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A critical issue for the construction of genetic regulatory networks is the identification of network topology from data. In the
context of deterministic and probabilistic Boolean networks, as well as their extension to multilevel quantization, this issue is
related to the more general problem of expression prediction in which we want to find small subsets of genes to be used as
predictors of target genes. Given some maximum number of predictors to be used, a full search of all possible predictor sets
is combinatorially prohibitive except for small predictors sets, and even then, may require supercomputing. Hence, suboptimal
approaches to finding predictor sets and network topologies are desirable. This paper considers Bayesian variable selection for
prediction using a multinomial probit regression model with data augmentation to turn the multinomial problem into a sequence
of smoothing problems. There are multiple regression equations and we want to select the same strongest genes for all regression
equations to constitute a target predictor set or, in the context of a genetic network, the dependency set for the target. The probit
regressor is approximated as a linear combination of the genes and a Gibbs sampler is employed to find the strongest genes.
Numerical techniques to speed up the computation are discussed. After finding the strongest genes, we predict the target gene
based on the strongest genes, with the coefficient of determination being used to measure predictor accuracy. Using malignant
melanoma microarray data, we compare two predictor models, the estimated probit regressors themselves and the optimal full-
logic predictor based on the selected strongest genes, and we compare these to optimal prediction without feature selection.
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1. INTRODUCTION

The advent of high throughput gene expression microarray
technology has stimulated the development of mathemati-
cal models for genetic regulatory networks, in particular, dis-
crete models such as Bayesian networks [1, 2, 3, 4], Boolean
networks [5, 6, 7, 8], probabilistic Boolean networks [9, 10],
and the generalization of both deterministic and probabilis-
tic Boolean networks to multilevel quantization [11, 12]. A
critical issue for network construction is the identification of
network topology from the data. This issue is related to the
more general problem of expression prediction in which we
want to find small subsets of genes to be used as predictors
of target genes [11, 13]. Given some maximum number of

predictors to be used, ideally one would like to search over
all possible predictor sets to find those that are the best rel-
ative to some measure of prediction such as the coefficient
of determination [14]; however, such a search is combinato-
rially prohibitive except for small predictors sets, and even
then, may require supercomputing [15]. Consequently, this
has lead to an effort to find other, perhaps suboptimal, ap-
proaches to finding predictor sets, and the concomitant net-
work topologies. Two such efforts involve minimum descrip-
tion length [16], mutual-information-based clustering [12],
and incremental inclusion of predictor variables [17].

The search for good predictor sets is a form of feature re-
duction, which in the context of expression-based classifica-
tion involves methods to reduce the set of genes from which
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good feature sets can be formed. Owing to the importance of
classification and the extremely large number of genes from
which to form classifiers frommicroarray data, several meth-
ods have been proposed, including the support vector ma-
chine method [18], minimum description length [19], vot-
ing [20], and Bayesian variable selection [21, 22].

In this paper, we focus on Bayesian variable selection for
prediction using a multinomial regression model (probit re-
gressor) with data augmentation to turn the multinomial
problem into a sequence of smoothing problems [23]. In a
sense, this work extends the method of [22], except that here
the input and output values are ternary instead of analog and
binary, respectively. This means that there are multiple re-
gression equations and we want to select the same strongest
genes for all regression equations to constitute a target pre-
dictor set or, in the context of a genetic regulatory network,
the dependency set for the target. The probit regressor is ap-
proximated as a linear combination of the genes and a Gibbs
sampler is employed to find the strongest genes. Since this
method has high computational complexity, we discuss some
numerical techniques to speed up the computation. After
finding the strongest genes, we predict the target gene based
on the strongest genes, with the coefficient of determination
being used to measure predictor accuracy. Normally, when
trying to identify network topologies and related problems,
one uses time series data. In this paper, we aim at the same
goal using static data, that is, malignant melanoma microar-
ray data [24]. Using malignant melanoma microarray data,
we compare two predictor models: (1) the estimated probit
regressors themselves and (2) the optimal full-logic predic-
tor based on the selected strongest genes. As must be the
case, full-logic prediction with the strongest genes will out-
perform the regressor model with the strongest genes; never-
theless, the fundamental issue in this paper is feature reduc-
tion and this is accomplished satisfactorily if the optimal full-
logic predictor performs well with the selected feature set.

2. MULTINOMIAL PROBIT REGRESSION
WITH BAYESIAN GENE SELECTION

2.1. Problem formulation

Assume that there are n + 1 genes, say, x1, . . . , xn, xn+1. With-
out loss of generality, we assume that the target gene is xn+1,
and let w denote this target gene. Then w = [w1, . . . ,wm]T

denotes the normalized expression profiles of the target gene
(e.g., for the normalized ternary expression data, wj = 1 in-
dicates that the sample j is up-regulated; wj = −1 indicates
that the sample j is down-regulated; and wj = 0 indicates
that the sample j is invariant). Denote

X =




Gene 1 Gene 2 · · · Gene n

x11 x12 · · · x1n

x21 x22 · · · x2n
...

...
. . .

...

xm1 xm2 · · · xmn




(1)

as the normalized expression profiles of genes x1, . . . , xn. The
gene selection problem is to find some genes from x1, . . . , xn
that are useful in predicting some target gene w. Here, we
consider a more general case of gene prediction, that is, as-
sume that the gene expression profiles are normalized to K
levels.

The perceptron has been proved to be an effective model
to model the relationship between the target gene and the
other genes [25]. Here, we study this problem by using probit
regression with Bayesian gene selection. Let Xi denote the ith
row of matrix X in (1). In the binomial probit regression,
that is, when K = 2, the relationship between wi and the
gene expression levelsXi is modeled as a probit regressor [23]
which yields

P
(
wi = 1|Xi

) = Φ
(
Xiβ

)
, i = 1, . . . ,m, (2)

where β = (β1,β2, . . . ,βn)T is the vector of regression param-
eters and Φ is the standard normal cumulative distribution
function. Introducem independent latent variable z1, . . . , zm,
where zi ∼ N(Xiβ, 1), that is,

zi = Xiβ + ei, i = 1, . . . ,m, (3)

and ei ∼ N(0, 1). Define γ as the n× 1 indicator vector with
the jth element γj such that γj = 0 if βj = 0 (the variable is
not selected) and γj = 1 if βj �= 0 (the variable is selected).
The Bayesian variable selection is to estimate γ from the pos-
teriori distribution p(γ|z). See [11] for details.

However, when K > 2, the situation is different from the
binomial case because we have to construct K − 1 regres-
sion equations similar to (3). Introduce K − 1 latent vari-
ables z1, . . . , zK−1 and K − 1 regression equations such that
zk = Xβk + ek, k = 1, . . . ,K − 1, where ek ∼ N(0, 1). Let
zk takem values {zk,1, . . . , zk,m}. Using matrix form, it can be
further written as

zk,1 = X1βk + ek,1,

zk,2 = X2βk + ek,2,

...

zk,m = Xmβk + ek,m,

(4)

where k = 1, . . . ,K − 1. Denote zk � [zk,1, . . . , zk,m]T and
ek � [ek,1, . . . , ek,m]T . Then (4) can be rewritten as

zk = Xβk + ek, k = 1, . . . ,K − 1. (5)

This model is called the multinomial probit model. For back-
ground onmultinomial probit models, see [26]. Note that we
do not have the observations of {zk}K−1k=1 , which makes it dif-
ficult to estimate the parameters in (5).

Here, we discuss how to select the same strongest genes
for the different regression equations. The model is a lit-
tle different from (5), that is, the selected genes do not
change with the different regression equations. Note that the
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(i) Draw γ from p(γ|z1, . . . , zK−1). We usually sample each γi independently from

p
(
γi|z1, . . . , zK−1, γj �=i

)
∝ p

(
z1, . . . , zK−1|γ

)
p
(
γi
)

∝ (1 + c)−(K−1)nγ /2 exp

{
− 1

2

K−1∑
k=1

S
(
γ, zk

)}
π
γi
i

(
1− πi

)1−γi ,
(10)

nγ =
∑n

j=1 γj , c = 10, and πi = P(γi = 1) are prior probabilities to select the jth gene. It
is set as πi = 8/n according to the very small sample size. If πi takes a larger value, we
find oftentimes that (Xγ

TXγ)−1 does not exist.
(ii) Draw βk from

p
(
βk|γ, zk

)∝ �
(
VγXγ

Tzk ,Vγ

)
, (11)

where Vγ = (c/(1 + c))(Xγ
TXγ)−1.

(iii) Draw zk = [zk,1, . . . , zk,m]T , k = 1, . . . ,K , from a truncated normal distribution as
follows [27].

For i = 1, 2, . . . ,m

If wi = k, then draw zk,i according to zk,i ∼ N(Xγβk , 1) truncated left by
max j �=k zj,i, that is,

zk,i ∼ �
(
Xγβk , 1

)
1{zk,i>max j �=k z j,i}. (12)

Else wi = j and j �= k, then draw zj,i according to zj,i ∼ N(Xγβ j , 1) truncated right
by the newly generated zk,i, that is,

zj,i ∼ �
(
Xγβ j , 1

)
1{z j,i≤zk,i}. (13)

Endfor.

Here, we set zK ,i ∼ N(0, 1) when wi = K , that is, we introduce a new equation
zK ,i = XγβK + eK ,i, i = 1, . . . ,m, with βK being a zero vector and eK ,i ∼ N(0, 1).

Algorithm 1

parameter β is still dependent on k and γ, denoted by βk,γ.
Then (5) is rewritten as

zk = Xγβk,γ + ek , k = 1, . . . ,K − 1, (6)

where Xγ means the column of X corresponding to those el-
ements of γ that are equal to 1, and the same applies to βk,γ.
Now, the problem is how to estimate γ and the correspond-
ing βk,γ and zk for each equation in (6).

2.2. Bayesian variable selection

A Gibbs sampler is employed to estimate all the parame-
ters. Given γ for equation k, the prior distribution of βγ is
βγ ∼ N(0, c(XT

γXγ)−1) [22], where c is a constant (we set
c = 10 in this study). The detailed derivation of the poste-
rior distributions of the parameters are given in [22]. Here,
we summarize the procedure for Bayesian variable selection.
Denote

S
(
γ, zk

) =zTk zk − c

c + 1
zTkXγ

(
Xγ

TXγ
)−1

Xγ
Tzk, (7)

where k = 1, . . . ,K − 1. Then the Gibbs sampling algorithm
for estimating {γ,βk, zk} is as follows. By straightforward
computing, the posteriori distribution p(γ|z1, . . . , zK−1) is

approximated by

p
(
γ|z1, . . . , zK−1

)
∝ p

(
z1, . . . , zK−1|γ

)
p(γ)

∝ (1 + c)−(K−1)nγ/2

× exp

{
− 1

2

K−1∑
k=1

S
(
γ, zk

)} n∏
i=1

π
γi
i

(
1− πi

)1−γi ,
(8)

and the posterior distribution p(βk,γ|zk) is given by

βk,γ|zk,Xγ ∼ N(VγXγ
Tzk,Vγ). (9)

The Gibbs sampling algorithm for estimating γ, {βk,γ}, and
{zk} is illustrated in Algorithm 1.

In this study, 12000 Gibbs iterations are implemented
with the first 2000 as burn-in period. Then we obtain the
Monte Carlo samples as γ(t),β(t)k , z(t)k , t = 2001, . . . ,T , where
T = 10000. Finally, we count the number of times that each
gene appears in γ(t), t = 2001, 2002, . . . ,T . The genes with
the highest appearance frequencies play the strongest role in
predicting the target gene. We will discuss some implemen-
tation issues of Algorithm 1 in Section 3.
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2.3. Bayesian estimation using the strongest genes

Now, assume that the genes corresponding to nonzeros of γ
are the strongest genes obtained by Algorithm 1. For fixed γ,
we again use a Gibbs sampler to estimate the probit regres-
sion coefficients βk as follows: first, draw βk,γ according to
(11), then draw zk and iterate the two steps. In this study,
1500 iterations are implemented with the first 500 as the
burn-in period. Thus, we obtain the Monte Carlo samples
β(t)k,γ, z

(t)
k , t = 501, . . . , T̃ . The probability of a given sample x

under each class is given by

P(w = k|x)

= 1
T̃

T̃∑
t=1

K∏
j=1, j �=k

Φ
(
xγβ

(t)
k,γ − xγβ

(t)
j,γ

)
, k = 1, . . . ,K − 1,

(14)

P(w = K|x) = 1−
K−1∑
k=1

P(w = k|x), (15)

where β(t)K ,γ is a zero vector; and the estimation of this sample
is given by

ŵ � d(w) = arg max
1≤k≤K

P(w = k|x). (16)

Note that (15) may be computed using another formulation,
which is replaced by [28, (13)].

In order to measure the fitting accuracy of such a predic-
tor, we next define the coefficient of determination (COD)
for this probit predictor. In fact, the above γ and β (includ-
ing all parameters βk,γ) are dependent on the target gene w.
Firstly, a probabilistic error measure ε(w, xγ,β) associated
with the predictors γ, β is defined as

ε
(
w, xγ,β

)
� E

[∣∣d(w)−w
∣∣2], (17)

where E denotes the expectation. Similar to the definition in
[14], the COD for w relative to the conditioning sets γ, β is
defined by

θ = ε − ε(w, xγ,β)
ε

, (18)

where ε is the error of the best (constant) estimate ofw in the
absence of any conditional variables. In the case of minimum
mean square error estimation, ε is defined as

ε = E
[∣∣w − g

(
E(w)

)∣∣2], (19)

where g is a {−1, 0, 1}-valued threshold function [g(z) = 0
if −0.5 < z < 0.5, g(z) = 1 if z ≥ 0.5, and g(z) = −1 if
z ≤ −0.5] for ternary data.

3. FAST IMPLEMENTATION ISSUES

The computational complexity of the Bayesian gene selection
algorithm in (Algorithm 1) is very high. For example, if there

are 1000 gene variables, then for each iteration, we have to
compute the matrix inverse (Xγ

TXγ)−1 1000 times because
we need to compute (10) for each gene. Hence, some fast al-
gorithms must be developed to deal with the problem.

3.1. Preselectionmethod

When there is a very large number of genes, we employ a pre-
selection method. In pattern recognition, the following crite-
rion is often adopted: the smaller is the sum of squares within
groups and the bigger is the sum of squares between groups,
the better is the classification accuracy. Therefore, we can de-
fine a score using the above two statistics to preselect genes,
that is, the ratio of the between-group to within-group sum
of squares. It is not necessary to adopt this procedure if the
number of genes is small.

3.2. Computation of p(γj|zk, γi �= j) in (10)

Because γj only takes 0 or 1, we can take a close look at p(γj =
1|zk, i �= j) and p(γj = 0|zk, i �= j). Let

γ1 = (γ1, . . . , γj−1, γj = 1, γj+1, . . . , γn),

γ0 = (γ1, . . . , γj−1, γj = 0, γj+1, . . . , γn).
(20)

After a straightforward computation of (10), we have

p
(
γj = 1|zk, γi �= j

)∝ 1
1 + h

, (21)

with

h = 1− πj

πj
exp

{
S
(
γ1, zk

)− S
(
γ0, zk

)
2

}√
1 + c. (22)

If γ = γ0 before γj is generated, this means that we have ob-
tained S(γ0, zk), then we only need to compute S(γ1, zk) and
vice versa.

3.3. Fast computation of S(γ, zk) in (7)

From the above discussion, it is a key step to compute S(γ, zk)
fast when a gene variable is added or removed from γ. Denote

E
(
γ, zk

) = zTk zk − zTkXγ
(
Xγ

TXγ
)−1

Xγ
Tzk, (23)

where k = 1, . . . ,K − 1. Then (23) can be computed using
the fast QR-decomposition, QR-delete, and QR-insert algo-
rithms when a variable is added or removed [29, Chapter
10.1.1b]. Now, we want to estimate S(γ, zk) in (7). Compar-
ing (23) and (7), one can obtain the following equation:

zTkXγ
(
Xγ

TXγ
)−1

Xγ
Tzk = (1 + c)

[
S
(
γ, zk

)− E
(
γ, zk

)]
. (24)

Substituting (24) into (7), after a straightforward computa-
tion, S(γ, zk) is given by

S
(
γ, zk

) = zTk zk + cE
(
γ, zk

)
1 + c

, k = 1, . . . ,K − 1. (25)
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(i) Preselect genes.

(ii) Initialization: Randomly set initial parameters γ(0), β(0)
k , z(0)k .

(iii) For t = 1, 2, . . . , 12000
Draw γ(t). For j = 1, . . . ,n

Compute S(γ(t), zk) using QR-delete or QR-insert.
Compute p(γj = 1|zk , γ(t)i�= j) according to (21).

Draw γ(t)j from p(γj = 1|z(t−1)k , γ(t)i�= j).

Draw β(t)
k according to (11);

Draw z(t)k according to (12) and (13).

(iv) Endfor.

(v) Count the frequency of each gene appeared in γ(t), t = 2001, . . . , 12000.

Algorithm 2

Thus, after computing E(γ, zk) using QR-decomposition,
QR-delete, and QR-insert algorithms, we then obtain
S(γ, zk). Here, we only need to compute the matrix inverse
one time each iteration, but in the original algorithm, we
have to compute the matrix inverse for n time each iteration.
The computation complexity will be much smaller than that
of the original algorithm [22] due to our processing tech-
niques. To that end, we summarize our fast Bayesian gene
selection algorithm as in Algorithm 2.

Notice that if it happens that the number of selected
genes is more than the total number of samples, we need to
remove this case because (Xγ

TXγ)−1 does not exist. Another
concern is that if it happens that (Xγ

TXγ) is singular due to
some rows or columns being a constant, then we need to add
a very small random number to each element in Xγ.

4. EXPERIMENTAL RESULTS

In the first step in constructing a gene regulatory network,
the complexity of the expression data is reduced by thresh-
olding changes in transcript level into ternary expression
data: −1 (down-regulated), +1 (up-regulated), or 0 (invari-
ant). When using multiple microarrays, the absolute signal
intensities vary extensively due to both the process of prepar-
ing and printing the EST elements [30] and the process of
preparing and labeling the cDNA representations of the RNA
pools. This problem is solved via internal standardization.
We then build gene regulatory networks using the proposed
approaches.

4.1. Malignantmelanomamicroarray data

The gene expression profiles used in this study result from a
study of 31malignant melanoma samples [24]. For the study,
total messenger RNA was isolated directly from melanoma
biopsies. Fluorescent cDNA from the message was prepared
and hybridized to a microarray containing probes for 8 150
cDNAs (representing 6 971 unique genes). A set of 587 genes
has been subjected to an analysis of their ability to cross pre-
dict each other’s state in a multivariate setting [11, 13, 25].

From these, we have selected 26 differential genes using the
following t-test:

t( j) = x̄1, j − x̄2, j
s0( j)

√
1/m1 + 1/m2

, j = 1, . . . , p, (26)

with

s0( j) �
√(

m1 − 1
)
s1( j)2 +

(
m2 − 1

)
s2( j)2

m1 +m2
, (27)

where p is the number of genes, {x̄k, j}2k=1 denotes the aver-
age expression level of gene j across the samples belonging
to class k,m1 andm2 are the numbers of the two classes, and
{sk( j)2}2k=1 are the variances of gene j across the samples be-
longing to class k. Genes with t( j) ≥ 0.05 are listed in Table 1.

COD values for all the 26 targets have been computed
using the strongest genes found via the Bayesian selection.
CODs have been computed using leave-one-out cross valida-
tion. The strongest genes for each target are listed in the sec-
ond column of Table 2 and the third column lists the CODs
using the top 2, 3, and 4 genes for each target and using
the probit regression to form the predictors. Several points
should be noted. First, while the theoretical (distributional)
COD values increase as the number of predictors increases,
this is not necessarily the case for experimental data, espe-
cially when small samples are involved (on account of over-
fitting and high variance of cross-validation error estima-
tion). Second, pirin (no. 2) is a strong predictor gene inmany
cases, and this agrees with the comment in the original paper
that pirin has a very high discriminative weight [24]. Third,
even with feature selection and a suboptimal predictor func-
tion, for the most part, the CODs are fairly high.

Having made the last point, we note that our salient in-
terest is gene selection. Hence, having found strong genes
via Bayesian variable selection, we are not compelled to use
the probit regression model to form the predictors; rather,
we can choose the optimal predictor using the strong genes
among all possible (full-logic) predictor functions. We can
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Table 1: The 26 differential genes.

Gene no. Index no. Gene description
1 3 Tumor protein D52
2 7 Pirin
3 14 V-myc avian myelocytomatosis viral oncogene homolog
4 42 Endothelin receptor type B
5 60 ESTS
6 79 Alpha-2-macroglobulin
7 117 V-myc avian myelocytomatosis viral oncogene homolog
8 126 ESTs
9 175 Myotubularin related protein 4
10 210 NGFI-A binding protein 2 (ERG1 binding protein 2)
11 216 IQ motif containing GTPase activating protein 1
12 220 Annexin A2
13 228 ESTs
14 245 Homo sapiens mRNA; cDNA DKFZp434L057 (from clone DKFZp434L057)
15 282 Endothelin receptor type B
16 292 ESTs
17 323 ESTs
18 360 Glycoprotein M6B
19 372 “Nuclear receptor subfamily 4, group A, member 3”
20 374 Thrombospondin 2
21 387 “ESTs, weakly similar to HP1-BP74 protein [M.musculus]”
22 404 “Phosphofructokinase, liver”
23 506 Placental transmembrane protein
24 556 Human insulin-like growth factor binding protein 5 (IGFBP5) mRNA
25 573 “Platelet-derived growth factor receptor, alpha polypeptide”
26 576 ESTs

Table 2: Strongest genes to predict each gene and the corresponding COD values for 2, 3, and 4 predictor genes.

Target gene no.
Strongest genes (no.) COD

1 2 3 4 2 3 4

1 19 23 22 17 0.6452 0.6129 0.7097
2 25 1 19 11 0.3871 0.6774 0.8065
3 7 23 2 5 0.7097 0.7742 0.7742
4 15 2 13 17 0.7419 0.7742 0.8710
5 14 2 13 10 0.5484 0.5161 0.4194
6 10 2 19 24 0.6129 0.7097 0.8387
7 3 2 17 1 0.7419 0.8387 0.8387
8 20 2 21 14 0.5161 0.5484 0.5484
9 2 13 17 15 0.6774 0.7097 0.7742
10 6 20 2 4 0.6129 0.6452 0.6774
11 13 25 2 1 0.8710 0.8710 0.7742
12 2 13 11 14 0.6452 0.6452 0.7419
13 2 15 11 18 0.8387 1.0000 1.0000
14 2 25 21 15 0.6774 0.7742 0.6774
15 2 4 13 14 0.8065 0.7419 0.9677
16 4 25 2 7 0.6452 0.7097 0.6452
17 11 18 2 8 0.8387 0.8065 0.8387
18 2 17 13 23 0.8387 0.7742 0.8710
19 1 22 2 9 0.7419 0.6774 0.7419
20 22 5 10 24 0.3548 0.3548 0.7419
21 25 2 14 20 0.7742 0.7742 0.7742
22 2 9 6 23 0.6774 0.7097 0.7742
23 24 2 1 5 0.5161 0.5484 0.6774
24 2 20 3 7 0.5806 0.6129 0.6452
25 11 2 14 13 0.7742 0.6774 0.8065
26 17 13 2 23 0.7742 0.7742 0.8387



Gene Prediction Using Probit Regression with Bayesian Gene Selection 121

Table 3: Three-predictor COD values using full-logic predictor, full search, and Bayesian-selected genes. There are 2300 three-predictor sets
for each target gene.

Target gene no. Probit position logic COD (best) logic COD (probit)

1 32 0.8065 0.7419

2 59 0.8387 0.7419

3 36 0.9355 0.9032

4 15 0.9677 0.9032

5 52 0.7742 0.6774

6 1 0.9677 0.9677

7 30 0.9355 0.9032

8 91 0.8387 0.7419

9 141 0.8710 0.7742

10 25 0.9677 0.9032

11 49 0.9677 0.8710

12 173 0.8387 0.7419

13 1 1.0000 1.0000

14 212 0.8387 0.7419

15 102 0.9677 0.9355

16 46 0.8710 0.7742

17 12 0.9677 0.9355

18 289 0.9355 0.8710

19 196 0.9677 0.8387

20 21 0.8710 0.8387

21 14 0.8387 0.8065

22 16 0.9355 0.9032

23 48 0.9032 0.8065

24 29 0.8065 0.7097

25 69 0.8710 0.7742

26 49 0.9355 0.9032

also compare the COD for this approach with the fully op-
timal COD derived from considering all possible predictor
sets from among the full-gene set and all possible predic-
tor functions. The results of this analysis for three predictor
variables are shown in Table 3. For each target, the second
column gives the rank of the COD resulting from the pro-
bit predictors in the list of all the 2300 CODs found from all
possible subsets of three predictors using the best full-logic
predictor. The selected gene sets rank very high except in a
couple of cases. The third and fourth columns give the CODs
for the best full-logic predictor with a full search of the gene
subsets and the best full-logic predictor using the strongest
three genes found by Bayesian gene selection. As must be the
case, the values in the third columnmust exceed the values in
the fourth, but in general, this does not happen much, even
when the probit-selected predictor set does not rank near the
top. The differences are likely due to multivariate interaction
between the predictors not recognized by the sequential se-
lection of strongest genes [17]. Table 4 shows analogous re-
sults for four predictors. For it, we note that there are 12 650

predictor sets for each target. Similar comments apply to the
genes in Table 4.

It is interesting to compare the fourth column in Table 4
with the third in Table 3. For large gene sets (say, 600 to 1000
genes), a full search over all the three-variable predictor sets
is feasible with a supercomputer running for weeks [15]. But
a full search is not feasible for a full search over all four-
variable predictor sets. Optimal four-connectivity may not
be possible in network design. Hence, the small loss in COD
between the full-search column in Table 3 and the probit-
selection column in Table 4 demonstrates the potential of
the Bayesian feature selection. Indeed, there are a number of
cases in which the four-variable probit-selected genes out-
perform the corresponding three-variable full-search genes.
Just to get an idea of the vast difference between the methods,
the Gibbs sampler would need approximately 12000 × 1000
iterations, whereas the fully optimal full-search predictor
would need to consider 21000 predictor sets. Even for four-
variable predictor sets, the full search needs C1000

4 iterations,
which is vastly larger than the Gibbs sampling search.
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Table 4: Four-Predictor COD values using full-logic predictor, full search, and Bayesian-selected genes. There are 12650 four-predictor sets
for each target gene.

Target gene no. Probit position Logic COD (best) Logic COD (probit)

1 48 0.8710 0.7742

2 70 0.8710 0.8065

3 14 0.9677 0.9355

4 283 1.0000 0.9355

5 48 0.8387 0.7419

6 1 0.9677 0.9677

7 82 0.9677 0.9032

8 101 0.8710 0.7742

9 60 0.9032 0.8387

10 569 0.9677 0.8710

11 82 0.9677 0.9032

12 510 0.9355 0.8065

13 1 1.0000 1.0000

14 131 0.8710 0.8065

15 1 1.0000 1.0000

16 60 0.8710 0.8065

17 65 0.9355 0.8710

18 364 0.9677 0.8710

19 170 0.8065 0.7419

20 52 0.9355 0.8387

21 193 0.9355 0.9032

22 163 0.9677 0.9032

23 240 0.9677 0.8710

24 91 0.8065 0.7419

25 58 0.9032 0.8387

26 79 0.9677 0.9355

5. CONCLUSION

We have studied the problem of multilevel gene predic-
tion and genetic network construction from gene expression
data based on multinomial probit regression with Bayesian
gene selection, which selects genes closely related to a par-
ticular target gene. Some fast implementation issues for
this Bayesian gene selection method have been discussed,
in particular, computing estimation errors recursively us-
ing QR decomposition. Experimental results using malig-
nant melanoma data show that the Bayesian gene selection
yields predictor sets with coefficients of determination that
are competitive with those obtained via a full search over all
possible predictor sets.
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