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This paper proposes a parameterized digital signal processor (DSP) core for an embedded digital signal processing system designed
to achieve demodulation/synchronization with better performance and flexibility. The features of this DSP core include parame-
terized data path, dual MAC unit, subword MAC, and optional function-specific blocks for accelerating communication system
modulation operations. This DSP core also has a low-power structure, which includes the gray-code addressing mode, pipeline
sharing, and advanced hardware looping. Users can select the parameters and special functional blocks based on the character
of their applications and then generating a DSP core. The DSP core has been implemented via a cell-based design method using
a synthesizable Verilog code with TSMC 0.35 µm SPQM and 0.25 µm 1P5M library. The equivalent gate count of the core area
without memory is approximately 50 k. Moreover, the maximum operating frequency of a 16 × 16 version is 100MHz (0.35 µm)
and 140MHz (0.25 µm).
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1. INTRODUCTION

During the past few years, digital signal processor (DSP) has
become the fastest growing segment in the processor indus-
try [1]. Today, almost all wireless handsets and base stations
are DSP-based systems. Not only technological trends make
DSP cheaper and more powerful, but DSP-based systems are
also more cost effective and have shorter time to market than
other systems [2].

Some DSPs can achieve high throughput by exploiting
parallelism with specialized data paths at moderate clock fre-

quency. For example, very long instruction word (VLIW)
and single instruction multiple data (SIMD) approaches
can be used to further enhance processor performance [3].
However, these approaches are not economical for dedi-
cated application in area and power terms. Consequently,
these structures are not suitable for embedded commu-
nication applications, in which small area and low-power
consumption are critical factors. Instead, an application-
specific concept is used while maintaining a focus on the
targeted application of the processor. Accordingly, the DSP
architecture and bus structure have been set to optimize
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Figure 1: Typical block diagram of the demodulation and synchronization in the receiver of communication system.

the performance of DSP processors for the target applica-
tions. Some special function blocks also influence the per-
formance of application-specific DSPs. Notably, special func-
tional blocks such as square-distance-and-accumulate for
vector quantization, add-compare-select for the Viterbi al-
gorithm, and the Galois field operation for forward error-
control coding are provided in certain DSPs for baseband
operations [4, 5, 6, 7, 8]. For example, Lucent’s DSP 1618
performs Viterbi decoding using a coprocessor, which sup-
ports various decoding modes with control registers [5]. A
special function, called the mobile communication acceler-
ator (MCA), is incorporated into the design of MDSP-II to
accelerate the complex MAC operation [8].

Consequently, combining a dedicated, high performance
DSP core with some special functional blocks to produce a
highly integrated system is a current trend [9, 10, 11, 12]. The
proposed design is parameterized and configurable and thus
can meet system requirements easily. The proposed DSP core
contains special blocks such as Hamming distance unit, sub-
word multiplier, dual MAC unit, rounded/saturation mode,
fixed-coefficient FIR filter, and slicer unit. The proposed DSP
core is designed to support the calculations in the demod-
ulation/synchronization part of the receiver. Figure 1 illus-
trates the typical block diagram of the demodulation and
synchronization in the receiver. Thus, this DSP core sup-
ports operations such as scaling, digital FIR filtering (both
fixed-coefficient filter for pulse shaping and adaptive filter for
equalization), symbol slicing, looping, complex multiplica-
tion, and so on.

In the aspect of low-power design, the memory access
operation is clearly the most power-consuming action in
DSPs. Various low-power techniques are also used in the
DSP developed here, including gray-code addressing and ad-
vanced hardware looping; pipeline sharing and low-power
data-path design are used to reduce power consumption. The
remainder of this paper is organized as follows: Section 2
presents the architecture of the proposed DSP. Section 3
then shows the design of the parameterized architecture and
the special functional blocks. Next, Section 4 discusses some
low-power design techniques used in this DSP core. Sub-
sequently, implementation and design results are demon-

strated in Section 5. Finally, Section 6 makes some conclu-
sions.

2. ARCHITECTURE OF THE DSP CORE

Figure 2 illustrates the overall architecture of the proposed
NCU DSP [9]. The NCU DSP is a fixed-point DSP core. The
grey blocks in Figure 2 are the special functional blocks and
are optional blocks that can be chosen by the user. The DSP
processor core itself is parameterized with several indepen-
dent parameters. Users can set the parameters so that the
DSP core fits the applications.

2.1. Bus andmemory architecture

One of the characteristics of the DSP processor is that it can
move large amounts of data to or from memory rapidly and
efficiently. DSP processor has this characteristic because it
needs to process numerous calculations simultaneously. Tak-
ing FIR as an example, one tap operation must make three
accesses to memory, namely, coefficient access, data access,
and write-back data. If the memory bandwidth is not wide
enough, an operation must be split into several subopera-
tions before it can be completed. Consequently, memory ar-
chitecture is an important determinant of processor perfor-
mance.

Figure 3 illustrates the modified Harvard architecture
used in our work. The modified architecture contains one
program-memory bank and one data-memory bank with
separate program and data bus. The program and data mem-
ories are single-port and dual-port RAM, respectively. The
dual-port RAM indicates that the DSP processor simulta-
neously can make two accesses to RAM. This arrangement
provides a maximum of one program access and two data
accesses per instruction cycle to enhance memory access ca-
pacity.

Most of the DSP processors include one or more dedi-
cated data-address generation units (DAGU) for calculating
data address. NCU DSP supports three addressing modes,
namely, the indirect addressing, register direct addressing,
and immediate addressing modes, as listed in Table 1. The
indirect addressing mode requires one additional register
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Figure 2: The block diagram of NCU DSP.

file, called the auxiliary register (ARx), for storing data-
memory address. Moreover, DSP processors usually need
to access data using special addressing methods in many
DSP algorithms. Hence, NCU DSP supports linear address-
ing, circular addressing, and bit-reversed address in the in-
direct addressing mode. The circular addressing mode can
be used to operate the FIR filter, and convolution and
correlation algorithm, while the FFT algorithm uses bit-
reversed addressing. These specialized functions not only re-
duce the programming burden but also enhance the per-
formance of DSP under conditions of smooth data access.
This enhanced performance is why the indirect addressing
mode is the most important addressing mode in the DSP
cores.

Figure 4a shows the straightforward method for calculat-
ing the bit-reversed addressing value. In Figure 4a, “A” rep-
resents the current address pointer value and “Step” repre-
sents the offset value, which is added to or subtracted from
the current pointer value. The internal carry propagation is
from MSB to LSB, differing from normal addition. Notably,

the bit-reversed address is calculated by adding or subtract-
ing the step value from MSB to LSB (if the step is +1, the
address value will be 0000, 1000, 0100, 1100, 0010, 1010, . . .).
This circuit in Figure 4a uses a ripple adder to construct the
reversed carry propagation from MSB to LSB. However, the
circuit has n full-adder (FA) delay time. This delay time of
ripple adder makes the instruction decode (ID) stage become
the critical path of DSP core. Figure 4b illustrates the new
bit-reversed addressing generation architecture. In Figure 4b,
“A” and “Step” are reordered by reversed connecting. The
ripple adder is replaced by a parallel adder which has less de-
lay time with respect to ripple adder. Finally, the output of
the parallel adder is the reversed order of the bit-reversed
value. The proposed new structure, Figure 4b, has smaller
delay time than that of Figure 4a.

2.2. I/O interface

Required transmission methods differ with data type. The
I/O interface of NCU DSP contains three categories, the di-
rect data access (DMA) mode, the handshaking mode, and
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Table 1: Data addressing modes.

Type Operation Syntax Function Description

Indirect addressing
mode

∗ARx Address = ARx ARx contains the data-memory address.

∗ARx± Address = ARx
ARx = ARx±

After access, the address in ARx is incremented
or decremented by 1.

∗ARx ± 0B
Address = ARx
ARx = B(ARx ± AR0)

After access, AR0 is added to or subtracted
from ARx with reverse carry propagation.

∗ARx ± 0
Address = ARx
ARx = ARx ± AR0

After access, AR0 is added to or subtracted
from ARx.

∗ARx ± 0%
Address = ARx
ARx = circ(ARx ± AR0)

After access, AR0 is added to or subtracted
from ARx with circular addressing.

Register direct
addressing mode

ADD R0, R1, R2 R2 = R0 + R1
Access the content of register as operand
directly.

Immediate addressing
mode

LAR # 1000 h AR0 AR0 = 1000 h
Give the destination register or memory
a value directly.

the merge mode. The DMA mode is to transfer data directly
from the outside of the DSP to the data memory of the DSP
core. The DMA mode is provided for transferring these data
quickly and conveniently. Notably, the DMA mode transfer
batch data. The transfer rate is the same with the clock in the
DSP core. The handshaking mode is for real-time data but
the data rate is not regular. The handshaking signals are re-
quired to perform the data transfer in this mode. The merge
mode is to transfer data in regular clock rate which is slower
than the internal clock of DSP core. In DMA mode, the DSP

core is halt until the data transfer is finished. The DSP core is
running when data are transferred in merge mode and hand-
shaking mode. Notably, the data transfer in the handshaking
and merge modes occurs between the data outside the NCU
DSP core and the host programmable interface (HPI) mem-
ory. The HPI memory resembles a buffer of data memory.

2.3. Pipeline stage

The NCU-DSP contains six pipeline stages, namely, instruc-
tion fetch (IF) stage, ID stage, operand fetch (OP) stage,
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execution one (EX1) stage, execution two (EX2) stage, and
write-back (WB) stage, as shown in Figure 5. To accelerate
the performance of NCU-DSP, data-path calculation was
split into the EX1 and EX2 stages. The most troublesome
problems encountered using the pipelining technique were
data hazards [13]. Data hazards occur when the next in-
struction needs to use data that is still being calculated by
the present instruction. Six clock cycles are required for the
present instruction to calculate the data and write it back
to memory. The next instruction fetches the data just three
stages behind (OP stage). Consequently, the programmer
needs to insert some useless instructions (e.g., NOP) to avoid
the data hazard. To reduce the penalties arising from data
hazards, this work adopts the data-forwarding technique in
[13, 14].

The following example describes an example of data haz-
ard:

· · · · · · · · ·
STL A,∗AR3

MAC2 ∗AR3,∗AR2, A

· · · · · · · · ·

The ∗AR3 is not ready until “STL” completes in the
sixth stage. Thus, three NOPs must be added between “STL”
and “MAC2.” Figure 6 illustrates the data-forwarding tech-
nique, which reduces the required number of NOPs to just
one.
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3. DATA PATH AND SPECIAL FUNCTIONAL BLOCKS

3.1. Dual MAC architecture

The MAC data-path operation, which is the most important
instruction in DSP, is the key to enhancing DSP operation
performance. Millions of multiply accumulates per second
(MMACS) is more relevant than millions of instructions per
second (MIPS). Here, “dual” indicates two MACs per cycle.
For example, the FIR algorithm is the most apparent usage of
the dual MAC unit. The following equation can express the
operation of the FIR filter process:

Y(n) =
N−1∑

i=0
h(i) · X(n− i), (1)

where Y(n) denotes the output sample, h(i) represents the
coefficient, and X(n − i) is the input data. Two consecutive
output samples can be listed for analysis:

Y(0) = h(0) · X(0) + h(1) · X(−1)
+ h(2) · X(−2) + · · · + h(N − 1) · X(1−N),

Y(1) = h(0) · X(1) + h(1) · X(0)
+ h(2) · X(−1) + · · · + h(N − 1) · X(2−N).

(2)

Each output sample of N taps filter will take N instruc-
tion cycles in the single MAC path. To accelerate perfor-

Accumulator
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NaccNacc

ALUACC

MPY2MPY1

Delay
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NdataNdataNdata

Ymem
Smem

Figure 7: The dual MAC data-path block diagram.

mance, this work established another MAC path in the DSP
data path, as shown in Figure 7. This secondMAC path com-
prises a newly added multiplier along with the original ALU
block. Regarding the data-flow consideration, a delay register
is added between the single MAC path and the second MAC
path to create the data source. This approach can save data
access requests where the coefficient remains the same for
each arm (Table 2). This architecture can be used to obtain
two output samples simultaneously. Therefore, only around
N/2 instruction cycles are required to complete the same op-
erations in the single MAC architecture. Meanwhile, the dual
MAC unit also reduces memory access power consumption.
The single MAC unit needs 2N memory accesses, while the
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Table 2: The performance comparison of MAC structures in FIR algorithm [15].

Single MAC Dual MAC with 3 access bus Dual MAC with Reg.

No. of MAC operation N N N

No. of memory read 2N 2N N

No. of instruction cycle N N/2 N/2

Table 3: The overhead of the special block.

Clock cycle
(without special block) Process Overhead

Overhead∗

(percentage)

Hamming distance calculator (16 bits) 1(33)
0.35 µm 174 (gate count) 0.35%
0.25 µm 238 (gate count) 0.38%

Multilevel slicer (16 bits) 1(2N ;N = log(symbol level))
0.35 µm 65 (gate count) 0.13%
0.25 µm 175 (gate count) 0.28%

Subword MAC unit (16 bits) 1(4)
0.35 µm 1 396 (gate count) 2.79%
0.25 µm 1 669 (gate count) 2.70%

Dedicated FIR filter with N taps
1(N at single MAC;

N/2 dual MAC)
Depends on spec.
of FIR filter

Advance hardware looping
1(5) 0.35 µm 850 (gate count) 1.70%

1(5) 0.25 µm 988 (gate count) 1.60%

Dual MAC (additional multiplier) 1(2)
0.35 µm 2 488 (gate count) 4.98%
0.25 µm 1 337 (gate count) 2.17%

∗Area of whole DSP exclude memory in 0.35 µm is estimated as 49 895 gates and area in 0.25 µm process is estimated as 61 751 gates.

dual MAC unit only requires N memory accesses [15]. The
dual MAC architecture is an optional special function. In our
dual MAC architecture, the hardware overhead is only one
delay register and one multiplier (MPY2). The critical de-
lay path of dual MAC structure is the same with the single
MAC architecture. The user can select the function as op-
tional. Table 3 lists the overheads of additional multipliers in
different technologies.

3.2. SubwordMAC

The subword process architecture can partition an n-bit data
into two n/2-bit data so that data processing can be accel-
erated, as in the I/Q channel data processing of the com-
munication system. Furthermore, in certain cases, parts of
the system do not need to operate at high resolution, mean-
ing data can be expressed using a half-word length. Based on
the half-word-length representation, a set of parallel subword
process paths can be designed rather than a full-word pro-
cess path. Subword parallelism process is also highly efficient
for application-specific data processors [16, 17]. For exam-
ple, the subword MAC unit can reduce the complex MAC
operation [17]. The complex vector of operations includes
real and image parts. Multiplying complex numbers requires
four multiplication operations. Notably, the subword MAC
unit achieved fourMACoperations in a single cycle. The sub-
word process can be further divided into two parts, namely,
the subword multiplier and the subword accumulator.

A subword multiplier is designed to complete three dif-
ferent types of multiplications: subword multiplication, con-
ventional full-word multiplication, and complex-word mul-
tiplication, as illustrated in Figure 8. The first mode, namely,
the subword mode, is designed to multiply the upper and
lower half of operands, respectively. Moreover, the sec-
ond mode, conventional full-word multiplication, is imple-
mented to help the subword multiplier maintain the capa-
bility to perform a full-word process. Finally, the third mode,
complex-wordmultiplication, assumes that a full-word com-
prises both real-part and image-part subwords.

This design assumes that both full-word and subword
data are coded in the two’s complement system. This work
uses AH to indicate the upper half and AL to indicate the
lower half of a word; “AH@AL” represents “AH× 2Nsub +AL,”
where Nsub is the number of bits in a subword.

The multiplier mainly comprises four subword multipli-
ers (with outputs of carry and summation words to avoid
the requirement of carry-propagation adder) followed by a
carry-save-adder (CSA) tree, as shown in Figure 9. Each sub-
word multiplier is designed as a booth multiplier, meaning
that it only deals with signed data. In the subword multi-
plication mode, operands need to be sent to the multiplier,
and then the corresponding results are selected from sub-
word multipliers.

Regarding the second mode, the conventional full-word
multiplication, the arrangement displayed in Figure 8b is
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Figure 8: (a) Subword multiplication in subword multiplier. (b)
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impractical, and thus a compensation term is required to cor-
rect the computation results. This situation exists because the
operand A in the two’s complement number system cannot
be represented using AH@AL directly. The problem in full-
word multiplication can be expressed as follows:

B = −BNdata−1 × 2Ndata−1 +
Ndata−2∑

i=0
Bi × 2i,

BH = −BNdata−1 × 2Ndata−1 +
Ndata−2∑

i=Nsub

Bi × 2i,

BL = −BNsub−1 × 2Nsub−1 +
Nsub−2∑

i=0
Bi × 2i,

B = BH@BL + BNsub−1 × 2Nsub .

(3)

According to booth multiplier characteristic, the operand A

which acts as the multiplicand should be modified as

AH =
Ndata−1∑

i=Nsub

Ai × 2i−Nsub+1 + ANsub−1 . (4)

Thus, A× B can be expressed as

A× B = A×
(
BH@BL + BNsub−1 × 2Nsub

)

= A× (BH@BL) + A× BNsub−1 × 2Nsub .
(5)

The term A × BNsub−1 × 2Nsub is the compensation term that
should be implemented. The subword multiplier developed
here can compensate this term in the CSA tree following the
multipliers. Notably, the compensation term exists because
the critical path presented here is located on the MAC path.
The MAC function must be balanced between EX1 and EX2.
The compensation term of the multiplier is left to the next
stage, EX2. Figure 9 also illustrates that the CSA tree is in the
EX2 stage. Figure 10 shows the basic data arrangement in the
case of complex mode. A special arrangement occurs in the
subtraction in the real-part computation. The subtraction in
the two’s complement must perform the one’s complement
of the subtraction first, and then add the complement and
compensation terms to the minuend. Similarly, the addition
of the compensation term is implemented in the CSA tree.
The word length of the subword MAC structure can be se-
lected by the user and parameterized from 8 to 32 bits. The
subword resolution ranges from 4 to 16 bits, respectively. In
[17, 18] the MAC data path is accomplished in one pipeline
stage. In our design, it is arranged across two pipeline stages.
Each multiplier has two outputs to avoid carrying propaga-
tion in the final stage of multiplier. The multiplier outputs,
compensation term, and accumulation output are summed
by CSA tree to speed up the computation. Moreover, in the
full-word multiplication mode, due to the compensation-
term arrangement, we do not have to cascade twomultipliers
operation as those used in [18].

The subwordMAC and non-subwordMAC are both syn-
thesized and evaluated. The area of 0.35 µm design (16× 16)
is approximately 12132 gate counts (subword) and 10736
gate counts (nonsubword). The delay times of both cases
are synthesized to meet 5.56 nanoseconds. The overhead is
1396 gate counts, approximately 13% compared to the non-
subword MAC. In the 0.25 µm technology design, the sub-
word and non-subword MAC were synthesized to meet the 5
nanoseconds delay time. The area of subwordMAC (16×16)
is about 8669 gate counts, while that of non-subwordMAC is
around 7000 gate counts. The overhead of the subwordMAC
is approximately 23.8% with respect to the non-subword
MAC. The subword MAC generally consumes 20% more
power than the non-subword MAC.

3.3. Optional special functional blocks
and parameters

The special function blocks are merged into the NCU-DSP
described here for two important reasons. First, in some
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applications with high sampling rate, special functional
blocks represent the only reasonable approach. If the DSP
processor can provide special data paths that comprise these
functional blocks and do not increase overheads significantly,
then the provision of these paths is worthwhile. Second, com-
munication systems usually use some special function units
with a small area compared to the overall DSP gate counts.
For example, the multilevel slicer unit can reduce the in-
struction cycles of a symbol mapper operation in commu-
nication system. It can reduce the symbol mapper opera-
tion from 2N , N = log(symbol level), to just one instruc-
tion cycle. The circuit area overheads of the functional block
are only 0.13% (0.35 µm) and 0.28% (0.25 µm) of the whole
DSP core (excluding memory). For reasons of performance
and flexibility, these blocks are alsomerged in our NCU-DSP.
Based on the above two reasons, some special function cir-
cuits are offered for selection, as listed in Table 4. Table 3 lists
the hardware overheads and acceleration factors of these cir-
cuits.

Recently, a more flexible DSP core has been proposed,
namely, the so-called parameterized DSP core [20]. The pa-
rameterized DSP core is parameterized using several inde-
pendent parameters. Table 5 lists the parameters of NCU
DSP. The most important parameter in the table is the “data
word.” This parameter exerts the biggest influence on the

chip size and performance of the NCU-DSP. For users to
whom chip area is important, care must be taken regarding
the parameters data address length (DAL) and program ad-
dress length (PAL). Care is necessary because memory gen-
erally occupies a large part of the total area of the DSP pro-
cessor. Some parameters are related to one another. For ex-
ample, ALU is used to calculate the operands from the multi-
plier or accumulator. Consequently, the word length of ALU
must be related to the multiplier and accumulator. The re-
lated functional blocks must have the same data length.

4. LOW-POWER DESIGN

Various methods of saving power have been proposed for use
in the design of DSP. These methods include bus segmenta-
tion, data access reduction, program memory access reduc-
tion, gray-code addressing, and pipeline register reduction
[21, 22]. The following sections address some key low-power
design methods used in the DSP presented here.

4.1. Gray-code addressing

The advantage of gray code compared to straight binary
code is that gray code changes by only one bit while chang-
ing from one number to the next number. That is, if the
memory access pattern is a sequence of consecutive ad-
dress, each memory access changes by only one bit at its ad-
dress bits. Owing to instruction locality during program ex-
ecution, the program memory accesses in DSP applications
are mostly sequential. Therefore a significant number of bit
switching can be eliminated via gray-code addressing [21].
For example, the sequence of number from 0 to 15 are 26
bits switched when the number is encoded in binary repre-
sentation, and are only 15 bits switched when the number
is encoded in gray-code representation. This arrangement



1364 EURASIP Journal on Applied Signal Processing

Table 4: The optional special function and multifunction blocks.

Function name Range (bit) Description

Dedicated CSD FIR 8–32 For fixed-coefficient FIR [19]

Slicer 8–32 For multilevel symbol system

Hamming distance 8–32 For code distance applications

Subword multiplier 8–32 For complex operation, etc.

Dual MAC 8–32 For communication applications

Rounded/saturation mode — For accumulation applications

Buffered hardware loop — For loop computations

Table 5: Parameters of NCU DSP.

Parameter Range Default Relation Description

Data word 8 ∼ 32 bits 16 bits m bits Data word length

IO width 14 ∼ 32 bits 16 bits max(14,m) bits Input/Output operand width

M width 8 ∼ 32 bits 16 bits m bits Multiplier word length

G width 0 ∼ 16 bits 8 bits n bits Guard bit length

A width 16 ∼ 80 bits 40 bits
(
2∗m + n

)
bits The word length of accumulator

HPIA length 8 ∼ 16 bits 9 bits max
(
ND,NP,NHPI

)
bits The word length of HPIA

R-num 2 ∼ 8 2 Na Number of accumulator register

M-num 1 ∼ 2 1 Nm Number of multiplier

AR-num 2 ∼ 8 8 NAR Number of auxiliary register

Loop-num — 3 NNL Maximum nested loop number

PC stack size — 8 NPCS The depth of PC stack

Buffer size — 16 NEB The size of Embedded buffer

DAL 8 ∼ 16 bits 9 bits ND Data-memory address length

PAL 8 ∼ 16 bits 9 bits NP Program-memory address length

HPIAL 5 ∼ 13 bits 6 bits NHPI Host port interface memory address length

reduces the switching activity of the bus and thus also re-
duces the power consumption of the bus driver.

Figure 11a displays the block diagram of the binary-to-
gray (B2G) coding circuit [22]. The hardware of the con-
version circuit is approximately 21 gates, each loading ca-
pacitor of standard gate is about 15 fF. The loading capaci-
tor of the program bus line driving from PAGU to the pro-
gram memory (0.5 K word) is about 0.32 pF, totally about
2.88 pF. Our design discards the gray-to-binary (G2B) cir-
cuit, which consumes twice the power of the B2G circuit, to
increase power savings. The program instructions in the pro-
gram memory are stored using a gray-coding arrangement.
Thus, the PAGU to program-memory interface is shown in
Figure 11b. The switching activity of gray coding is about half
of the binary coding in sequential memory access [22]. The
power consumption (P) is proportional to the switched ca-
pacitor, P = αC f V 2, where α is a switching probability, C is
capacitance of circuit, f is frequency, V is supply voltage. In
our design, the bus loading capacitor and B2G-circuit load-
ing are 2.88 pF. Thus, the power saving in this case is about
(0.315 + 1.44)/2.88 = 60.9%.

4.2. Advanced hardware looping

The hardware looping circuit can reduce program size and
execution cycles [9]. The hardware looping circuit reduces
the number of instructions and clock cycles by using a hard-
ware circuit instead of software instructions for the loop-
ing. Table 6 shows the processing sequences that distin-
guish hardware looping from software looping. However,
the DSP processor still needs to fetch the program mem-
ory for each instruction, despite the instruction having al-
ready been fetched in the last execution of looping time.
Each IF needs to pass signals through memory and inter-
connect system elements, buses, multiplexers, and buffers,
consuming a significant percentage of total power [23]. Ac-
cordingly, this work designs an advanced hardware looping
circuit.

The key objective of the advanced hardware looping is to
save the repetition of instructions in the instruction register
or instruction buffer (IB). Accordingly, the program mem-
ory is not accessed while instructions are repeated, and the
value on the bus connected to program memory remains
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MSB LSBGray code

gn gn−1 gn−2 · · · g2 g1 g0

· · ·

bn bn−1 bn−2 · · · b3 b2 b1 b0

MSB LSBBinary code

(a)

Program memory

Binary-to-gray-code
converter

Gray-code
address

PAGU

(b)

Figure 11: (a) Binary code to gray-code conversion circuit. (b) The conversion circuit in PAGU.

Table 6: Implementation of 1024 times ADD with hardware looping and software looping.

Hardware looping Software looping

Instruction
RPTZ Reg0,1023
ADD ∗AR1+, ∗AR2+, ∗AR3+

STM 1023, AR0

ADD ∗AR1+, ∗AR2+, ∗AR3+

ADD 1, ∗AR4

CMPR CC, AR4

BC pmad, cond

No. of instructions 1024 + 1 = 1025 1024× 4 + 1 = 4097

sp HW = 0, tag[sp + 1] = 1

BRC = 0, sp = sp end, sp HW �= 0, tag[sp + 1] = 0

BRC = 0, sp = sp end,

ST2

PC = #end of loop

ST1

BRC = 0, sp = sp end,

sp HW = 0

ST

Buf en

PC �= #end of loop

Figure 12: The state diagram of hardware looping.

unchanged. This approach can reduce the power consump-
tion of the program memory and related buses.

The operation of repeating a block of instructions with
IB can be divided into three phases, as displayed in Figure 12.
Phase ST0 means that the hardware looping is inactive, and

thus no instructions need to be repeated. Meanwhile, in
phase ST1, the hardware looping is active and IB receives in-
structions from the program memory. Simultaneously, the
instructions are stored in the IB. But when the circuit is in
phase ST2, the program memory is switched off and IR ac-
cesses instructions from IB until the content of block-repeat
counter (BRC) becomes zero. This scheme means that pro-
gram memory only needs to be accessed once.

To implement nested loop, this work adds a loop stack
to store the repeat-start address (RSA) register, repeat-end
address (REA) register, and BRC of the current loop. This
work focuses on the nested loop with the form illustrated in
Figure 13a, and creates a new instruction, RPTBX. In case of
other forms, nested loop still can be implemented using ex-
tra instructions such as PUSHHW and POPHW, as shown in
Figure 13b. Since some applications may be concerned with
chip area rather than power consumption, the nested loop
circuit and IB are regarded as an optional module. Further-
more, the size of IB is also parameterized. Users can select the
size of IB. The design in our DSP differs from the popular
so-called IB in [24, 25, 26]. The key difference is that IB does
not work if the instruction is not looping. Moreover, IB only
stores the instructions contained in the loop. Additionally,
in our design the IB involves no hitting rate or instruction



1366 EURASIP Journal on Applied Signal Processing

· · ·
#end loop1

· · ·
#end loop2

· · ·
#end loop3

· · ·
RPTBX No loop3

STM#end loop3, REA
· · ·
RPTBX No loop2

STM#end loop2, REA
· · ·
RPTBX No loop1
STM#end loop1, REA

(a)

· · ·
#end loop1

· · ·
POPHW

#end loop3

· · ·
RPTB No loop3

STM#end loop3, REA

PUSHHW

· · ·
POPHW

#end loop2

· · ·
RPTB No loop2

STM#end loop2, REA

PUSHHW

· · ·
RPTB No loop1

STM#end loop1, REA

(b)

Figure 13: Examples of nested loop. (a) Loop that can be coded using instruction RPTBX. (b) Loop that can be coded using instructions
RPTB, PUSHHW, and POPHW.

Stack
Data

memory

Program
memory

AR
register

Data
pathM

U
X

IF

Decoder

Shared bus

ID OF EX1 EX2 WB

Figure 14: The block diagram of pipeline sharing.

cycle penalties. Furthermore, the structure has negligible
overheads compared to hardware looping without IB in other
DSPs. The control circuit of this advanced hardware looping

is only 1.6% overhead compared with the whole DSP area. IB
size is a parameter that can be varied according to application
demands.
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Table 7: Instruction examples of pipeline sharing.

Instruction Operation Data No. of stages passed

CC Cond, #lk #lk −→ PC, PC + 1 −→ stack while Cond is true PC + 1 4

ADDM Xmem, Ymem
ORM Xmem, Ymem

Ymem = (Xmem) + (Ymem)
Ymem = (Xmem)|(Ymem)

[ARx] 4

STH src, SHIFT, Ymem
STL src, SHIFT, Ymem Ymem = src� SHIFT [ARx] 4

Table 8: Example of assembly code for a 16-tap FIR filter.

Address Instruction Comment

/∗∗∗∗∗∗∗∗& program data start∗∗∗∗∗∗∗∗∗∗∗∗/

0 LAR # 180 h, AR6 ;input buffer

1 LAR # 1 h, AR0 ;index

2 LAR # 4 fh, AR1 ;data pointer

3 LAR # 80 h, AR2 ;coefficient pointer

4 LAR # 100 h, AR7 ;output buffer

/∗∗∗∗∗∗∗∗∗FIR task∗∗∗∗∗∗∗∗∗/

5 STM # FIR filter loop, REA ;repeat block last position

6 STM # 17, BK1 ;for buffer size

7 STM # 17, BK2 ;for buffer size

8 RPTB # 255 ;hardware looping

9 LD # AR6+,C

a LD # AR6+,D

b LD # AR6+,B

/∗∗∗∗∗∗∗∗∗FIR filter∗∗∗∗∗∗∗∗∗/

c STL C, ∗AR1+,%

d STL D, ∗AR1+,%

e RPTZ A, 17 ;data forwarding

f MAC//MAC ∗AR1+0%, ∗AR2+0%, A, B ;dual MAC instruction

10 STH A, ∗AR7+ ;AR7 is outbuffer

11 STL B, ∗AR7+ ;AR7 is outbuffer

/∗∗∗∗∗∗∗∗∗FIR filter loop∗∗∗∗∗∗∗∗∗/

4.3. Pipeline sharing

In pipeline architecture, the pipeline registers contribute sig-
nificantly to area and power consumption. Some signals sim-
ply pass through the pipeline stages without being used.
Therefore, the pipeline sharing technique was adopted here
to reduce the number of pipeline registers and thus reduce
power and area.

Figure 14 shows the block diagram of pipeline sharing.
Table 7 lists instructions that do not use the data address
(ARi) and program address (PCi) until they are transmitted
to the last pipeline stage. Therefore, these data occupy many
unnecessary pipeline registers. For example, the instruction
ADDM performs the addition of two memory operands and
then stores the result in the memory that holds the value of
ARi until the final pipeline stage (WB). On the other hand,

the instruction CC, conditional call, maintains the value of
PCi plus one until the final stage. The values of PCi and
ARi share the same buses and pipeline registers. The multi-
plexer determines which data are loaded into the shared bus.
If some instructions do not use the shared bus and associated
pipeline registers, the value of buses and pipeline registers
can be held without passing through. The unpassing signals
contribute zero transition on the registers and buses to re-
duce power consumption. The area overhead associated with
the pipeline sharing technique is a multiplexer and increases
the complexity of the instruction decoder. In this parame-
terized DSP, the size of the program and data memory may
differ. Accordingly, the length of the shared bus should be the
maximum of the address bus in terms of program and data
memory. The pipeline sharing method can be considered as
a direct and simple way to save power consumption in the
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Table 9: The design results.

Features NCU DSP NCU DSP

Technology TSMC 0.35 µm SPQM TSMC 0.25 µm 1P5M

Cell library Avant! 0.35 cell library Artisan 0.25 cell library

Power supply 3.3 V 2.5 V

Pipeline 6-stage 6-stage

Max. operating frequency 100MHz 140MHz

Die size 4 152 × 4 152 µm2 1 281 × 1 281 µm2 (estimated)

Core area (memory excluded) 51 349 gate counts 1 131 581 µm2 (65 485 gate counts)

On-chip memory
512× 24 bit (program),
512× 16 bit (data),
64× 16 bit (HPI)

512× 24 bit (program), 16× 24 bit
(Instruction buffer), 512× 16 bit (data),
64× 16 bit (HPI)

Special function blocks Indirect addressing mode
Indirect addressing mode subword
Multiplier Hamming distance slicer

data path circuit. The bus segment method performs well in
saving power [27] which is dealing with data bus and address
bus. The example in [27] requires a more complicated con-
trol circuit than pipeline sharing.

This pipeline sharing approach reduced four 16-bit
pipeline registers and 64 wires out of eight 16-bit pipeline
registers and 128 wires in the example with a 16-bit word
structure. The overhead associated with this approach in-
clude a multiplexer and a slight increase in the complexity
of the instruction decoder.

5. IMPLEMENTATION RESULTS AND EXAMPLE

5.1. FIR filter function example

Since the proposed dual MAC architecture, Figure 7, sup-
ports two parallel operation of MAC, it can accelerate FIR
operation by a factor of two. Table 8 displays the example of
assembly code. The instructions #14∼#15 (address d and ad-
dress e) in Table 8 are an example of data forwarding for two
NOP, saving. Significantly, the dual MAC structure requires
only 18 instructions to complete the example. In contrast, if
only oneMAC is used, it requires 35 instructions to complete
the function.

5.2. Chip verification

To verify the NCU DSP, a 16-bit DSP core with an instruc-
tion set of 24-bits word is designed. This architecture con-
tains three memory blocks on chip, one 24-bit∗512-word
two-port RAM for the program memory, one 16-bit∗512-
word dual-port SRAM for the data memory, and one 16-
bits∗64-word dual-port SRAM for the HPI memory. The
word length of the accumulator is 40 bits, and the guard
bits are relatively eight. The synthesis result demonstrates
that the maximum frequency is 140MHz with 0.25 µm cell-
library implementation, and the critical path is the EX2 stage.
Figure 15 displays the area of each stage with the 0.35 µm and
0.25 µm cell library. Moreover, Figure 16 shows the timing
comparison of each stage with the 0.35 µm and 0.25 µm cell

IF ID IO EX1 EX2
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at
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u
n
ts

0

2000

4000

6000

8000

10000

12000

14000

7504 7933
7290

8670

2590

4291

6340

9190 8932

13521

0.35um

0.25um

Figure 15: The gate counts of each stage with 0.35 µm and 0.25 µm
cell library.

library. Table 9 lists the features in the first (0.35 µm) and sec-
ond (0.25 µm) versions of NCU DSP. This work uses the cell-
based design flow to implement the DSP core. The 0.35 µm
has been taped out and the post-layout simulation reveals
that it operates effectively at 100MHz with 75mW. Figure 17
shows the die photo of our design in 0.35 µm.

6. CONCLUSIONS

This work presented a parameterized embedded DSP core
for demodulation/synchronization in a communication sys-
tem. The parameterized structure is easily embedded in sys-
tems with different system requirements. The special func-
tional blocks of this DSP core can achieve improved perfor-
mance and flexibility with minimum area overhead. Further-
more, NCU DSP is designed using several low-power meth-
ods to reduce power consumption. The proposed DSP core
can meet the cost/performance in mostly DSP-based appli-
cations.
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Figure 16: Timing comparison of each stage with 0.35 µm and
0.25 µm cell library.
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Figure 17: The die photo of NCU DSP (0.35 µm).

REFERENCES

[1] D. D. Clark, E. A. Feigenbaum, D. P. Greenberg, et al., “In-
novation and obstacles: the future of computing,” IEEE Com-
puter, vol. 31, no. 1, pp. 29–38, 1998.

[2] G. Frantz, “Digital signal processor trends,” IEEE Micro, vol.
20, no. 6, pp. 52–59, 2000.

[3] J. Turley and H. Hakkarainen, “TI’s new ’C6x DSP screams at
1600 MIPS,” Microprocessor Report, vol. 11, pp. 14–17, 1997.

[4] I. Verbauwhede andM. Touriguian, “A low power DSP engine
for wireless communications,” Journal of VLSI Signal Process-
ing Systems, vol. 18, no. 2, pp. 177–186, 1998.

[5] AT&TData Sheet, DSP1618 digital signal processor, February
1994.

[6] Texas Instruments, TMS320C54X DSP Reference Set, Volume
1: CPU and Peripherals, 1997.

[7] M. Alidina, G. Burns, C. Holmqvist, E. Morgan, and

D. Rhodes, “DSP16000: A high performance, low power dual-
MAC DSP core for communication applications,” in Proc.
IEEE Custom Integrated Circuits Conference (CICC ’98), pp.
119–122, Santa Clara, Calif, USA, May 1998.

[8] B. W. Kim, J. H. Yang, C. S. Hwang, et al., “MDSP-II: A 16-bit
DSP with mobile communication accelerator,” IEEE Journal
of Solid-State Circuits, vol. 34, no. 3, pp. 397–404, 1999.

[9] Y. Tsao, S. Jou, H. Lee, Y. Chen, and M. Tan, “An embedded
DSP core for wireless communication,” in Proc. International
Symposium on Circuit and System (ISCAS ’02), vol. 4, pp. 524–
527, Scottsdale, Ariz, USA, May 2002.

[10] R. Mehra, L. M. Guerra, and J. M. Rabaey, “A partitioning
scheme for optimizing interconnect power,” IEEE Journal of
Solid-State Circuits, vol. 32, no. 3, pp. 433–443, 1997.

[11] M. Kuulusa, J. Nurmi, J. Jakala, P. Ojala, and H. Herranen, “A
flexible DSP core for embedded systems,” IEEE Design & Test
of Computers, vol. 14, no. 4, pp. 60–68, 1997.

[12] A. Gierlinger, R. Forsyth, and E. Ofner, “GEPARD: A param-
eterisable DSP core for ASICS,” in Proc. International Confer-
ence on Signal Processing Applications & Technology (ICSPAT
’97), pp. 203–207, Scottsdale, Ariz, USA, 1997.

[13] D. A. Patterson and J. L. Hennessy, Computer Organization &
Design: The Hardware/Software Interface, Morgan Kaufmann
Publishers, San Francisco, Calif, USA, 2nd edition, 1998.

[14] M. Sami, D. Sciuto, C. Silvano, V. Zaccaria, and R. Zafalom,
“Exploiting data forwarding to reduce the power budget of
VLIW embedded processors,” in Proc. Conference and Exhibi-
tion on Design, Automation and Test in Europe (DATE ’2001),
pp. 252–257, Munich, Germany, March 2001.

[15] I. Verbauwhede and C. Nicol, “Low power DSP’s for wire-
less communications,” in Proc. International Symposium on
Low-Power Electronics and Design (ISLPED ’00), pp. 303–310,
Rapallo, Italy, July 2000.

[16] J. Fridman, “Sub-word parallelism in digital signal process-
ing,” IEEE Signal Processing Magazine, vol. 17, no. 2, pp. 27–
35, 2000.

[17] Y. Huang and T. D. Chiueh, “A sub-word parallel digital signal
processor for wireless communication systems,” in Proc. IEEE
Asia-Pacific Conference on ASIC (AP-ASIC ’02), pp. 287–290,
Taipei, Taiwan, August 2002.

[18] C. K. Chen, P. C. Tseng, Y. C. Chang, and L. G. Chen, “A digital
signal processor with programmable correlator array archi-
tecture for third generation wireless communication system,”
IEEE Trans. on Circuits and Systems II: Analog and Digital Sig-
nal Processing, vol. 48, no. 12, pp. 1110–1120, 2001.

[19] M. C. Lin, C. L. Chen, D. Y. Shin, C. H. Lin, and S. J.
Jou, “Low-power multiplierless FIR filter synthesizer based
on CSD code,” in Proc. International Symposium on Circuit
and System (ISCAS ’01), vol. 4, pp. 666–669, Sydney, Australia,
May 2001.

[20] J. Nurmi and J. Takala, “A new generation of parameterized
and extensible DSP Cores,” in Proc. IEEE Workshop on Signal
Processing Systems: Design and Implementation (SiPS ’97), pp.
320–329, Leicester, Midlands, UK, November 1997.

[21] C. L. Su, C. Y. Tsui, and A. M. Despain, “Low power architec-
ture design and compilation techniques for high-performance
processors,” in Proc. IEEE International Computer Conference
(COMPCON ’94), pp. 489–498, San Francisco, Calif, USA,
February–March 1994.

[22] H. Mehta, R. M. Owens, andM. J. Irwin, “Some issues in gray
code addressing,” in Proc. 6th Great Lakes Symposium on VLSI
(GLS ’96), pp. 178–181, Des Moines, Iowa, USA, March 1996.

[23] P. Lapsley, J. Bier, A. Shoham, and E. A. Lee, DSP Processor
Fundamentals, IEEE Press, New York, NY, USA, 1997.

[24] C. Wu and T. T. Hwang, “Instruction buffering for nested
loops in low power design,” in Proc. International Symposium



1370 EURASIP Journal on Applied Signal Processing

on Circuit and System (ISCAS ’02), vol. 4, pp. 81–84, Scotts-
dale, Ariz, USA, May 2002.

[25] M. Lewis and L. Brackenbury, “An instruction buffer for a
low-power DSP,” in Proc. 6th International Symposium on Ad-
vanced Research in Asynchronous Circuits and Systems (ASYNC
’00), pp. 176–186, Eilat, Israel, April 2000.

[26] R. S. Bajwa, M. Hiraki, H. Kojima, et al., “Instruction buffer-
ing to reduce power in processors for signal processing,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 5, no. 4, pp. 417–424, 1997.

[27] J. Y. Chen, W. B. Jone, J. S. Wang, H.-I. Lu, and T. F. Chen,
“Segmented bus design for low-power systems,” IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems, vol. 7,
no. 1, pp. 25–29, 1999.

Ya-Lan Tsao was born in Taiwan in 1967.
He received his B.S. degree from the De-
partment of Electrical Engineering, Chung
Cheng Institute of Technology in 1991 and
M.S. degrees from the Department of Elec-
tronics Engineering, National Central Uni-
versity in 1996. He joined the Department
of Electronic, Chung-Shan Institute of Sci-
ence and Technology, Tao-Yuan, Taiwan in
1991. Since 2000, he is a Ph.D. student in
the Department of Electronics Engineering, National Central Uni-
versity. His research interests include high-speed, low-power digital
integrated circuits design communication integrated circuits.

Wei-Hao Chen was born in Taiwan in 1977.
He received his B.S. and M.S. degrees from
the Department of Electronics Engineer-
ing, National Central University in 2001
and 2003. He joined VIA Technologies, Inc.,
Taipei, Taiwan, right after his master course.
His research interests include high-speed,
low-power digital integrated circuits design
and DSP system.

Ming Hsuan Tan was born in Taiwan in
1975. He received his B.S. and M.S. de-
grees from the Department of Electron-
ics Engineering, National Central Univer-
sity in 1999 and 2003. He joined VIA Tech-
nologies, Inc., Taipei, Taiwan, right after
his master course. His research interests in-
clude high-speed, low-power digital inte-
grated circuits design and DSP system.

Maw-Ching Lin was born in Taiwan in
1962. He received his B.S. degree in elec-
tronic engineering from Feng Chia Univer-
sity, Tai Chung, in 1985 and M.S. degree in
biomedical engineering from Chung Yuan
Christian University, Chung Li, in 1994. He
is presently working toward the Ph.D. de-
gree in electrical engineering at National
Central University, Chung Li. Since 1985, he
has been working at Chung Shan Institute
of Science and Technology, Lung Tan, Taiwan. Currently, he is an
Associate Scientist. His research interests include high-speed, low-
power digital circuit design and architecture optimization in digital
signal processing.

Shyh-Jye Jou was born in Taiwan in 1960.
He received his B.S. degree in electrical en-
gineering from National Chen-Kung Uni-
versity in 1982, and M.S. and Ph.D. de-
grees in electronics from National Chiao-
Tung University in 1984 and 1988, respec-
tively. He joined the Department of Electri-
cal Engineering, National Central Univer-
sity, Chung Li, Taiwan, in 1990 and is cur-
rently a Professor. He was a Visiting Re-
search Associate Professor in the Coordinated Science Laboratory
at the University of Illinois during 1993–1994 academic years. He
served on the technical program committee of 1994–1996 Custom
Integrated Circuits Conference and was Technical ProgramCochair
of the First, Second, and Third IEEE Asia Pacific Conference on
ASIC, 1999, 2000, and 2002. In the summer of 2001, he was a Vis-
iting Research Consultant in the Communication Circuits & Sys-
tems Research Laboratory of Agere Systems, USA. His research in-
terests include high-speed, low-power digital integrated circuits de-
sign, communication-integrated circuits, and simulation and anal-
ysis tools for integrated circuits.


	1. INTRODUCTION
	2. ARCHITECTURE OF THE DSP CORE
	2.1. Bus and memory architecture
	2.2. I/O interface
	2.3. Pipeline stage

	3. DATA PATH AND SPECIAL FUNCTIONAL BLOCKS
	3.1. Dual MAC architecture
	3.2. Subword MAC
	3.3. Optional special functional blocks and parameters

	4. LOW-POWER DESIGN
	4.1. Gray-code addressing
	4.2. Advanced hardware looping
	4.3. Pipeline sharing

	5. IMPLEMENTATION RESULTS AND EXAMPLE
	5.1. FIR filter function example
	5.2. Chip verification

	6. CONCLUSIONS
	REFERENCES

