s,Z completes the vectors �e�s,X and
�e�s,Y to the right-hand coordinate frame.

It should be noted that in the direction�e�s,Z , the resolution
of the image recovery system is zero. Therefore, the three-
dimensional image Ê(�s ) is ,in fact, a two-dimensional image.
We will assume everywhere that

Ê(�s ) = Ê
(
�sX ,�sY , 0

)
. (21)

If (17) is calculated, the image estimation Â(�s ) is obtained
by using the formula

Â(�s ) = ∣∣Ê(�s )∣∣ (22)

and, according to (21),

Â(�s ) = ∣∣Ê(�sX ,�sY , 0)∣∣. (23)

Algorithm (17) can work well enough only in case of the
concurrence of the estimations θ̂n with their true values θn
(n = 1, . . . , N) or if the estimations θ̂n differ from their true
values by some constant value or linear addition along n
(n = 1, . . . , N). In all other cases, the image (17) will be de-
stroyed. Further we suggest an algorithm for the evaluation
of the phase distortions θ̂n.

5. EVALUATIONOF PHASE DISTORTIONS

We used the criterion (7) in the algorithm for the evalu-
ation of the phase distortions. The approach developed in
Appendix A is valid only for the true functions E(�s ) for
which the expression (A.2) is in place. This means that the
functions E(�s ) have a constant complex phasemultiplier over
the whole scattering surface. Of course, (A.2) is not correct
in a general case. However, for the objects of homogeneous
material, (A.2) can be close to reality. In [1], the presented
examples also use the approximation (A.2). We should note
that the approximation (A.2) looks too strong, since nor-
mally the phase shift ϕ(�s ) of each scatterer in the far zone
is understood as its range phase shift. In the expression (12),
the phase shift of the scatterer caused by its range is not in-
cluded into E(�s ), but it is incorporated into the phase multi-
plier 2�e T

n ·�s/c, where �s is a three-dimensional vector on the
surface of the object. In other words, the phase shift of each
scatterer due to its range is not a parameter to be estimated,
but it is the parameter of the algorithm (17). The expression
(17) is constructed by using all the possible vectors �s. Thus,
we will use the criterion (7).

The complete exhaustive search across all the values of
the phase distortions is impossible. Therefore, we have cho-
sen an approximately optimal algorithm described below
(formulas (24) and (25)). We mentioned above that the sig-
nals’ ranges λ (represented in time units (12)) lie within the
interval (λmin, λmax). We divide this interval into the range
cells, each of a size equal to the range resolution. In terms of
the time units, the resolution del λ is equal to del λ ≈ 1.0/∆ω,
where ∆ω is the signal frequency deviation. The numberMλ

of these range (time) cells isMλ = (λmax−λmin)/ del λ. We will
designate the number of each range cell as m (1 ≤ m ≤ Mλ).
The algorithm for the search of the unknown estimations θ̂n
(n = 1, . . . , N) comprises the following operations.

At the first stage, all the phases θ̂n (n = 1, . . . , N) are
taken as those of the signals Zn(λ) (n = 1, . . . , N) in the first
range cell with m = 1. By using the estimations θ̂n, we will
construct the image by formulas (17) and (22) (in the whole
frame) and calculate the functional (7)

I1 =
∫
Ω�s
Â(�s )d2�s. (24)

Then we will repeat the operations for the cell m = 2. If the
value of the criterion I2 < I1, the estimations θ̂n, obtained at
the second step, look more preferable than the results of the
first step. All these operations are repeatedMλ times. Finally,
the phases of Zn(λopt) (n = 1, . . . , N) at the range λopt in the



1192 EURASIP Journal on Applied Signal Processing

cell with numbermopt, satisfying the criterion

Iopt = min
(
Im
)
, 1 ≤ m ≤Mλ, (25)

are taken as the final estimations θ̂n (n = 1, . . . , N) and are
substituted in the final image estimations Ê(�s ) (see (17)).
The estimations of the phase distortions obtained by this
process are approximate. However, the search is performed
in a 1-dimensional space and can be very fast. The results of
the reconstruction are shown in Section 6.

Figure 1 shows the diagram of the algorithm (24) and
(25) for finding the best compensating phases.

6. RESULTS OF DIGITAL SIMULATION

Figures 2, 3, 4, 5, 6, 7, 8, 9, 10, and 11 present the results
of the digital simulation of the radar images. The three-
dimensional object is a Buratino doll with a dog on a chain.
The object consists of spheres, cylinders, and prisms and it
was simulated by using “OpenGL” package of 3D graphics
[39].

Figure 2 shows the true object in the image plane inside
the frame of 256 × 256 pixels. The vertical axis is the range
(the radiation is directed from the bottom to the top) and
the horizontal axis is the component of the object velocity,
orthogonal to the middle vector of viewing. The parameters
of the signals were taken as the typical ones for the American
station LRIR (Long Range Imaging Radar), well known as
Haystack [38], where the wavelength is 3.0 cm and the signal
band is 1.0 GHz for each radiated pulse.

Figure 3 presents the radar image of the object. The range
resolution is 0.3m.

Figure 4 presents the similar image for the bandwidth
of 300MHz for each pulse. The range resolution equals to
1.0m.

The following parameters are the same for all figures: the
number of pixels is 256×256; the coherent processing of 256
pulses has been fulfilled. The scale division of the frame is
0.3m. A circular Keplerian orbit with the range of 450 km to
the center of the masses of the object has been modeled. The
radiation rate was 0.005 seconds.

Figures 3 and 4 present the images reconstructed in the
absence of any additive noise in the signals.

Figure 5 presents the image with the maximum distur-
bance of coherence in the signals. These signals are obtained
by adding a random value to the phase of each received sig-
nal, and this random value is uniformly distributed within
(−π, π). In Figure 5 the image is also reconstructed in the
absence of any additive noise. The bandwidth is 1000MHz.
The image, in fact, disappeared, and the only remaining pos-
sibility is to make estimations of its sizes along the range
axis.

Figure 6 presents the image for the case when the phase
distortions compensation algorithm is applied. We can eas-
ily see that the object is restored with certain loss of the res-
olution. Also the image may have some shift along the ve-
locity coordinate, because the algorithm reconstructs the un-

Z(1)
1 · · ·Z(M)

1 · · ·Z(1)
N · · ·Z(M)

N

m = 1; Iont = 1020

θ̂n = arg Z(m)
n

(n = 1, . . . , N)

m = m + 1

Ê(�s) with θ̂n

Equation (17)

Im =
∫
Ê(�s) d2�s

Im < Iopt?

No Yes

Iopt = Im

mopt = m

Êopt(�s) = Ê(�s)

m < M? Yes

No End

Figure 1: Diagram of the algorithm for finding the best compen-
sating phases.

known phases θn (n = 1, . . . , N) with some possible constant
or linear addition along n. This leads to the restoration of the
image with the shift of the angle position in the frame.

In Figure 7, the image is reconstructed when the sig-
nal/additive noise ratio is equal to 2.0 in each element of
the range resolution. The bandwidth is 1000MHz. The phase
distortions have the same statistical characteristics as those in
Figure 5. We can see that the image is worse than in Figure 5.
Because of the significant additive noise, the image has dis-
appeared even along the range coordinate.

Figure 8 presents the image after applying the compen-
sating algorithm. For comparison, Figure 9 represents the
image with the same parameters as in Figure 7 but with-
out any phase distortions. Figures 8 and 9 make it clear that
it is useful to apply the algorithm compensating the phase
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Figure 2: The true image “Buratino doll with a dog on a chain.”

Figure 3: Radar image with bandwidth 1GHz.

Figure 4: Radar image with bandwidth 300MHz.

Figure 5: Radar image with phase distortions and bandwidth
1GHz without additive noises.

Figure 6: Image after the compensation phase distortions.

Figure 7: Radar image with phase distortions, bandwidth 1GHz,
and signal/noise = 2.



1194 EURASIP Journal on Applied Signal Processing

Figure 8: Image after the compensation phase distortions.

Figure 9: Radar image without phase distortions, bandwidth 1GHz
and signal/noise = 2.

distortions even for small signal/additive noise ratios when
the phase distortions are present. The algorithm allows to re-
cover the image with the same quality as that one obtained in
the absence of any phase distortions. Figure 10 presents the
image with the signal/noise ratio equal to 2.0 at the band-
width of 300MHz with phase distortions, uniformly dis-
tributed within (−π, π). Figure 11 presents the result of com-
pensation. It is clear from Figures 8 and 11 that the higher
the resolution range, the better the result of compensation
for the same level of the additive noise.

7. DISCUSSION

The criterion was suggested for choosing the best image out
of all the possibly obtained ones as a result of applying the
inverse Fourier transform and using a compensating expo-

Figure 10: Radar image with phase distortions, bandwidth
300MHz, and signal/noise = 2.

Figure 11: Image after the compensation phase distortions.

nential phase multiplier, when this Fourier transform con-
tains some phase distortions. This criterion was applied to
the task of the radar image recovery for the case of the sig-
nal phase distortions. The quality of the radar images was
analyzed with regard to the parameters of the signals and the
phase distortions. The digital simulation demonstrates that it
is possible to restore the lost coherence in the received radar
signals. So, the evaluation algorithm for the phase distortions
was synthesized. The reliable performance of this algorithm
requires a signal/noise ratio in each element of the range res-
olution of more than 2.

The solution to the task by the method of “vector space
projections” [23, 24, 25, 26] could possibly give more effec-
tive results of the compensation than the algorithm presented
in Figure 1, but this is a particular and big task and is to be
considered elsewhere.
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APPENDICES

A. PROOF OF THE CRITERION FOR CHOOSING
THE BEST IMAGE

We assume that we have a true two-dimensional complex im-
age

E(�s ) = A(�s ) exp
(
jϕ(�s )

)
, (A.1)

where A(�s ) are the amplitudes of image and ϕ(�s ) are the
phases of the image. We will limit the study to the images
for which

ϕ(�s ) = ϕ0 = const. (A.2)

Further on, we will assume that the function E(�s ) is un-
known and we will have to construct its estimation. We de-
note this estimation as Ê(�s ). We can only obtain this esti-
mation as a result of the two-dimensional Fourier transform
of the function F̂(�R). This can be considered the field gener-

ated by the object at point �R of the receiving aperture in the

far zone. The function F̂(�R) is the distorted field of the true
object

F̂
(�R) = exp

(
jθ
(�R))

∫
Ω�s
E(�s ) exp

(
jk0�R�s

)
d2�s

= exp
(
jθ
(�R))F(�R),

(A.3)

where the true spectrum of the object is

F
(�R) =

∫
Ω�s
E(�s ) exp

(
jk0�R�s

)
d2�s. (A.4)

In (A.3), θ(�R) are the phase distortions and

k0 = 2π
Λρ

, (A.5)

where Λ is the wavelength of the radiation, ρ is the range to
the object Ω�s is the area a priori occupied by the object.

The expression (A.3) means that the spectrum of the ob-
ject is distorted in the phase, but not in the amplitude.

We will assume that the estimation of the object Ê(�s )
for point �s is calculated as the inverse Fourier transform of

the distorted spectrum F̂(�R) with a compensating multiplier

exp(− jθ̂(�R)), in which

Ê(�s ) = 1
(2π)2

∫
Ω�R

F̂
(�R) exp (− jk0�R�s

)
exp

(− jθ̂
(�R))d2�R.

(A.6)

Here, θ̂(�R) is an arbitrary chosen estimation of the phase dis-
tortions and Ω�R is the area of the receiving aperture.

Taking into account condition (A.2), we will build up
the mere estimation Â(�s ) of the amplitudes A(�s ). It is nat-
ural to take this estimate as a modulus of the complex

function (A.6):

Â(�s ) = ∣∣Ê(�s )∣∣
= 1

(2π)2

∣∣∣∣∣
∫
Ω�R

F̂
(�R) exp (− jk0�R�s

)
exp

(− jθ̂
(�R))d2�R

∣∣∣∣∣.
(A.7)

Further on, we will show that any arbitrary estimation of the

distortions θ̂(�R) (with any true function θ(�R)) gives the esti-
mation Â(�s ) that satisfies the condition

∫
Ω�s
Â(�s )d2�s ≥

∫
Ω�s
A(�s )d2�s. (A.8)

Here, A(�s ) is the true image as mentioned above.
First of all, we evaluate the integral

J0 =
∣∣∣∣∣
∫
Ω�s
Ê(�s )d2�s

∣∣∣∣∣. (A.9)

By inserting (A.6) into (A.9) and changing the order of the
integration, we will obtain

J0 =
∣∣∣∣∣
∫
Ω�s
Ê(�s )d2�s

∣∣∣∣∣
=
∣∣∣∣∣ 1
(2π)2

∫
Ω�R

F
(�R) exp ( j(θ(�R)− θ̂

(�R)))d2�R
·
∫
Ω�s
exp

(− jk0�R�s
)
d2�s
∣∣∣∣∣.

(A.10)

If the area Ω�s is large enough (in other words, it contains
a large number of the spatial resolution elements), we can
rewrite (A.10) as

J0 =
∣∣∣∣∣
∫
Ω�R

F
(�R) exp ( j(θ(�R)− θ̂

(�R)))δ(2)(�R)d2�R
∣∣∣∣∣. (A.11)

Here, δ(2)(�R) is a two-dimensional delta function.
The equation

J0 =
∣∣F(0) exp ( j(θ(0)− θ̂(0)

))∣∣ = ∣∣F(0)∣∣ (A.12)

follows from (A.11).
By inserting (A.4) into (A.12), we finally have

J0 =
∣∣∣∣∣
∫
Ω�s
Ê(�s )d2�s

∣∣∣∣∣ =
∣∣∣∣∣
∫
Ω�s
E(�s )d2�s

∣∣∣∣∣. (A.13)

For any complex function Ê(�s ), the following relationship is
always valid:

∫
Ω�s
Â(�s )d2�s =

∫
Ω�s

∣∣Ê(�s )∣∣d2�s ≥ J0 =
∣∣∣∣∣
∫
Ω�s
Ê(�s )d2�s

∣∣∣∣∣. (A.14)
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It is clear from (A.1) and (A.2) that the true image satisfies

E(�s ) = A(�s ) exp
(
jϕ0
)
. (A.15)

Now, (A.8) follows from (A.13), (A.14), and (A.15).

B. SOLUTION TO THEMAXIMUM
LIKELIHOOD EQUATION

The calculation of δLnP/δ ReE(�s ) yields

δLnP

δ ReE(�s ) =
2Re
σ2noise

{ N∑
n=1

∫ λmax

λmin

(
Zn(λ)− Z̄n(λ)

) δZ̄∗n (λ)
δ ReE(�s )dλ

}
.

(B.1)

The functional derivative δZ̄∗n (λ)/δ ReE(�s ) is, from (12),

δZ̄∗n (λ)
δ ReE(�s ) =

∫
SLIGHT

δ ReE(�s1)
δ ReE(�s ) exp

(
jωτn

(�s1)
c

)

·C0

(
λ− τn(�s1)

c

)
·d2�s1 exp

(− jθn
)
.

(B.2)

Here, τn(�s ) is the designation of (18).
In (B.2), δ ReE(�s1)/δ ReE(�s ) is the functional derivative

of the function with respect to itself and is equal to

δ ReE(�s1)
δ ReE(�s )

= δ2
(
�s1 −�s

)
(B.3)

(�s is an argument of ReE(�s )).
After inserting (B.3) into (B.2) and (B.2) into (B.1), we

obtain

δLnP

δ ReE(�s ) =
2Re
σ2noise

{ N∑
n=1

∫ λmax

λmin

Zn(λ)C∗0
(
λ− τn(�s )

)
dλ

× exp
(
j
(
θn − ωτn(�s )

))}−Φ,

(B.4)

where Φ is the functional

Φ = 2Re
σ2noise

×
{ N∑
n=1

∫ λmax

λmin

∫
SLIGHT

E∗
(
�s1
)
exp

(
jωτn

(
�s1
))
C0
(
λ−τn

(
�s1
))

· C∗0
(
λ− τn(�s )

)
d2�s1dλ

× exp
(− jωτn(�s )

)}
.

(B.5)

The calculation of the internal integral over λ in (B.5) leads

to

Φ= 2Re
σ2noise

{ N∑
n=1

∫
SLIGHT

E∗
(
�s1
)
exp

(
jωτn

(
�s1
))
δ
(
τn
(
�s1
)− τn(�s )

)

× exp
(− jωτn(�s )

) · d2�s1
}
.

(B.6)

The assumption of a high signal resolution has been used,
that is,

∫ λmax

λmin

C0
(
λ− τ1

)
C∗0
(
λ− τ2

)
dλ ≈ δ

(
τ1 − τ2

)
. (B.7)

After the integration along�s1 in (B.6), we get

Φ = N2ReE∗(�s )
σ2noise

. (B.8)

By inserting (B.8) into (B.4) and using (16), we obtain the
estimate of the real part of Ê∗(�s ):

Re Ê∗(�s ) = Re
N

{ N∑
n=1

Zn
(
τn(�s )

)
exp

(
j
(
θn − ωτn(�s )

))}
.

(B.9)

The similar considerations will lead to the estimation of the
imaginary part of Ê∗(�s ):

Im Ê∗(�s ) = − Im
N

{ N∑
n=1

Zn
(
τn(�s )

)
exp

(
j
(
θn − ωτn(�s )

))}
.

(B.10)

The estimations (B.9) and (B.10) are obtained under the as-
sumption that the values θn are exactly known.

If θn (n = 1, . . . , N) are unknown, their estimations θ̂n
(n = 1, . . . , N) should be substituted into (B.9) and (B.10).
The expressions (B.9) and (B.10) compose the operation
(17).

REFERENCES

[1] Z. S. She, D. A. Gray, and R. E. Bogner, “Autofocus for inverse
synthetic aperture radar (ISAR) imaging,” Signal Processing,
vol. 81, no. 2, pp. 275–291, 2001.

[2] M. J. Prickett and C. C. Chen, “Principles of inverse synthetic
aperture radar (ISAR) imaging,” in Proc. IEEE Eascon Record
(EASCON ’80), pp. 340–345, Arlington, Va, USA, September
1980.

[3] H. Wu, D. Grenier, G. Y. Delisle, and D. G. Fang, “Transla-
tional motion compensation in ISAR image processing,” IEEE
Trans. Image Processing, vol. 4, no. 11, pp. 1561–1571, 1995.

[4] B. Kang, H. Subbaram, and B. D. Steinberg, “Improved
adaptive-beamforming target for self-calibrating a distorted
phased array,” IEEE Trans. Antennas and Propagation, vol. 38,
no. 2, pp. 186–194, 1990.

[5] F. Berizzi and G. Corsini, “Autofocusing of inverse synthetic
aperture radar images using contrast optimization,” IEEE
Trans. on Aerospace and Electronics Systems, vol. 32, no. 3, pp.
1185–1191, 1996.



The Task of the Radar Imaging in Distortion 1197

[6] Z. S. She and Z. D. Zhu, “Two improved methods of motion
compensation for 1D cross-range ISAR imaging,” in Proc.
IEEE National Aerospace and Electronics Engineering Confer-
ence (NAECON ’96), pp. 227–230, Dayton, Ohio, USA, May
1996.

[7] C. V. Jakowatz and D. E. Wahl, “Eigenvector method for
maximum-likelihood estimation of phase errors in synthetic-
aperture-radar imagery,” Journal of Optical Society of America
{A}, vol. 10, no. 12, pp. 2539–2546, 1993.

[8] B. D. Steinberg, “Microwave imaging of aircraft,” Proceedings
of the IEEE, vol. 76, no. 12, pp. 1578–1592, 1988.

[9] E. Yadin, “SAR autofocusing viewed as adaptive beamform-
ing on prominent scatterers,” in Proc. IEEE National Radar
Conference, pp. 138–143, Atlanta, Ga, USA, March 1994.

[10] D. B. Ivashov and Y. V. Zhulina, “Potentials of the radar image
reconstruction algorithms,” Radiotekhnika i Elektronika, vol.
41, pp. 1–22, 1996.

[11] D. B. Ivashov and Y. V. Zhulina, “Building of images in a radar
systems with a single receiver point, wideband signal, synthe-
sis of aperture in time and compensation of phase distortions
in signal,” Radiotechnika, , no. 3, pp. 81–88, 1996.

[12] G. Ayers and J. C. Dainty, “Iterative blind deconvolution
method and its applications,” Optical Letters, vol. 13, no. 7,
pp. 547–549, 1988.

[13] R. G. Lane, “Blind deconvolution of speckle images,” Journal
of Optical Society of America {A}, vol. 9, no. 9, pp. 1508–1514,
1992.

[14] S. M. Jefferies and J. C. Christou, “Restoration of astronom-
ical images by iterative blind deconvolution,” Astrophysical
Journal, vol. 415, pp. 862–874, October 1993.

[15] T. J. Schulz, “Multiframe blind deconvolution of astronomical
images,” Journal of Optical Society of America {A}, vol. 10, no.
5, pp. 1064–1073, 1993.

[16] E. Thiebaut and J. M. Conan, “Strict a priori constraints for
maximum-likelihood blind deconvolution,” Journal of Optical
Society of America {A}, vol. 12, no. 3, pp. 485–492, 1995.

[17] Y. Yang, N. P. Galatsanos, and H. Stark, “Projection based
blind deconvolution,” Journal of Optical Society of America
{A}, vol. 11, no. 9, pp. 2401–2409, 1994.

[18] N. F. Law and R. G. Lane, “Blind deconvolution using least
square minimisation,” Optics Communications, vol. 128, pp.
341–352, 1996.

[19] A. Kuriksha and Y. V. Zhulina, “Restoration distorted images
in optical systems with Poisson fluctuations of the signal in a
photoreceiver,” Radiotekhnika i Elektronika, vol. 45, no. 3, pp.
313–319, 2000.

[20] S. C. Douglas, A. Cichocki, and S. Amari, “Self-whitening
algorithms for adaptive equalization and deconvolution,”
IEEE Trans. Signal Processing, vol. 47, no. 4, pp. 1161–1165,
1999.

[21] R. J. Hanish and R. L. White, Eds., The Restoration of HST
Images and Spectra—II, Proceedings of a Workshop Held at
the Space Telescope Science Institute, Baltimore, Md, USA,
1993.

[22] F. Goudail, O. Ruch, and Ph. Refregier, “Deconvolution of
several versions of a scene perturbed by different defocus
blurs: influence of kernel diameters on restoration quality and
on robustness to kernel estimation,” Applied Optics-IP, vol.
39, no. 35, pp. 6602–6612, December 2000.

[23] H. Stark and Y. Yang, Vector Space Projections: A Numerical
Approach to Signal and Image Processing, Neural Nets, and Op-
tics, John Wiley & Sons, NY, USA, 1998.

[24] K. C. Haddad, H. Stark, and N. P. Galatsanos, “Constrained
FIR filter design by the method of vector space projections,”
IEEE Trans. on Circuits and Systems II: Analog and Digital Sig-
nal Processing, vol. 47, no. 8, pp. 714–725, 2000.

[25] K. C. Haddad, H. Stark, and N. P. Galatsanos, “Design of
digital linear-phase FIR crossover systems for loudspeakers by
the method of vector space projections,” IEEE Trans. Signal
Processing, vol. 47, no. 11, pp. 3058–3066, 1999.

[26] Y. Yang and H. Stark, “Design of self-healing arrays using
vector-space projections,” IEEE Trans. Antennas and Propa-
gation, vol. 49, no. 4, pp. 526–534, 2001.

[27] B. D. Steinberg, “Microwave imaging of aircraft,” Proceedings
of the IEEE, vol. 76, no. 12, pp. 1578–1592, 1988.

[28] D. R. Wehner, High Resolution Radar, Artech House, Nor-
wood, Mass, USA, 1995.

[29] D. A. Ausherman, A. Kozma, J. L. Walker, H. M. Jones, and
E. C. Poggio, “Developments in radar imaging,” IEEE Trans.
on Aerospace and Electronics Systems, vol. 20, no. 4, pp. 363–
400, 1984.

[30] C. C. Chen and H. C. Andrews, “Target-motion-induced
radar imaging,” IEEE Trans. on Aerospace and Electronics Sys-
tems, vol. 16, no. 1, pp. 2–14, 1980.

[31] C. Elachi, T. Bicknell, R. L. Jordan, and C. Wu, “Spaceborne
synthetic-aperture imaging radars: applications, techniques
and technology,” Proceedings of the IEEE, vol. 70, no. 10, pp.
1174–1209, 1982.

[32] S. L. Borison, S. B. Bowling, and K. M. Cuomo, “Superreso-
lution methods for wideband radar,” The Lincoln Laboratory
Journal, vol. 5, no. 3, pp. 441–461, 1992.

[33] T. P.Wallace, “An all-neighbor classification rule based on cor-
related distance combination,” Tech. Rep. 1030, MIT Lincoln
Laboratory, Lexington, Mass, USA, November 1996.

[34] G. P. Banner, “Deep space surveillance—overview and radar
tracking,” in Proc. 3rd US/Russia Space Surveillance Workshop,
Washington, DC, USA, October 1998.

[35] D. Mehrholz and K. Magura, “Radar tracking and obser-
vation of noncooperative space objects by reentry of Salyut-
7/Kosmos-1686,” in Proc. International Workshop ESOC on
Salyut-7/Kosmos-1686 Reentry, number ESA SP-345, pp. 1–8,
Darmstadt, Germany, April 1991.

[36] D. Mehrholz, “Potentials and limits of space object obser-
vations and data analyses using radar techniques,” in Proc.
1st European Conference on Space Debris, number ESA-SD-01,
Darmstadt, Germany, April 1993.

[37] E. C. Pearce, “Satellite photometry with the GEODSS and
MOSS systems,” in Proc. 4th US/Russia Space Surveillance
Workshop, October 2000.

[38] C. V. Solodyna and G. P. Banner, “Narrowband and wideband
radar signatures in support of the space catalog,” in Proc. 4th
US/Russia Space Surveillance Workshop, October 2000.

[39] J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes, Com-
puter Graphics: Principles and Practice, Addison-Wesley, NY,
USA, 1991.

Yulia V. Zhulina was born in Igarka, Rus-
sia, in 1940. She received her B.S. degree
in radio engineering from Moscow Physi-
cal and Engineering Institute, Moscow, Rus-
sia, in 1963. She received her Ph.D. degree
in radar engineering from Moscow Physical
and Engineering Institute, Moscow, Russia,
in 1968. In 1963, she joined the Radar Engi-
neering Department at “Vympel,” where she
is currently a Senior Scientist Researcher.
She is a Coauthor of the book Detecting Moving Objects (Moscow,
Sovetskoye Radio) in 1980. Her research interests are in image
recovery, medical, optical, radar imaging, methods of the “blind
deconvolution,” recognition with the optical images, and applied
mathematical and statistical methods.


	1. INTRODUCTION
	2. CRITERION FOR FINDING THE BEST IMAGE OBTAINED AS A RESULT OF THE INVERSE FOURIER TRANSFORM
	3. THE TASK OF THE RADAR IMAGING WITH THE DISTORTED SIGNAL PHASES
	4. MAXIMUM LIKELIHOOD ALGORITHM
	5. EVALUATION OF PHASE DISTORTIONS
	6. RESULTS OF DIGITAL SIMULATION
	7. DISCUSSION
	APPENDICES
	A. PROOF OF THE CRITERION FOR CHOOSING THE BEST IMAGE
	B. SOLUTION TO THE MAXIMUM LIKELIHOOD EQUATION

	REFERENCES

