EURASIP Journal on Applied Signal Processing 2003:13, 1346—1354
(© 2003 Hindawi Publishing Corporation

Design of Application-Specific Instructions and
Hardware Accelerator for Reed-Solomon Codecs

Jung H. Lee

School of Electrical and Computer Engineering, Ajou University, San 5, Wonchun-Dong, Paldal-Gu, Suwon 442-749, Korea

Email: junghoo@ajou.ac.kr

Jaesung Lee

Computer System Department, Electronics and Telecommunications Research Institute, 161 Gajeong-Dong,

Yuseong-Gu, Taejon 305-350, Korea
Email: ljshhide@etri.re.kr

Myung H. Sunwoo

School of Electrical and Computer Engineering, Ajou University, San 5, Wonchun-Dong, Paldal-Gu, Suwon 442-749, Korea

Email: sunwoo@ajou.ac.kr

Received 31 January 2003 and in revised form 6 September 2003

This paper presents new application-specific digital signal processor (ASDSP) instructions and their hardware accelerator to effi-
ciently implement Reed-Solomon (RS) encoding and decoding, which is one of the most widely used forward error control (FEC)
algorithms. The proposed ASDSP architecture can implement various programmable primitive polynomials, and thus, hardwired
RS codecs can be replaced. The new instructions and their hardware accelerator perform Galois field (GF) operations using the
proposed GF multiplier and adder. Therefore, the proposed digital signal processor (DSP) architecture can significantly reduce
the number of clock cycles compared with existing DSP chips. The proposed GF multiplier was implemented using the Faraday
0.25 ym standard cell library and it can perform RS decoding at a rate up to 228.1 Mbps at 130 MHz.

Keywords and phrases: Reed-Solomon, application-specific DSP, GF multiplier, broadband communication, VLSI architecture.

1. INTRODUCTION

With the rapid progress of communication technologies, var-
ious broadband access systems have been developed, such as
very-high-data-rate digital subscriber line (VDSL) cable mo-
dem and wireless LAN, gigabit Ethernet, 4G wireless com-
munication, and so forth. Currently, the software defined
radio (SDR) can support various communication standards
since a common hardware platform can be adapted for var-
ious communication standards by means of software [1].
However, ASIC chips face several limitations such as lack of
flexibility for various communication standards, high devel-
opment costs, and slow time-to-market. Due to these restric-
tions, implementation methods have been changed to digital
signal processor (DSP)-based communication systems that
can have advantages in several aspects [2]. Programmable
DSPs are greatly improving time-to-market and allowing
faster changes and upgrades than hardwired ASIC chips. In
addition, DSPs can be used for various applications as well as
the Reed-Solomon (RS) decoder.

RS codes, providing the capability to efficiently correct

burst errors as well as random error, have been extensively
used in various communications and digital data storage sys-
tems, such as power line communications (PLC) [3], digital
video broadcasting terrestrial (DVB-T) system [4], vestigial
sideband (VSB) system [5], cable modem [6], satellite and
mobile communications [7], magnetic recording [8], and so
forth.

This paper presents new application-specific DSP (AS-
DSP) instructions and their hardware accelerator to effi-
ciently implement RS codecs. Various algorithm blocks for
RS codecs require Galois field (GF) multiply and add oper-
ations. Therefore, a typical RS decoder has been designed as
a hardwired ASIC chip since an RS decoder needs special GF
arithmetic units [9, 10, 11, 12, 13, 14, 15, 16]. Moreover, the
RS decoder should be redesigned to accommodate the vari-
ous primitive polynomials in recent communication systems.

Existing DSP chips [17, 18] require many clock cycles
for GF multiply and add operations since they use general
ALUs. The method that uses a lookup table (LUT) instead of
GF operation units consumes a significant amount of power
due to its large memory and large number of access delays.

mailto:junghoo@ajou.ac.kr
mailto:ljshhide@etri.re.kr
mailto:sunwoo@ajou.ac.kr

Existing DSP-Based RS Decoders and Hardwired RS Processors

1347

FiGure 1: Typical RS encoder.

FIFO (delay buffer)

A Output
Input Syndrome Key-equation Error-position Error-magnitude L
calculation solver | calculation [—| calculation Error correction
>
block block block

Error display

FiGure 2: Typical RS decoder.

Hence, existing DSP chips have not yet satisfied the require-
ments of high-speed communication standards. However,
if DSP chips can be made to support the special architec-
ture for the RS algorithm, they will be able to implement
RS codecs for various communication standards [19]. Thus,
having application-specific instructions and their hardware
accelerator for the RS algorithm, ASDSP can support various
broadband communication standards.

This paper is organized as follows. Section 2 analyzes
the implementation and hardware architectures of exist-
ing DSP chips [17, 18] and custom-designed RS processors
(9, 10, 11, 12, 13, 14, 15, 16]. Section 3 describes the pro-
posed RS decoding instructions and their hardware acceler-
ator. Section 4 presents the performance comparisons with
existing DSP chips. Finally, Section 5 contains conclusions.

2. IMPLEMENTATION OF THE EXISTING DSP-BASED
RS DECODERS AND HARDWIRED RS PROCESSORS

This section describes the typical RS processor to briefly re-
view the decoding process and analyzes the existing DSP-
based implementation of RS.

2.1.

Depending on the application, a typical RS processor is made
up of several hardware blocks for parallel processing. Such
an architecture can achieve higher transmission rates than
required by current communication standards; however, due
to its lack of flexibility regarding the primitive polynomials
in various standards, the RS processor has to be redesigned
to meet these standards.

Typical RS processor

2.1.1. RS encoder architecture

The architecture of the RS processor inserts 16 (2¢) surplus
symbols when ¢t = 8. The generator polynomial for this ar-
chitecture is represented by (1) [19, 20, 21]:

g(x) = (x+a') (x+a®)Alx+a® 1) (x + a*)

(1)

= (x+a')(x+a®)A(x+a) (x + a'®).

Figure 1 shows the typical RS encoder that has the linear
feedback shift register (LFSR) structure, based on the gen-
erator polynomial. If the architecture is enabled, each regis-
ter is initialized as “0.” After the message polynomial m(x) is
inserted, the operation is executed by combining m(x) and
g(x) through the LFSR structure. If the insertion of the mes-
sage polynomial m(x) is ended, the remaining values in the
registers are output as parity symbols.

2.1.2. RS decoder architecture

The RS decoding process is as follows. First, the syndrome
value, which is the error pattern, is calculated, and then the
error-locator polynomial is calculated to find the error loca-
tions. Second, the error values are determined and corrected.
Figure 2 illustrates the typical RS decoder [20, 21, 22, 23, 24].

Figure 3 shows the syndrome calculation block. The syn-
drome is calculated using the roots of the generator polyno-
mial (gx), which is used in the encoder. The syndrome poly-
nomial presents the error pattern of the received code word.
By using this error pattern, the key for error correction is de-
coded.

The number of the cells in the syndrome block is twice
the number of correctable errors. When the error correction
capability (¢) of the RS decoder is 8, the number of 2t = 16
for the syndrome block is needed, as shown in Figure 3.

The error-locator and error-value polynomials are calcu-
lated using this syndrome polynomial. The calculation of the
error-locator and error-value polynomials is the most com-
plicated and time consuming process in the RS decoding. The
Berlekamp-Massey [9, 10], Euclid’s [11, 12], or the modi-
fied Euclid’s [13, 14, 15] algorithms are used in this pro-
cess. In general, the architecture of the Berlekamp-Massey
algorithm is smaller than that of the Euclid’s algorithm.
However, the serial structure of the Berlekamp-Massey al-
gorithm has long latency and its parallel structure requires
a large gate count. Figure 4 shows the architecture of the
modified Euclid’s algorithm [13, 14, 15]. This architecture is
more suitable for high-speed transmission systems than that
of the Berlekamp-Massey algorithm. The modified Euclid’s

1348

EURASIP Journal on Applied Signal Processing

16
TSIS

Reg.
F1GURE 3: Syndrome calculation block.
d(R;) Comparison [Comparison | Comparison
d(Ri) <t between Degree updates d(Riy1) < t
d(Qi) ord(Q) <t [—|d(R;)and d(Q) — ord(Q) <t
Ri(x) —f——————————————Speermrerercrnnennene
o Comparison
Qi(x) Polynomial calculation circuit
Qilx) —F————————fsTll coefficient of
the highest
degree =0
Polynomial ™ Rearier]
start signal egister
Ai(x)
Polynomial calculation circuit
i)

FIGURE 4: Architecture of the modified Euclid’s algorithm.

algorithm can efficiently reduce the area since it does not re-
quire an LUT for the quotient calculation.

After the error-locator and error-value polynomials are
obtained using the Euclid’s algorithm, the error locations are
calculated using the Chien search [22, 23] and Forney algo-
rithms [13]. Then, the error values are calculated. This al-
gorithm for calculating the roots of the error-locator poly-
nomial is described in Figure 5. The roots of error locations
are calculated using the coefficients (A;) of the error-locator
polynomial. The error values are computed using the coef-
ficients (A;) of the error-locator polynomial and error-value
polynomial coefficients (R;) as shown in Figure 6.

Typical RS ASIC chips require the hardwired GF opera-
tion units as modulo multipliers and adders, and thus, the
architecture of the GF operation units has to be redesigned
based on various primitive polynomials and standards.

2.2. Existing DSP-based RS decoder

It is possible to implement the RS decoder with the existing
DSP chip; however, to implement the GF operation with the
existing DSP chips, a number of operations are needed to
execute ALU operations repeatedly. These operations have to
be programmed as a subroutine and this subroutine is called
from the GF operation part of the main RS program [20].
Generally, a GF multiplication consists of two steps. In
the first step, two equations are multiplied as in (2). If the
least significant bit (LSB) of the multiplier is one, the multi-
plicand is copied down; otherwise, zeros are copied down.
The partial products copied down in successive lines are

shifted one position to the left from the previous partial
product. The 15-bit product which is the third equation of
(2) is acquired using XOR operations of all partial products.
In the second step, the GF operation is executed according to
the primitive polynomial to convert the 15-bit data into the
8-bit data. GF multiplications are shown as the “®” symbols
in Figures 1, 3, 5, and 6. Additions and subtractions in GF
operations can be implemented using XOR operations in the
ALU:
A(x) = A7x’ + Agx® + Asx® + Agx*
+ A?,.X3 + A2X2 + A]Xl + A()XO,
B(x) = Byx” + Bex® + Bsx® + Byx*
+ B_?,.?C3 + B2x2 + lel + B().XO,
w(x) = A(x) @ B(x)
= (A7 - B7)x" + (A; - Bs ® B; - Ag)x"
+ A+ (A;-By® By - A)x' + (Ao - Bo)
= w(14)x™ + w(13)x + A + w(1)x' + w(0)x°.

(2)

Figure 7 shows the GF multiplication flow of general DSP
chips that do not support the RS decoding. To implement
(2), AND operations are executed from the LSB of (A) and 8
bits of (B) to the MSB of (A) and 8 bits of (B) in cycle 1. Then,
the results are shifted according to the digits in cycle 2. Eight
15-bit results are executed by XOR operations to acquire the
15-bit data that appeared in the third equation of (2). Finally,
the GF operation is executed in cycle 3. The GF operation can
be implemented using AND and XOR.

Existing DSP-Based RS Decoders and Hardwired RS Processors

1349

N Reg. —> XI:I

Reg.

— Reg. |> &

Ao

FiGURE 5: Chien search block.

CL 253 (254 (255
Reg.
Reg.
As Ay As
X71
: Reg. Reg. —>

Ry Re Rs

A7 0 As

*)(%—)?—) Reg. Reg. —

Reg. Reg. —>

Reg. Reg. —

Error-value
detection

Reg.

=5

Inverse

Reg. | ROM

M

FIGURE 6: Forney block.

8-bitdata (A) (T TTTTTTICTTTTTTT]

bit data () (LTI LTI CLTT LTI

->

®

Register file

ALU I@ @
& 6 @

Memory

FIGURE 7: GF multiplication flow of existing DSPs.

To implement this procedure, general purpose DSP chips
require quite a number of clock cycles. The DSP used here
should be accessible by a bit as well as a byte. If the DSP is a
32-bit machine, it can compute two GF multiply operations.
If the DSP is a 64-bit machine, it can compute four GF multi-
ply operations simultaneously. If N ALUs can be operated at
the same time, 1/N cycles are taken to compute the GF mul-
tiplication. However, if the DSP cannot be accessed by a byte,
a number of additional cycles is required.

Hence, we cannot get a fast RS decoding rate since the
hardware architecture and instructions are not supported for
the GF multiplication on existing DSP chips. Therefore, for
the RS decoding, the existing DSP chips can be used only in
slow-speed data communication. Recently, TMS320C64x has
8 GF multipliers and the GMPY4 instructions can perform
four GF multiplications of two integers, each of which con-

tains 4 packed bytes. Two GMPY4 instructions can be exe-
cuted in parallel; hence the 8 GF multiplications can be per-
formed in a single cycle. However, it supports only the GF
multiply operation [19] and does not support the GF multi-
ply and add operations. Moreover, it has a large hardware size
and high power consumption due to its VLIW architecture.
SC140 does not support GF operations and is also a
VLIW architecture having similar disadvantages. In addition,
it consumes more power and needs larger memory since it
uses the LUT method [25]. In the implementation using an
LUT, the results of GF operations have been stored in ROM
or RAM, and they are accessed when they are needed [25].
When m is equal to 8, a 28 x 28 ~ 64 Kbytes storage device
is needed. Even in the highly integrated DSP, it is hard to use
on-chip memory only for storing these values. Regardless of
the data width of DSP, only one GF operation at a time is

1350

EURASIP Journal on Applied Signal Processing

T? Input 2
o Reg.

FIGURE 8: Repetitive multiply and add operations for the RS codec.

Input 1

possible. Moreover, additional cycles are needed to access the
on-chip and off-chip memories. Hence, most DSPs imple-
ment the RS decoding without using an LUT.

3. NEW INSTRUCTIONS AND THEIR ARCHITECTURE

This section presents three instructions for the RS de-
coder implementation and the proposed operation flows,
and their new architecture. The proposed instructions in-
clude modulo-add (MADD), modulo-multiply (MMUL),
and modulo-MAC (MMACQC).

Various algorithm blocks for RS codecs require repeti-
tive multiply and add operations, as shown in Figure 8. The
Berlekamp-Massey [9, 10] algorithm, the Euclid [11, 12] al-
gorithm, and the modified Euclid [13, 14, 15] algorithm also
use the circuit shown in Figure 8 [9, 10, 11, 12, 13, 14, 15, 19]
to implement the RS decoding. The multiplier and adder
used for RS have the same circuit shown in Figure 8 regard-
less of various algorithms or primitive polynomials. The ar-
chitecture of the hardwired RS codec is redesigned based on
the primitive polynomial. In general, implementing the RS
decoder on an existing DSP chip is not effective since the
instructions of DSP chips do not support GF multiply and
add operations. The GF multiply and add operations, shown
in Figure 8, are different from general multiply and add op-
erations. Hence, we need an ASDSP chip that has a pro-
grammable architecture to support various primitive poly-
nomials according to various communication standards.

Figure 9 represents the proposed MADD, MMUL, and
MMAC instructions. The MADD instruction performs the
modulo (GF) add operation and can be implemented with
an XOR operation of an existing ALU; thus, we do not need
additional hardware for the MADD instruction. The MMUL
instruction can implement the GF multiply operation for
error-value detection with the proposed GF multiplier shown
in Figure 10. The proposed GF multiplier can perform suc-
cessive GF multiply operations by adding a small amount
of extra hardware, consisting of XOR gates and AND gates.
The MMAC instruction can perform successive operations
of the MADD and MMUL instructions. The MMAC instruc-
tion takes one cycle to execute the general modulo MAC in-
struction.

The proposed instructions are used extensively in RS al-
gorithm blocks, such as the encoder, the syndrome computa-
tion block, the modified Euclid’s algorithm block, the Chien

search block, and the Forney algorithm block, as shown in
Figures 1, 3, 5, and 6. In contrast, TMS320C64x supports the
modulo MUL operation but does not support the modulo
MAC operation. Hence, the proposed architecture can im-
prove the performance of the RS codec.

Figure 10 shows the proposed GF multiplier block used
for the MMUL and MMAC instructions in GF (2", m = 8).
The required number of AND operations shown in the upper
side of Figure 10 is the same as the value of m. In Figure 10,
after two 8-bit data a and b are multiplied, the 15-bit w(i),
which is the third equation in (2), is obtained through the
modulo add operation of the multiplication results. Then the
8-bit result Q(i) can be obtained from GF multiply opera-
tions of 15-bit w(7).

The proposed GF multiplier uses about 630 gates includ-
ing the primitive polynomial decoder. The gate count of the
proposed GF multiplier is larger than that of a GF multiplier
of the hardwired RS ASIC chip (about 261 gates). However,
the hardwired RS ASIC chip uses about 89 GF multipliers
for t = 8 [13], 16 GF multipliers for the syndrome calcula-
tion block, 64 GF multipliers for the modified Euclid’s algo-
rithm block, 8 GF multipliers for the Chien search block, and
one GF multiplier for the Forney algorithm. The proposed
ASDSP uses only 8 proposed GF multipliers, and thus, re-
quires a much lower gate count than does the hardwired RS
ASIC chip. Therefore, the ASDSP has little extra hardware.
When m is greater than 8, the adder can be implemented
with additional XOR gates, and the GF multiplier shown in
Figure 10 can also be implemented with additional AND and
XOR gates.

The modulo operation unit shown in Figure 10 executes
GF operations with control signals according to the value of
m and the primitive polynomial. Figure 11 shows the pro-
posed modulo operation unit that is designed with AND and
XOR gates. The 15-bit w(12) is performed by the XOR op-
eration after it is enabled or disabled according to control
signals, and then, the 8-bit (i) value can be obtained from
the proposed modulo operation unit. Equations (3) are the
result value of the GF operation when the primitive polyno-
mial is x® + x* + x* + x2 + x! and m = 8:

Q(0) = w(0) ® w(8) ® w(12) ® w(13) & w(14);

Q1) = w(l) ® w(9) ® w(13) ® w(14);
Q2)=w?)e w(d) ®w(ld) & w(12) & w(13);
QB)=wB) e w8 ®wd) ow(ll) e&w(l2);

Q) = w(4) ® W(8) ® W(9) ® W(10) ® w(14);)
QB) = wB) e w9) ®w(ld) ® w(ll);

Q(6) = w(6) ® w(10) & w(11) ® w(12);

QA7) = w(7) ® w(ll) & w(12) ® w(13).

The primitive polynomial decoder of the proposed GF
multiplier has the information whether the w(i) is enabled or
disabled. About 8 cases according to m values and the prim-
itive polynomials are used in various communication stan-
dards. Hence, the decoder receives 3 bits (8 = 23) and out-
puts 15 X 8 = 120-bit control signals, as shown in Figure 11.
The proposed GF multiplier performs the GF operation with

Existing DSP-Based RS Decoders and Hardwired RS Processors

1351

Input IJ llnput 2

XOR GF multiplier

Output

MADD instruction

Input ll llnput 2
The proposed
Output

MMUL instruction

Input 1 Input 2 | Input 3
The proposed J, l

GF multiplier

XOR

MMAC instruction

FiGure 9: The proposed MADD, MMUL, and MMAC instructions.

a(0) b(0)

a(0) b(1) a(7) b(6) a(7) b(7)

Array of XOR gates

Value of primitive 5 Primitive
polynomial polynomial
decoder

Modulo operation unit

Q0)Q(1) Q(6)Q(7)

FiGgure 10: Proposed GF multiplier block.

15
+Ei>, Q(0)
15

g e

0(0) w(1) w(13) w(14)
15
— Modulo operation (0)
[T [1
15 -
Control signals 4 Modulo operation (1)
120 [[]
ﬁ%

Modulo operation (6)

15 je

Modulo operation (7)

15
v
15 =‘T\]

FIGURE 11: Proposed modulo operation unit.

these control signals. The primitive polynomial decoder is
designed with combinational circuits. To implement 8 differ-
ent combinations using ASIC chips, 8 different hardware im-
plementations are required. However, the proposed ASDSP
can efficiently implement these combinations.

Figure 12 shows the overall architecture of the proposed
ASDSP, based on the modified Harvard architecture. Two 16-
bit data memories can be accessed in a single clock cycle since
the address generation unit (AGU) generates two addresses.
The data processing unit (DPU) consists of two MACs, two
ALUs, and one barrel shifter to efficiently support RS. The 8
GF multipliers are also included in DPU. The proposed AS-

DSP employs 7 pipeline stages: prefetch, fetch, decode, exe-
cutel, execute2, execute3, and write back. Every instruction,
including program control instructions, is executed in a sin-
gle cycle. The DO instruction, one of the most frequently
used instructions, can also be executed in a cycle.

4. PERFORMANCE COMPARISONS

The proposed GF multiplier used for the MMUL and MMAC
instructions is implemented with the combinational circuit
and can perform high-speed GF multiplication. However, the
general ALU of existing DSP chips takes quite a number of

1352 EURASIP Journal on Applied Signal Processing
Y data bus
X data bus
X Y
Y data Data processing unit
memory
Register file
X data
memory { {
MAC [| MAC
1 1
GF multiplier
I GF|GF|[GF[GF
Program M1[M2[M3|M4
memory ALU ALU GF|GF |GF |GF
M5|M6[{M7|M8
Inst. bus l
Accumulator H
X address bus
Y address bus
FIGURE 12: Overall architecture of the proposed ASDSP.
TaBLE 1: Performance comparisons of the RS decoding for (204 188 8) RS code in various DSP chips.
The structure of DSP The error correction capability (¢) Estimation Overall latency (clock cycles)

Syndrome computation (470) +

TMS320C64x family [25] t=28 Berlekamp-Massey (246) + Chien 1,184
search (318) + Forney (146)

STARCORE SC140 [24] t=2 — 819~1,115
Syndrome computation (204) +

Hardwired ASIC chip [16] t=8 modified Euclid’s algorithm (17) 237
+ Chien search (8) + Forney (8)

. Syndrome computation (408) +
The ASDSP havmg th.e t=38 modified Euclid’s algorithm (215) 930
proposed GF multiplier

+ Chien search (211) + Forney (96)

clock cycles just for a GF multiplication, since it has to repeat
the AND, SHIFT, and XOR instructions shown in Figure 7.
Table 1 shows the performance comparisons of RS decoding
between the ASDSP having 8 proposed GF multipliers shown
in Figure 10 and the existing DSP chips [17, 18, 25]. Note that
the performance figures of commercial DSP chips are given
by their datasheets or references [17, 18]. The hardwired RS
ASIC takes about 237 cycles for t = 8 [16], that is, 204 cycles
for the syndrome calculation block, 17 cycles for the mod-
ified Euclid’s algorithm block, 8 cycles for the Chien search
block, and 8 cycles for the Forney algorithm.

The proposed architecture takes one clock cycle per
MMAC instruction, therefore, 470 clock cycles for the syn-
drome computation, 85 clock cycles for the modified Euclid’s
algorithm, 211 clock cycles for the Chien search, and 96 clock

cycles for the Forney algorithm are needed for the RS decod-
ing. Hence, The ASDSP takes 930 clock cycles for the RS de-
coding and it can correct up to 8 symbol errors.

The overall latency of the SC140 takes between 819 clock
cycles and 1115 clock cycles for t = 2. However, it has less
error correction capability (+ = 2) than the ASDSP (¢ = 8).
The overall latency of the SC140 becomes more than double
for t = 8. In addition, the proposed ASDSP reduces the over-
all latency by 25% compared with TMS320C64x, supporting
only the GF multiplication but not the modulo MAC oper-
ation. Moreover, these VLIW DSPs have much larger hard-
ware size and higher power consumption than the proposed
one has. Thus, the ASDSP having the proposed GF multi-
plier shows better performance than the other DSP chips in
Table 1.

Existing DSP-Based RS Decoders and Hardwired RS Processors

1353

5. CONCLUSIONS

This paper proposed new ASDSP instructions and their
hardware accelerator for high-speed RS decoding. First, we
proposed MMAD, MMUL, and MMAC instructions that are
necessary to perform the RS decoding and proposed archi-
tecture to support these instructions. The proposed GF mul-
tiplier, having little extra hardware overhead, can perform
the GF multiplication faster than the general ALU of existing
DSP chips in terms of execution cycles. Hence, the proposed
ASDSP having the proposed GF multiplier can support an
RS decoding rate up to 228.1 Mbps at a 130 MHz operat-
ing frequency even with the 0.25 ym technology. In addition,
the ASDSP can be adapted to various communication stan-
dards and can support SDR because of programmability. In
the near future, all of these features will be implemented on
an ASDSP chip.

ACKNOWLEDGMENTS

This work was supported in part by the National Research
Laboratory (NRL) Program of Ministry of Science & Tech-
nology (MOST), in part by the HY-SDR Research Center un-
der the ITRC Program of MIC, and in part by IC Design Ed-
ucation Center (IDEC).

REFERENCES

[1] R. Machauer, A. Wiesler, and E Jondral, “Comparison of
UTRA-FDD and CDMA200 with intra- and intercell inter-
face,” in Proc. IEEE 6th International Symposium on Spread
Spectrum Techniques and Applications (ISSSTA °00), vol. 2, pp.
652-656, NJ, USA, September 2000.

[2] J. Glosser, J. Moreno, M. Mudsill, et al., “Trends in compilable
DSP architecture,” in Proc. Workshop on Signal Processing Sys-
tems (SiPS’00), pp. 181-199, IEEE Press, Lafayette, Ind, USA,
October 2000.

[3] HomePlug Powerline Alliance, “Medium Interface Specifica-
tion. Release 0.5,” November 2000.

[4] DVB, “Framing structure, channel coding and modulation
for digital terrestrial television,” ETSI EN 300 744, vol. 4.1,
January 2001.

[5] ATSC, “ATSC Digital Television Standard, ATSC standard
A/53B,” August 2001.

[6] DAVIC 1.4 Specification. Part 8, “Lower Layer Protocols and
Physical Interface,” 1998.

[7] A. M. Michelson and A. H. Levesque, Error-Control Tech-
niques for Digital Communication, John Wiley & Sons, NY,
USA, 1985.

[8] T. R. N. Rao and E. Fujiwara, Error Control Coding for Com-
puter Systems, Prentice-Hall, Englewood Cliffs, NJ, USA,
1989.

[9] J.-M. Hsu and C.-L. Wang, “An area-efficient pipelined VLSI
architecture for decoding of Reed-Solomon codes based on a
time-domain algorithm,” IEEE Trans. Circuits and Systems for
Video Technology, vol. 7, no. 6, pp. 864-871, 1997.

[10] D. V. Sarwate and N. R. Shanbhag, “High-speed architectures
for Reed-Solomon decoders,” IEEE Trans. on VLSI Systems,
vol. 9, pp. 641-655, October 2001.

[11] M. A. A. Ali, A. Abou-El-Azm, and M. F. Marie, “Error rates
for non-coherent demodulation FCMA with Reed-Solomon

codes in fading satellite channel,” in Proc. IEEE Vehicular
Techn. Conf. (VIC ’99), vol. 1, pp. 92-96, Amsterdam, The
Netherlands, September 1999.

[12] T. K. Matsushima, T. Matsushima, and S. Hirasawa, “Parallel
architecture for high-speed Reed-Solomon codec,” in Proc.
IEEE Int. Telecommun. Symp. (ITS *98), vol. 2, pp. 468-473,
Sao Paulo, Brazil, 1998.

[13] H. M. Shao, T. K. Truong, L. J. Deutsch, J. H. Yuen, and L. S.
Reed, “A VLSI design of a pipeline Reed-Solomon decoder,”
IEEE Trans. on Computers, vol. 34, no. 5, pp. 393—-403, 1985.

[14] H. M. Shao and L. S. Reed, “On the VLSI design of a pipeline
Reed-Solomon decoder using systolic arrays,” IEEE Trans. on
Computers, vol. 37, no. 10, pp. 1273-1280, 1988.

[15] H. H. Lee, M. L. Yu, and L. Song, “VLSI design of Reed-
Solomon decoder architectures,” in Proc. IEEE Int. Symp. Cir-
cuits and Systems (ISCAS °00), vol. 5, pp. 705-708, Geneva,
Switzerland, May 2000.

[16] J. H. Baek, J. Y. Kang, and M. H. Sunwoo, “Design of a high-
speed Reed-Solomon decoder,” in Proc. IEEE Int. Symp. Cir-
cuits and Systems (ISCAS ’02), pp. 793-796, Scottsdale, Ariz,
USA, May 2002.

[17] J. Sankaran, “Reed Solomon decoder: TMS320C64x Imple-
mentation,” Tech. Rep. SPRA686, Texas Instruments, Dallas,
Tex, USA, December 2000.

[18] D. Taipale, L. E. Scheiwe, and T. M. Redheendran, “Reed-
Solomon Decoding on the StarCore Processor,” Tech. Rep.
AN1841/D, Motorola Semiconductors, Denver, Colo, USA,
May 2000.

[19] M. H. Sunwoo and J. S. Lee, “The circuits for modulo oper-
ation and operation method of programmable processor for
Reed-Solomon encoding and decoding,” Korea Patent Appli-
cation No. 10-2001-0022427, 2001.

[20] L. S. Reed and X. Chen, Error-Control Coding for Data Net-
works, Kluwer Academic, Norwell, Mass, USA, 1999.

[21] S. Lin and D. J. Costello Jr., Error Control Coding: Funda-
mentals and Applications, Prentice-Hall, Englewood Cliffs, N7J,
USA, 1983.

[22] M. Bossert, Channel Coding for Telecommunications, John
Wiley & Sons, NY, USA, 1999.

[23] S. B. Wicker and V. K. Bhargava, Reed-Solomon Codes and
Their Applications, IEEE Press, NY, USA, 1994.

[24] S. B. Wicker, Error Control Systems for Digital Communication
and Storage, Prentice-Hall, Englewood Cliffs, NJ, USA, 1995.

[25] Motorola Semiconductors, “SC140 DSP core reference man-
ual,” Denver, Colo, USA, 2000.

Jung H. Lee received the B.S. degree in elec-
tronic engineering from Ajou University,
Suwon, Korea in 2002. He is currently work-
ing toward the Ph.D. degree in the School of
Electrical and Computer Engineering, Ajou
University. His main research interests in-
clude SOC design and application-specific
DSP chip design.

Jaesung Lee received the B.S. and M.S. de-
grees in electronic engineering from Ajou
University, Suwon, Korea in 1999 and 2001,
respectively. He is currently working in the
Electronics and Telecommunications Re-
search Institute (ETRI) in Taejon, Korea.
His research interests include VLSI archi-
tectures, design of parallel processors, DSP
chips, and protocol processing.

1354

EURASIP Journal on Applied Signal Processing

Myung H. Sunwoo received the B.S. degree
in electronic engineering from Sogang Uni-
versity in 1980, the M.S. degree in electri-
cal and electronics engineering from Ko-
rea Advanced Institute of Science and Tech-
nology in 1982, and the Ph.D. in electri-
cal and computer engineering from The
University of Texas at Austin in 1990. He
worked for Electronics and Telecommuni-
cations Research Institute (ETRI) in Taejon,
Korea from 1982 to 1985 and Digital Signal Processor Operations
Division, Motorola, USA from 1990 to 1992. Since 1992, he has
been a Professor with School of Electrical and Computer Engineer-
ing, Ajou University, Suwon, Korea. His research interests include
VLSI architectures, SOC design for multimedia and communica-
tions, and application-specific DSP chip design. He is the author of
more than 110 journal and conference papers. He has served as a
Technical Program Chair of the IEEE Workshop on Signal Process-
ing Systems (SIPS) in 2003, as a member of Technical Committee
of the IEEE Circuit and Systems VSATC since 1996, and as a mem-
ber of Program Committee of the IEEE Workshop on SIPS and the
IEEE International SOC Conference. He serves as an Associate Ed-
itor for the IEEE Transactions on Very Large Scale Interation Sys-
tems from 2001. He is a Senior Member of IEEE.

	1. INTRODUCTION
	2. IMPLEMENTATION OF THE EXISTING DSP-BASED RS DECODERS AND HARDWIRED RS PROCESSORS
	2.1. Typical RS processor
	2.1.1. RS encoder architecture
	2.1.2. RS decoder architecture

	2.2. Existing DSP-based RS decoder

	3. NEWINSTRUCTIONS AND THEIR ARCHITECTURE
	4. PERFORMANCE COMPARISONS
	5. CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

