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Performance Estimation for Lowpass Ternary Filters
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Ternary filters have tap values limited to −1, 0, or +1. This restriction in tap values greatly simplifies the multipliers required by
the filter, making ternary filters very well suited to hardware implementations. Because they incorporate coarse quantisation, their
performance is typically limited by tap quantisation error. This paper derives formulae for estimating the achievable performance
of lowpass ternary filters, thereby allowing the number of computationally intensive design iterations to be reduced. Motivated by
practical communications systems requirements, the performance measure which is used is the worst-case stopband attenuation.

Keywords and phrases: ternary filter, performance estimation, FIR filter, stopband attenuation.

1. INTRODUCTION

Ternary filters typically have a transversal finite impulse re-
sponse (FIR) section cascaded with a recursive filter section
[1]. The transversal FIR section has an impulse response
which is quantised to one of three values (−1, 0, and +1) and
the recursive section is usually selected to allow for simple
hardware implementation (i.e., it is designed to have no or
very few multiplications). Because of the very coarse quan-
tisation of ternary filters, it is often (although not always)
necessary to sample at a higher rate than would be required
if infinitely fine quantisation were used. Often, optimisation
methods are used to ensure that the required sampling rates
in ternary filters are kept as low as possible.

It is very important to be able to predict the achievable
performance of a ternary filter before the design process be-
gins; otherwise, key filter parameters will have to be deter-
mined by trial and error, and many iterations of the opti-
misation process may be required. Performance is a broad
concept, and one must, therefore, clearly define what aspect
of performance is important in the design of ternary filters.
Previous authors such as Lockhart [2] have usedmean square
error (MSE) as a measure of performance, while others such
as Abeysekera and Padhi [3] have used the filtered quanti-
sation noise power. Both these performance estimates tend
to give an indication of a filter’s average stopband attenua-
tion, as noise (i.e., error) is most noticeable in the stopband,
where the signal-to-quantisation error ratio is the lowest. In
many practical situations, what is required is not the average

stopband attenuation, but the maximum level of stopband
gain (i.e., the worst-case attenuation). In scenarios where a
filter is processing radio frequency (RF) signals, for example,
the worst-case attenuation is very important. The purpose
of such filters is to block unwanted signals from interfering
with the desired signal. If an interferer happened to fall at
the same frequency as the worst-case attenuation, it would
not be sufficiently attenuated. It is, therefore, desirable that
the achievable performance estimation method be capable
of predicting the worst-case stopband attenuation in addi-
tion to the average stopband attenuation. To be useful, the
accuracy of this estimate should be of the order of 10 dB or
better.

In what follows, achievable performance estimation for-
mulae based on the worst-case stopband attenuation are
derived. Section 2 specifies the assumptions that are made
in the derivations. The performance derivations themselves
are presented in Section 3. The achievable performance es-
timates are compared with the actual performance of some
practical filters in Section 4. Section 5 then compares the per-
formance of ternary filters to some other common filter ar-
chitectures, while Section 6 presents conclusions.

2. ASSUMPTIONS

2.1. Filter structure

It is assumed that the ternary filter structure consists of a
ternary tap FIR transversal filter cascaded with an integrator,
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Figure 1: Ternary filter structure used in performance estimation
derivation.

as illustrated by the diagram in Figure 1. This is a common
architecture used for ternary filters, and is simple to imple-
ment.

Note that the integrator is not restricted to being a sim-
ple first-order integrator; it can have an arbitrarily high or-
der. That is, it is a structure with a transfer function given
by

Hint(z) = 1(
1− z−1

)N , (1)

where N is the order. Note that the assumed filter struc-
ture has some distinct similarities to sigma-delta modulator
(SDM) based filtering schemes. The latter typically have an
FIR transversal filter section (with the impulse response be-
ing generated by an SDM) followed by a comb filter. Ternary
filters thus differ from SDM based filters in that (i) their im-
pulse responses are usually generated by an optimisation al-
gorithm (such as dynamic programming) and (ii) the recon-
struction filter is typically an integrator rather than a comb
filter. These two differences can provide significant benefits
[1]. The use of optimisation algorithms enables the best pos-
sible performance for a given optimisation criterion, and
the use of integrators enables very efficient hardware im-
plementations. A hardware integrator, for example, requires
only a delay and summer, whereas a comb filter requires
several delays, a summer, and some storage elements. This
hardware advantage is particularly great in cases where the
desired filter is very narrowband. If a comb filter section
is used to help realise these narrowband filters, the comb
section also typically needs to have a narrow bandwidth.
This narrow bandwidth in turn translates to a large memory
requirement.

2.2. Transversal FIR filter section and target filter

The taps of the transversal FIR filter are quantised to three
levels (−1, 0, and +1). When the impulse response of the
transversal FIR filter is passed through the integrator, the
multibit impulse response of the complete ternary filter is ob-
tained. The transversal filter is assumed to be designed using
a dynamic programming style optimisation algorithm. It is
assumed that the target (or desired) filter response is an infi-
nite resolution, lowpass FIR filter with a flat passband and a
flat stopband. The stopband attenuation of this ideal filter is
infinite.

2.3. Quantisation noisemodel

The impulse response of the FIR transversal filter section is
assumed to be given by

hTransversal(n) = hTrue(n) + qTransversal(n), (2)

where hTrue(n) is the true or desired transversal filter im-
pulse response and qTransversal(n) is the additive quantisation
noise, the samples of which are assumed to be uniformly dis-
tributed. The impulse response of the overall filter (i.e., the
transversal filter cascaded with the integrator) will be

h(n) = hTransversal(n)∗hint(n)
= hTrue(n)∗hint(n) + qTransversal(n)∗hint(n)
= hTrue(n)∗hint(n) + q(n),

(3)

where hint(n) is the impulse response of the integrator and
q(n) is the additive quantisation noise in the overall filter.
The samples of q(n) are assumed to be white and identically
distributed. The transfer function of h(n) is the transfer func-
tion of the overall filter. It is specified by

H(ω) = HTrue(ω)Hint(ω) +Q(ω) = HTarget(ω) +Q(ω), (4)

where HTarget(ω) is the target filter transfer function, and
HTrue(ω), Hint(ω), and Q(ω) are the Fourier transforms of
hTrue(n), hint(n), and q(n), respectively.

It is important to note that the assumptions listed in the
previous paragraph may not always be fully satisfied in prac-
tice. Firstly, the assumption that q(n) is white implies that the
stopband (which should be dominated by the error signal)
is flat. This will only be the case if the filter design process
creates the desired flat passband, and this will not always be
the case. If, for example, time domain MSE criteria are used
for the optimisation criterion, the stop bands are often not
flat. Secondly, the actual impulse response will differ from the
ideal target impulse response not only because of the quan-
tisation noise, but also the limitations of the finite length of
the transversal FIR filter. For these reasons, the performance
estimates derived in this paper can be considered estimates
of “achievable performance.” They can be achieved if the er-
rors due to the finite length of the transversal filter impulse
response are insignificant compared with the quantisation
noise effects and if the ternary filter design algorithm spreads
the quantisation noise out evenly over the entire band. These
issues are explored more fully in [4].
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3. DERIVATION

3.1. Average stopband attenuation

The ternary filter response is assumed to be given by

H(ω) =



GPB, 0 < ω < 2π

FC
FS

,

GSB, 2π
FC
FS

< ω < π,

(5)

where GPB and GSB are the passband and stopband gains,
respectively. The response in (5) is depicted graphically in
Figure 2. The performance analysis of a ternary filter can be
simplified by separating the filter into the transversal FIR and
integrator parts. The overall response can then be defined as

H(ω) = HTransversal(ω)×Hint(ω), (6)

where HTransversal(ω) is the transversal FIR filter’s response
and Hint(ω) is the integrator’s response. The amplitude re-
sponse for an arbitrary Nth-order integrator can easily be
shown to be

∣∣Hint(ω)
∣∣ = 1

(2 sinω/2)N
, 0 < ω < 2π. (7)

Substituting (7) into (6) and combining with (5) yield the
following transversal filter amplitude response:

∣∣HTransversal(ω)
∣∣ =



GPB

(
2 sin

ω

2

)N
, 0 < ω < 2π

FC
FS

,

GSB

(
2 sin

ω

2

)N
, 2π

FC
FS

< ω < π.

(8)

The amplitude response in (8) is graphically illustrated in
Figure 3. In accordance with the assumptions in Section 2,
the quantisation noise level in the transversal filter section
will largely dictate the achievable stopband level of the overall
filter. Assuming that the design algorithm spreads the quan-
tisation error of the overall ternary filter evenly across the
entire band, the expected value of the quantisation error am-
plitude spectrum will be

∣∣HNoiseComp(ω)
∣∣ = GSB, 0 ≤ ω ≤ π. (9)

The quantisation noise transfer function for the transversal
section of the filter will thus be∣∣HTransversalNoiseComp(ω)

∣∣
= GSB

(
2 sin

ω

2

)N
, 0 ≤ ω ≤ π.

(10)

Assume for the moment that one wants to determine the
SNR (which is effectively the passband-to-stopband ratio) in
an ideal lowpass transversal FIR filter impulse response in
which (i) the quantisation error is uniformly distributed, (ii)
there are ternary coefficients, (iii) the cutoff frequency is FC ,
(iv) the sampling frequency is FS, and (v) there is no noise

shaping. The standard quantisation noise equation may be
used to calculate such an SNR [5, page 37]. It is given by

SNRno shaping = 1.76 + 20 log 3− 10 log

(
FC
FS/2

)
(11)

= 11.3− 10 log

(
FC
FS/2

)
. (12)

Now, the transversal FIR filter section under consideration in
this paper differs from that described in the previous para-
graph in that there is noise shaping. Accordingly, the expres-
sion for the SNR of the transversal filter section in this paper
can be obtained by appropriately amending the expression in
(12). The improvement in SNR at FC (i.e., at the edge of the
passband) due to noise shaping will be given by the ratio of
the average noise power spectral density to the noise power
spectral density at FC . Using (10), this ratio is

SNRimprovement
(
FC
)

= 10 log


 (1/π)

∫ π
0

[
GSB(2 sinω/2)N

]2
dω[

GSB
(
2 sinπFC/FS

)N]2

. (13)

The SNR at FC can thus be obtained by adding the right-hand
sides of (12) and (13), giving

SNRFC = 11.3− 10 log

(
FC
FS/2

)

+ 10 log
[
1
π

∫ π

0

(
2 sin

ω

2

)2N
dω
]

− 20N log
[
2 sin

(
πFC
FS

)]
.

(14)

Now, in conventional lowpass SDM systems, the signal trans-
fer function in the passband is typically flat, while the noise
transfer function increases monotonically with frequency.
For SDM systems, therefore, the SNR varies as a function of
frequency within the passband. For the system considered in
this paper, however, the signal and noise transfer functions
have (up to a constant scaling factor) the same spectral shape.
See, for example, (8) and (10). As a result, the SNR in the
passband is constant. The SNR in (14), therefore, represents
the SNR across all frequencies within the passband. It may
also be thought of as the “average stopband attenuation.”

The second last term of the right-hand side of (14), is
independent of the filter bandwidth, and can be calculated
in advance to simplify predictions. Values of this term (de-
fined as k) for integrators of first- to fourth-order are given
in Table 1.

3.2. Worst-case stopband attenuation

Now that the “average stopband attenuation” is available via
(14), the worst-case stopband attenuation must be calcu-
lated. As stated in Section 2.3, the quantisation noise in the
impulse response for the complete filter is assumed to be
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Figure 3: Transversal FIR filter response.

white and identically distributed. The transfer function of the
overall filter is obtained by taking the discrete Fourier trans-
form of this impulse response. The real and imaginary com-
ponents of the samples in the transfer function can, there-
fore, be well approximated as white and Gaussian, using a
central limit theorem argument.

To find the worst-case stopband attenuation, the highest
amplitude component in the stopband region (i.e., the high-
est amplitude “frequency bin”) must be determined. Since
the real and imaginary components of the stopband samples
are assumed Gaussian, the amplitude will be Rayleigh [6].
This type of distribution can be described by (see [6, pages
59, 442]) the probability density function (pdf)

fX(x) =



2
b
(x − a)e−(x−a)2/b, x ≥ a,

0, x < a,
(15)

Table 1: Constant k versus integrator order.

Integrator order k (dB)

First 3.0

Second 7.8

Third 13.0

Fourth 18.5

and with the cumulative distribution function (cdf)

FX(x) =


1− e−(x−a)2/b, x ≥ a,

0, x < a.
(16)

The value of a and b can be related to the mean, X , of the
Rayleigh distributed random variable through

X = a +

√
πb

4
. (17)

In the scenario discussed here, a = 0, so b can be defined in
terms of the mean via

b = 4
π
X

2
. (18)

For a given level of confidence, the peak value of a single fre-
quency bin in the stopband can be deduced from (16) and
(18). The following equation gives the amplitude (relative to
the mean) below which the amplitude in a stopband bin will
fall with (100P%) confidence:

xmax

X
=
√
− 4
π
ln(1− P). (19)

Now, the stopband bin values, being the result of discrete
Fourier transformation of the impulse response, are all in-
dependent. Since there will be Nbins = Ntaps(0.5− FC/FS) in-
dependent samples in the stopband, the amplitude (relative
to the mean) below which all stopband bin values will fall
with (100P%) confidence is

(
xmax

X

)
=
√
− 4
π
ln
(
1− P1/Nbins

)
. (20)

The maximum relative deviation in (20) can also be ex-
pressed in dB by the equation

20 log
(
xmax

X

)
= 20 log

√
− 4
π
ln
(
1− P1/Nbins

)
. (21)

Equation (21) can be applied to the problem of estimat-
ing the worst-case stopband attenuation for the ternary filter
specified in Sections 2 and 3. The mean, X , for the case un-
der consideration is the mean value of GSB. The right-hand
side of (21) gives the amount (in dB) by which the aver-
age stopband attenuation exceeds the worst-case stopband
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attenuation, with P% confidence. By combining (14) with
(21), an estimate of the worst-case stopband attenuation can
be derived

AttenWorst case = 11.3− 10 log

(
FC
FS/2

)

− 20N log

[
2 sin

(
FC
FS

π

)]

+ k − 20 log

√
− 4
π
ln
(
1− P1/Nbins

)
dB,

(22)

where k is as in Table 1.

4. SIMULATION RESULTS

The dynamic programming design method in [4] was used
to design ternary filters with a range of normalised cutoff fre-
quencies (FC/FS) and integrator orders. The performance of
these filters was compared with the achievable performance
predicted by (14) and (22).

The graphs in Figures 4 and 5 show the comparison be-
tween measured performance and achievable performance.
The circles, triangles, squares, and diamonds indicate mea-
surements for first-order, second-order, third-order, and
fourth-order integrators, respectively. The achievable per-
formance is indicated with a solid line. The performance
measure considered in Figure 4 is average stopband atten-
uation, while that considered in Figure 5 is the worst-case
stopband attenuation, assuming a confidence level of 95%.
This comparison is performed for ternary filters with first- to
fourth-order integrators, and for normalised cutoff frequen-
cies ranging from 1/40 to 1/8.

It can be seen from Figures 4 and 5 that for first-, second-
, and third-order filters, the dynamic programming design
method in [4] yields performance which is comparatively
close to the achievable limits predicted by (14) and (22). That
is, the stopband attenuation for these filters is within about
10 dB of that predicted by (14) and (22). For fourth-order
filters, however, the dynamic programming design method
in [4] gives rise to filters with comparatively poor stopband
attenuation. The reason for the comparatively poor perfor-
mance in the fourth-order case is due to the fact that the dy-
namic programming method in [4] is anMSE-based method
which does not guarantee the optimum solution in terms of
the worst-case stopband attenuation. Rather it only gives so-
lutions which tend to minimise the average stopband atten-
uation. The fourth-order integrator based filters have been
observed to have nonflat passbands, which have relatively
low average stopband attenuations, but comparatively high
worst-case stopband attenuations. Note that the existence of
these nonflat passbands violates one of the key assumptions
in Section 2.3, namely that the error samples are white and
identically distributed. This suboptimal performance sug-
gests the need for alternative ternary filter design methods.
An alternative method that uses a minimax criterion is pre-
sented in [4].
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frequency (FS/FC).
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5. COMPARISONWITH OTHER FILTERS

The graph in Figure 5 provides some insight into the effec-
tiveness of ternary filters as compared to traditional FIR fil-
ters which use high precision filter taps. Suppose, for ex-
ample, that one requires a filter with a normalised cutoff of
1/16 and aminimum stopband attenuation of 40 dB. Figure 5
indicates that such a filter can be readily implemented as
a fourth-order ternary filter. The performance of such a
ternary filter would be virtually the same as that of a con-
ventional filter employing full precision [1]. The hardware
for the ternary filter, however, would be much simpler than
that of a full precision filter.

Now, suppose that one requires a filter different to that
described in the previous paragraph, with a normalised cut-
off frequency of 1/16 and a minimum stopband attenuation
of 80 dB. Figure 5 indicates that 80 dB stopband attenuation
can only be achieved for ternary filters with normalised cut-
off frequencies of less than 1/36 (assuming that the ternary
filter order is restricted to 4). To implement the required
ternary filter, therefore, one would have to artificially in-
crease the sampling rate of the input data stream by 36/16
(i.e., by 2.25). In such a case it is recommended that the
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“interpolated” data stream be created with an SDM which
produces reduced precision data samples. Despite the in-
crease in the input signal sampling rate of 2.25, the ternary
filter implementation would still be highly efficient. This is so
because the filter taps not only would be very coarsely quan-
tised, but the SDM derived data samples would be reduced in
precision as well. Therefore, the multiplications in the filter
would be trivial, and the additions for the transversal filter
section would be low precision additions.

Note that while ternary filters are useful in many situ-
ations they are particularly useful for filtering sigma delta
modulated data steams. The latter are found in many ana-
log to digital converter systems and, more recently, in many
digital amplification systems. SDM data streams are usu-
ally represented in single-bit format and tend to have small
normalised bandwidths. If single-bit SDM data is fed into
ternary filters, the low precision in both the input and the
filter taps enables the multiplications and the additions in
the ternary filter’s transversal filter section to be implemented
with very simple hardware. Furthermore, the low normalised
bandwidths of SDM derived data streams tend to lend them-
selves to ternary filtering with quite high stopband attenua-
tions. In fact, it can be a useful filtering strategy to first trans-
form the input into an SDM data stream and then apply a
ternary filter. A field programmable gate array (FPGA) fil-
ter based on this approach is described in [7]. One can even
use canonical signed digit (CSD) filter taps to increase per-
formance even further. In [7], for example, it was found that
by using filter taps quantised to ±2, ±1, and 0 rather than
ternary coefficients, an extra 7 dB of attenuation could be
obtained. This additional performance came at the cost of
a 20% increase in FPGA resources.

It is instructive to compare ternary filter performance
with that of frequency response masking (FRM) filters. The
latter tends to be more suited to wideband filters, while the
former tends to be suited to narrowband ones. The FRM de-
sign example in [8] will be used for comparison as it seems
to be a particularly efficient filter. Being comparatively wide-
band, it is also the kind of example which is likely to favour
an FRM implementation, and will thus be an exacting bench-
mark for a ternary filter. This filter (with a fractional band-
width of 0.3 and stopband attenuation of 80 dB) required
only 164 multipliers using the FRM method, whereas a tra-
ditionally designed FIR filter would have required 3177 taps.
To achieve 80 dB stopband attenuation, a ternary filter with
a fourth-order integrator and fractional bandwidth of 1/36
would be required (i.e., the traditionally designed filter re-
sponse would have to be oversampled about 11 times). The
ternary filter would, therefore, be expected to have around
35000 taps, with about 23000 of these being nonzero (i.e.,
±1) taps. Now, assuming that the input data has been inter-
polated with a 1-bit SDM, all of the required 23000 multi-
plications could be implemented with single gates. By con-
trast, the FRM would typically require 164 sixteen-bit mul-
tiplications, with each multiplication requiring many gates.
If each 16-bit multiply requires more than 140 gates, then
the ternary filter would be arguably the more efficient imple-
mentation.

6. CONCLUSIONS

A method for predicting the performance of ternary filters
has been developed. The newly derived performance predic-
tion formulae enable the designer to predict a priori the order
of the recursive filter component, and in doing so, reduce the
number of required design iterations.
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