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We propose an area-efficient high-speed interleaved Viterbi decoder architecture, which is based on the state-parallel architecture
with register exchange path memory structure, for interleaved convolutional code. The state-parallel architecture uses as many
add-compare-select (ACS) units as the number of trellis states. By replacing each delay (or storage) element in state metrics
memory (or path metrics memory) and path memory (or survival memory) with I delays, interleaved Viterbi decoder is obtained
where I is the interleaving degree. The decoding speed of this decoder architecture is as fast as the operating clock speed. The
latency of proposed interleaved Viterbi decoder is “decoding depth (DD) × interleaving degree (I) + extra delays (A),” which
increases linearly with the interleaving degree I .
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1. INTRODUCTION

It is well known that burst-error is a serious problem es-
pecially in storage and wireless mobile communication sys-
tems. In order to cope with burst-error, interleaving, denoted
here as channel interleaving, with random-error correcting
code, is generally used. Interleaving randomizes error bursts
by spreading the erroneous bits with introducing a very long
delay time, which is intolerable in some applications.

A burst-error correcting Viterbi algorithm, which com-
bines maximum likelihood decoding algorithm with a burst
detection scheme, instead of using channel interleaving, was
proposed in [1] and extended to the Q2PSK in [2]. This adap-
tive Viterbi algorithm (AVA) outperforms interleaving strate-
gies in the presence of very long bursts. However, whenmany
short error bursts are present, AVA is inferior to interleav-
ing scheme. An interleaved convolutional code also can be
used for burst-error correction [3]. A modified Viterbi al-
gorithm (MVA) [4], which is based on the multitrellis de-
composition [5], was presented for interleaved convolutional
code. The MVA introduces a much smaller delay time and
much lower memory requirements than channel interleav-
ing techniques with convolutional code. However, the im-
plementation of MVA in [4], which uses as many delay el-
ements as decoding depth (DD)× interleaving degree (I) for

each code word component, is not area efficient. Some appli-
cations of interleaved convolutional code for asynchronous
transfer mode (ATM) networks [6] and image communica-
tion systems [7, 8, 9] have been proposed.

In this paper, an area-efficient high-speed interleaved
Viterbi decoder architecture, which has state-parallel archi-
tecture with register exchange pathmemory structure, is pro-
posed. This paper is an expanded version of [10]. A brief
introduction of the interleaved convolutional code is given
in Section 2. A proposed interleaved Viterbi decoding algo-
rithm and its architecture for interleaved convolutional code
are shown in Section 3.

2. INTERLEAVED CONVOLUTIONAL CODE (ICC)

Interleaved convolutional code with extra delay (A), which
further randomizes the error bursts, can be used for burst-
error correction as shown in Figure 1. In this coding scheme,
the channel interleaving is not used. The performance of this
interleaved convolutional coding scheme depends on the in-
terleaving degree and the extra delay. Interleaved convolu-
tional code with interleaving degree I is obtained by replac-
ing each delay (or storage) element in generator polynomi-
als with I delays. In Figure 1, MUX and DE-MUX represent
multiplexer and demultiplexer, respectively.
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Figure 1: Interleaved convolutional code block diagram: (a) encoder (b) decoder.
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Figure 2: Interleaved convolutional code encoder with interleaving degree I form = 2, R = k/n = 1/2, and (a) G = (7, 5)8 NRNSC code and
(b) G = (1, 5/7)8 RSC code.

An interleaved convolutional code can be obtained from
a nonrecursive nonsystematic convolutional (NRNSC) code
or a recursive systematic convolutional (RSC) code as shown
in Figure 2. In order to illustrate the algorithm, we will con-
sider an (n, k,m) = (2, 1, 2) binary convolutional code with
the following generator polynomials (G):

(1) NRNSC:

G(D) = (g1(D), g2(D)) = (7, 5)8 =
(
1 +D +D2, 1 +D2),

(1a)
(2) RSC:

G(D) = (g1(D), g2(D)) = (1, 5/7)8

= (1, (1 +D2)/
(
1 +D +D2)).

(1b)

For these codes, the generator polynomials of interleaved
convolutional code with interleaving degree I become

(1) interleaved NRNSC:

G
(
DI
) = (g1(DI

)
, g2
(
DI
)) = (1 +DI +D2I , 1 +D2I), (2a)

(2) interleaved RSC:

G
(
DI
)=(g1(DI

)
, g2
(
DI
)) = (1, (1 +D2I)/

(
1 +DI +D2I))

(2b)

which yield (2, 1, 2I) interleaved convolutional code. From
equations (1) and (2), we can see that each delay element (D)
in generator polynomials is replaced by I delays as shown in
Figure 2.

The encoding and decoding processes will be explained
in z-transform domain. In this representation, each delay el-
ement D of generator polynomials is replaced by z−1.

A binary information sequence to be encoded is repre-
sented as

X(z) =
∞∑

k=0
akz

−k, ak ∈ {0, 1}, (3)

where ak is a coefficient of information sequence and it has
the values 0 or 1 since the binary system is considered. For an
(n, 1,mI) interleaved convolutional code, the generator poly-
nomials with interleaving degree I are

Gi
(
zI
) =

m∑

j=0
gijz

− jI , (4)

where gij is a coefficient of the generator polynomials and

gij ∈ {0, 1}, gi0 = gim = 1, and i = 1, 2, . . . , n. For this inter-
leaved convolutional code encoder, codeword (encoder out-
put) sequences are generated as follows:

Ci
(
zI
) = Gi

(
zI
)
X(z) =

m∑

j=0
gijz

− jI ·
∞∑

k=0
akz

−k. (5)

Generator polynomials, for the case of n = 2, m = 2, and
I = 2, and with g(D) = (7, 5)8 for original convolutional
code, are

G1(z2
) = 1 + z−2 + z−4,

G2(z2
) = 1 + z−4.

(6)

Codeword (encoder output) sequences of this encoder are

C1(z2
) = G1(z2

)
X(z) = C1

0

(
z2
)
+ C1

1

(
z2
)
,

C2(z2
) = G2(z2

)
X(z) = C2

0

(
z2
)
+ C2

1

(
z2
)
,

(7)



1330 EURASIP Journal on Applied Signal Processing

where

C1
0

(
z2
) = a0 + z−2

{
a0 + a2

}
+ z−4

{
a0 + a2 + a4

}

+ z−6
{
a2 + a4 + a6

}
+ z−8

{
a4 + a6 + a8

}
+ · · · ,

C2
0

(
z2
) = a0 + a2z

−2 + z−4
{
a0 + a4

}
+ z−6

{
a2 + a6

}

+ z−8
{
a4 + a8

}
+ · · · ,

C1
1

(
z2
) = a1z

−1 + z−3
{
a1 + a3

}
+ z−5

{
a1 + a3 + a5

}

+ z−7
{
a3 + a5 + a7

}
+ z−9

{
a5 + a7 + a9

}
+ · · · ,

C2
1

(
z2
) = a1z

−1 + a3z
−3 + z−5

{
a1 + a5

}
+ z−7

{
a3 + a7

}

+ z−9
{
a5 + a9

}
+ · · · .

(8)

Two independent codeword sequences are obtained by inter-
leaving with degree 2: (C1

0(z
2), C2

0(z
2)) and (C1

1(z
2), C2

1(z
2)).

They are transmitted alternatively. Extra delays are used for
one codeword sequence to add more interleaving effect. In
this case, the decoder also requires extra delays to adjust tim-
ing of received sequences as shown in Figure 1.

3. INTERLEAVED VITERBI DECODING

Viterbi decoding algorithm consists of branch metrics calcu-
lation, add-compare-select (ACS) operation, and estimation
of the information sequence from the survival path informa-
tion. Hamming distance (hard decision) or Euclidean dis-
tance (soft decision) between the received data and the pos-
sible codeword sequences are computed in the branch met-
rics calculation unit. Those branch metrics are accumulated
and the most likely path (survival path) is selected by the
ACS unit. For a binary convolutional code with the code rate
(R) is k/n, the number of possible codeword is 2n. From the
survival path information, the decoded data sequence is ob-
tained.

Interleaved Viterbi decoding algorithm is based on the
decomposed trellis diagram. The trellis diagram of an
(n, k,mI) interleaved convolutional code can be decomposed
to I × (n, k,m) trellis diagrams. Figure 3 shows the decom-
posed trellis diagram of (2, 1, 2×2) NRNSC. As we can see in
Figure 3, each decomposed (n, k,m) trellis diagram is identi-
cal.

A received sequence, which may be corrupted by errors,
can be represented as

Ri(z) =
∞∑

k=0
rikz

−k, i = 1, 2, . . . , n. (9)

From these sequences, branch metrics can be calculated as

Λp(z) = bm
{(
r10 , r

2
0 , . . . , r

n
0

)
,
(
c1, c2, . . . , cn

)}

+ bm
{(
r11 , r

2
1 , . . . , r

n
1

)
,
(
c1, c2, . . . , cn

)}
z−1 + · · ·

=
∞∑

k=0
λ
p
k z
−k, p = 0, . . . , 2n − 1 for R = k

n
,

(10)

where bm{(r1k , r2k , . . . , rnk ), (c1, c2, . . . , cn)} and (c1, c2, . . . , cn)
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Figure 3: Decomposed trellis diagram for (2, 1, 2 × 2) interleaved
convolutional code in Figure 2a.

represent the branch metrics and the possible codeword, re-
spectively. Using this branch metrics, ACS operations can be
executed as

z−(k+1)I− jγs(z) = Z−kI− j min
{
λuk + γu, λlk + γl

}
, (11)

where λsk and γs represent branch metrics and state metrics
(or path metrics or accumulated state metrics), respectively;
s stands for trellis state, which varies from 0 to 2m − 1; k =
0, 1, 2, . . . ,∞; and j = 0, 1, 2, . . . , I − 1. The superscripts u
and l in (11) mean, respectively, upper and lower branches
that merged into a trellis state (see Figure 3). The survivor
path information (referred to as path select signal, PS) of this
ACS operation is as follows:

PSs(z) =
∞∑

k=0
pskz

−k, s = 0, . . . , 2m − 1, psk ∈ {0, 1}, (12)

where psk is 0 when the upper branch is selected and ps
k is 1

when the lower branch is selected for a trellis state s. From
(11), (12), and Figure 3, we know that I delays (or storage
elements) are needed to guarantee proper ACS operations.

Viterbi decoder consists of branch metrics calculator
(BMC), ACS units, state metrics memory (referred to as
SMM or path metrics memory), and path memory (PM
or survival path memory). For fast decoding applications,
state-parallel architecture, which uses as many ACS units as
the number of trellis states, is generally used with register
exchange path memory structure. The BMC computes Eu-
clidean or Hamming distance between the received data and
codeword sequences. Generally, Euclidean distance is used to
get better coding gain. The ACS unit selects most probable
path by comparing the accumulated branch metrics. The ac-
cumulated branch metrics, which are resulted from ACS op-
eration, are stored in SMMand the selected path information
(PS) is stored in PM.
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Figure 4: A proposed Viterbi decoder architecture for an (n, 1,mI) interleaved convolutional code.

In case of n = 2, m = 2, and I = 2, received information
sequences are represented as

Ri(z) =
∞∑

k=0
rikz

−k, i = 1, 2. (13)

The BMC computes branch metrics as follows:

Λ0(z) =
∞∑

k=0
λ0kz

−k =
∞∑

k=0
bm

{(
r1k , r

2
k

)
, (0, 0)

}
z−k,

Λ1(z) =
∞∑

k=0
λ1kz

−k =
∞∑

k=0
bm

{(
r1k , r

2
k

)
, (0, 1)

}
z−k,

Λ2(z) =
∞∑

k=0
λ2kz

−k =
∞∑

k=0
bm

{(
r1k , r

2
k

)
, (1, 0)

}
z−k,

Λ3(z) =
∞∑

k=0
λ3kz

−k =
∞∑

k=0
bm

{(
r1k , r

2
k

)
, (1, 1)

}
z−k,

(14)

where Λ0(z), Λ1(z), Λ2(z), and Λ3(z) represent branch met-
rics between the received symbols and the possible code-
words (0, 0), (0, 1), (1, 0), and (1, 1), respectively. These
branch metrics are used in ACS computation. The ACS
unit adds branch metrics (λ) and previous state metrics (γ),
and then selects minimum state metrics from two incoming
branches (see Figure 3) as follows:

z−2(k+1)− jγs(z) = z−2k− j min
{
λuk + γu, λlk + γl

}
, (15)

where k = 0, 1, 2, . . . ,∞ and j = 0, 1. The survivor path in-
formation is

PSs(z) =
∞∑

k=0
pskz

−k, s = 0, . . . , 3. (16)

The selected state metrics are stored in the SMM as a new
state metrics. For m = 2, which means that the number of
trellis states are 2m = 22 = 4, we need four PS signals: PS0(z),
PS1(z), PS2(z), and PS3(z). These PS signals go into the PM.

Since the number of trellis states of interleaved convolu-
tional code, which is 2mI for the (n, k,mI) interleaved con-
volutional code with interleaving degree is I , for large inter-
leaving degree or encoder constraint length (K = m + 1) is
very large, a straightforward state-parallel implementation
of the Viterbi algorithm for this code requires huge hard-
ware resources. For (2, 1, 2 × 4) interleaved convolutional
code, the number of trellis states is 256, which is the same
as for K = 9. Therefore, area-efficient high-speed Viterbi
decoder architecture for interleaved convolutional code is
needed.

By substituting I delays for each delay (or storage) ele-
ment in SMM and path memory cell (PMC) of PM, an area-
efficient high-speed interleaved Viterbi decoder architecture
for interleaved convolutional code is obtained. In this archi-
tecture, we can get the throughput rate of the Viterbi decoder
as high as the operating clock speed. Since the decoding la-
tency of the state-parallel Viterbi decoder with register ex-
change path memory structure is the same as the decoding
depth, the decoding latency of the interleaved Viterbi de-
coder is increased by I × DD. Therefore, the decoding la-
tency of proposed architecture is the decoding depth mul-
tiplied by the interleaving degree, that is, decoding latency
= DD×I . Since interleaved convolutional coding scheme
uses extra delay (A), its overall decoding latency becomes
DD× I +A.

A proposed state-parallel Viterbi decoder architecture
for interleaved (n, 1,mI) convolutional code is shown in
Figure 4.
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Figure 5: Interleaved SMM architecture using FIFO.

If the decoding speed is not critical, state-serial archi-
tecture, which uses less ACS units than the number of trel-
lis states without changing SMM and PM structures, can
be used. But it needs a control unit for proper connection
between ACS units and SMM and PM. The BMC and the
ACS unit architectures of the proposed Viterbi decoder are
identical with that of the original Viterbi decoder architec-
ture.

In general, random access memory (RAM) and D-type
flip-flop are used as an SMM for the state-serial and state-
parallel noninterleaved Viterbi decoders, respectively. For
both cases, its size becomes interleaving degree (I)×number
of trellis states (2m)×state metrics width (w). Figure 5 shows
an alternative SMM architecture, which uses first-in first-out
(FIFO) memory.

Interleaved PM and interleaved PMC (IPMC) architec-
tures for proposed interleaved Viterbi decoder are shown in
Figure 6.

The basic architecture of this interleaved PM is exactly
the same as the architecture of the original register exchange
PM architecture. However, it uses modified PM cell archi-
tecture that consists of one multiplexer and I storage ele-
ments as shown in Figure 6b. D-type flip-flop is generally
used for storage element in register exchange PM structure.
Due to the extra delay elements in IPMC, the estimated in-
formation sequence can be properly recovered from the PM.
Also by virtue of its simple structure, placement and routing
of path memory cells are easier than that of a straightfor-
ward implementation. Reduction of power consumption is
also expected in this proposed Viterbi decoder architecture.
The PS0, PS1, PS2, and PS3 are used as select signals for the
first, second, third, and fourth row of IPMC in PM, respec-
tively. The connection of IPMC in PM is exactly the same
as the trellis diagram. The path select signals can be used as
inputs of the IPMC for the first column in PM. When the
DD is large enough, that is, DD ≥ 4K , the outputs of the
IPMC at the last column in PM have the same values with
very high probability. Therefore, some IPMC in PM can be

removed with ignorable performance degradation as shown
in Figure 6a.

The Viterbi decoder for interleaved convolutional code
also can be implemented in I-parallel manner. It consists
of I-parallel Viterbi decoder components. Each Viterbi de-
coder component is used for decoding each interleaved data
sequence.

In Table 1, the complexity, latency, and throughput rate
of this proposed Viterbi decoder architecture are compared
with a straightforward implementation.

From Table 1, we can see that the hardware complexity
of the proposed Viterbi decoder architecture is much smaller
than that of the straightforward implementation for the same
throughput rate. For I = 2 and m = 2, we can achieve
hardware reduction of 75% for ACS, 50% for SMM, and
50% for PM, approximately. Furthermore, the connections
of proposed architecture are reduced. The proposed inter-
leaved Viterbi decoder architecture saves areas for the ACS
units and PM. Since the IPMC uses less number of multi-
plexers, the size of IPMC is smaller than that of (I×PMC) as
shown in Figure 6b.

However, the latency of this proposed architecture, which
is linearly increased with the interleaving degree, is the largest
among three different implementations.

4. CONCLUSION

An area-efficient high-speed Viterbi decoder architecture
is proposed to decode (n, 1,mI) interleaved convolutional
code. By replacing each delay (or storage) element in state
metrics memory and path memory with I delays, interleaved
Viterbi decoder is obtained. More hardware complexity re-
duction can be achieved with higher interleaving degree. It
means that this proposed architecture is more area efficient
for interleaved Viterbi decoder with higher interleaving de-
gree.

However, it is inevitable that the latency of this pro-
posed architecture is increased as the interleaving degree is
increased. The latency of proposed interleaved Viterbi de-
coder itself is “decoding depth (DD) × interleaving degree
(I),” which is linearly increased with the interleaving degree.
Since interleaved convolutional coding scheme uses extra de-
lay (A), its actual decoding latency becomes DD× I +A.

The performance of this interleaved convolutional cod-
ing scheme depends on the interleaving degree and the size
of extra delay.
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Figure 6: (a) Interleaved PM for DD is 12 (b) IPMC architectures for (n, k, 2I).

Table 1: Complexity, latency, and throughput rate of interleaved Viterbi decoder for an (n, 1,mI) interleaved convolutional code.

Parameters Proposed Straightforward I-parallel

No. of trellis states 2m 2mI I × 2m

No. of ACS 2m 2mI I × 2m

Size of SMM I × (bit widths of SMM× 2m) Bit widths of SMM× 2mI I × (bit widths of SMM× 2m)

Size of PM
DD× 2m × IPMC

DD× 2mI × PMC I ×DD× 2m × PMC
≈ DD× 2m × I × PMC

Latency DD× I +A DD DD

Throughput rate Same as ACS clock speed
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