
EURASIP Journal on Applied Signal Processing 2004:1, 43–52
c© 2004 Hindawi Publishing Corporation

Multicriteria Gene Screening for Analysis of Differential
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This paper introduces a statistical methodology for the identification of differentially expressed genes in DNA microarray experi-
ments based on multiple criteria. These criteria are false discovery rate (FDR), variance-normalized differential expression levels
(paired t statistics), and minimum acceptable difference (MAD). The methodology also provides a set of simultaneous FDR con-
fidence intervals on the true expression differences. The analysis can be implemented as a two-stage algorithm in which there is an
initial screen that controls only FDR, which is then followed by a second screen which controls both FDR and MAD. It can also be
implemented by computing and thresholding the set of FDR P values for each gene that satisfies the MAD criterion. We illustrate
the procedure to identify differentially expressed genes from a wild type versus knockout comparison of microarray data.
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1. INTRODUCTION

Since Watson and Crick discovered DNA more than fifty
years ago, the field of genomics has progressed from a spec-
ulative science to one of the most thriving areas of current
research and development [1]. After successful completion
(99%) of the Human Genome project [2], attention is turn-
ing to “functional genomics” and “proteomics,” thanks prin-
cipally to remarkable advances in computations and technol-
ogy. These disciplines encompass the greater challenge of un-
derstanding the complex functional behavior and interaction
of genes and their encoded proteins at the cellular level. This
task has been significantly aided by the advent of DNA mi-
croarray technology and associated algorithms that enable
researchers to filter through daunting amounts of data and

genetic information. In this paper, we describe a new ap-
proach to extracting a subset of differentially expressed genes
from DNA microarray data.

A DNA microarray consists of a large number of DNA
probe sequences that are put at defined positions on a solid
support such as a glass slide or a silicon wafer [3, 4]. After
hybridization of a fluorescently labelled sample (gene tran-
scripts) to DNA microarrays, the abundance of each probe
present (called probe response) in the sample can be esti-
mated from the measured levels of hybridization (i.e., the
intensity of fluorescent signal). Two main types of DNA
microarrays are in wide use for gene expression profiling:
Affymetrix GeneChips [5], which are generated by photo-
lithography; and spotted cDNA (or oligonucleotide) arrays
on glass slides [6].
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DNA microarrays enable biologists to study global gene
expression profiles in tissues of interest over time periods and
under specific conditions or treatments. For these cases, a
large set of samples, consisting of several biological replicates,
are hybridized to a set of microarrays. The objective is to
identify subsets of genes whose expression profile over time
exhibit salient behavior(s), for example, differ in response to
different treatments. A crucial aspect of selecting the genes
of interest is the specification of a preference ordering for
ranking the probe responses. Many gene selection and rank-
ing methods are based on testing fitness criteria such as the
eigenvalue spread in a principal components analysis (PCA)
of all pairs of gene expression profiles, the ratio of between-
population-variation to within-population-variation, or the
cross correlation between profiles [7, 8, 9].

These methods have deficiencies which have impeded
their use for practical experiments. First, is the need for im-
proved relevance of the fitness criterion to the scientific ob-
jectives of the experiment. It is often difficult for an exper-
imenter to choose quantitative criteria that characterize the
aspects of a gene expression profile of interest. Second, is the
need for simultaneous control of the biological significance
(minimum acceptable difference (MAD)) and the statistical
significance (false discovery rate (FDR)) of differential re-
sponses discovered in the selected gene probes. A probe re-
sponse difference which is too small is not of much use to the
experimenter even if the difference is statistically significant.
This is because the microarray experiment is usually only
the first step in gene discovery; each microarray probe dif-
ference that is discovered must be validated by painstaking-
followup analysis that may have limited sensitivity to small
differences. Third, is the need for tight confidence intervals
(CIs) on these differences. The size of a CI provides useful
information on the statistical precision of an estimate of dif-
ferential response.

The method we present in this paper adopts a statis-
tical multicriteria framework for gene microarray analysis
with MAD constraints on differential expression. The frame-
work allows the experimenter to adopt multiple fitness crite-
ria, explicitly incorporate control on biological significance
in addition to statistical significance, and generate confi-
dence intervals on discovered gene expression differences.
Our method is strongly influenced by the FDR-adjusted con-
fidence interval (FDR-CI) approach recently introduced by
Benjamini and Yekutieli [10]. We illustrate our methods for a
differential expression experiment designed to probe the ge-
netic basis of retinal development. This experiment involves
two populations, wild type and knockout, and the objective
is to find genes that exhibit biologically and statistically sig-
nificant differences between these populations. The purpose
of this article is to illustrate methodology and not to report
scientific findings, which will be reported elsewhere.

It is worthwhile to compare the framework developed in
this paper to related work. Liu and Iba have proposed an in-
teresting multicriteria evolutionary approach to gene selec-
tion and classification in gene microarray experiments [11].
Similarly, Fleury and Hero have proposed Pareto optimality
for selecting subsets of genes using a combination of boot-

Table 1: The knockout versus wild-type experiment is equiva-
lent to a two-way layout of treatment (W or K) and time (t =
Pn2, Pn10, M2).

Gene g Pn2 Pn10 M2

W 4 samples 4 samples 4 samples

K 4 samples 4 samples 4 samples

strap resampling and Bayes decision theory [12, 13, 14]. Sin-
gle stage [15] and multistage [16, 17, 18] screening methods
which control familywise error rate (FWER) or FDR have
been proposed by several authors for similar problems to
ours. However, none of the above approaches account for a
MAD constraint or provide CIs on the differential expres-
sion levels of the discovered genes. In contrast, our approach
accounts for both FDR and MAD constraints and generates
such confidence intervals using the FDR-CI framework [10].
Furthermore, we specify an algorithm for computing FDR P
values for all genes at any prescribed MAD level.

The outline of the paper is as follows. In Section 2, we
give a general description of the type of differential gene mi-
croarray experiment that will be illustrated in Section 4. In
Section 3, we describe the proposed two-stage multicriteria
approach. Finally, in Section 4, we illustrate these techniques
for experimental data.

2. DIFFERENTIAL EXPRESSION PROFILE
EXPERIMENTS

This type of experiment is very common in genetics research
[19, 20] and involves comparing gene expression profiles of
a set of G genes expressed in two or more populations. The
data from this experiment fall into the category of a two-way
layout [21], where each cell in the layout corresponds to a
set of replicates of samples from one of the two populations
(row) and one of T-time points (column) (see Table 1).

Any gene whose temporal profile differs from wild-type
to knockout populations is called “differentially expressed”
in the experiment. One variant of this experiment is called
the wild-type versus knockout experiment. In such an exper-
iment, one has a control population (wild type) of subjects
and a treated population (knockout) of subjects whose DNA
has been altered in some way. Each population is comprised
of T different age groups arranged in T subpopulations. M
independent samples are taken from each subpopulation and
are hybridized to a different microarray, yielding G pairs of
expression profiles (see Figure 1 for profiles of the gene hav-
ing probe set number 101996 at). This generates a total of
2MT microarrays. It is common to express the differential re-
sponse between wild-type and knockout responses in terms
of foldchange expressed as the ratio of these responses. For
example, a foldchange of 2.0, or 1.0 in log base 2 at a given
time corresponds to a wild-type response which is twice as
large as the knockout response. We denote by {µt(g)}Tt=1 and
{ηt(g)}Tt=1 the true log wild-type and log knockout expres-
sion profiles, respectively, expressed as log base 2 of the true
hybridization abundances.
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Figure 1: Responses for a particular gene (probe set number 101996 at) in (a) knockout mouse versus (b) wild-type mouse for the differen-
tial expression study discussed in Section 4. There are three-time points (labeled Pn2, Pn10, and M2) and at each time point, there are four
replicates. The y-axis denotes log base 2 hybridization level extracted by RMA from Affymetrix GeneChips.

Figure 2 illustrates the three-dimensional multicriteria
space of mean differential responses {µt(g) − ηt(g)}3t=1 for
the three-time point experiment described in Section 4. A
“MAD box” which defines unacceptably small (inside box)
versus acceptably large (outside box) differential responses,
and a scatter of a small subset of all the samplemean differen-
tial responses (dots) from the experiment are also indicated.
Our objective is to discover which genes are likely to have a
“positive differential response” falling outside of the box in
Figure 2. A very commonly used method is to simply apply a
threshold to the sample means to detect those who fall out-
side of the box in Figure 2 as positive responses. However, as
will be shown, this method does not account for statistical
sampling uncertainty and can lead to many false positives.

The objective can be stated mathematically as follows:
find a set of gene probes which satisfy the MAD constraint:
|µt(g)− ηt(g)| > fcmin for at least one t ∈ {1, . . . ,T}. Here,
the MAD constraint is quantified by the user-specified mini-
mummagnitude foldchange fcmin (expressed in log base 2).
Thus, we need to simultaneously test the G pairs of the two-
sided hypotheses

H0(g) :
∣∣µ1(g)− η1(g)

∣∣
≤ fcmin and, · · · , and ∣∣µT(g)− ηT(g)

∣∣
≤ fcmin,

H1(g) :
∣∣µ1(g)− η1(g)

∣∣
> fcmin or, · · · , or ∣∣µT(g)− ηT(g)

∣∣
> fcmin,

(1)

where g = 1, . . . ,G. Of course, when we must decide between
H0(g) and H1(g) based on a random sample, there will gen-
erally be decision errors in the form of false positives (decide
H1(g) when H0(g) is true) and false negatives (decide H0(g)
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Figure 2: Three-dimensional multicriteria space for knockout and
wild-type profiles over three-time points shown in Figure 1. The
three criteria are the differential probe responses at each time point.
A scatter plot of sample means of the differential responses along
with a box of edge length 2fcmin distinguishing biologically sig-
nificant responses (outside box) from biologically insignificant re-
sponses (inside box) is shown.

when H1(g) is true). For any test, the experimenter needs to
be able to control both its statistical and biological level of
significance. The statistical level of significance of the test is
specified by the false positive rate. In contrast, the biological
level of significance of the test is specified by fcmin.

There are three aspects to the hypothesis-testing problem
(1) which make it nonstandard:

(i) standard tests on differences in means, such as the
paired t test, treat any nonzero difference as significant,
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whereas (1) specifies that only differences exceeding
the specified MAD level of fcmin are significant;

(ii) a positive response (H1(g)) is described by multiple
criteria, here equal to the T magnitude log response
ratios at each point in time;

(iii) the G pairs of hypotheses must be tested simultane-
ously.

For the case G = T = 1, the first aspect can be treated by
applying methods for composite hypothesis testing such as
generalized likelihood ratio tests, unbiased tests, and CI test
procedures [22, 23]. When fcmin = 0, (ii) and (iii) can be
handled by applying a standard method, like paired t-test, to
(1) for each gene probe g, implemented with a multiplicity
error-correction factor, for example, Bonferroni, FWDR, or
FDR, [24]. However, such a repeated test of significance will
result in excessive false positives corresponding to small log
response ratios that are biologically insignificant (do not sat-
isfy the MAD constraint) but are statistically significant.

3. MULTICRITERIA GENE SCREENINGMETHOD

Define ξ(g) = [ξ1(g), . . . , ξT(g)] the true differential response
vector associated with gene probe g, where ξt(g) = µt(g) −
ηt(g). Given the DNAmicroarray data, our objective is to test
the G hypotheses (1) involving a total of P = GT unknown
parameters {ξ(g)}Gg=1.

Any test of (1) must test over multiple criteria {ξ
t
(g)}t

and multiple genes at a given level of biological significance
MAD = fcmin and a given level of statistical significance
max FDR = α. Unless fcmin = 0, this is a doubly composite
hypothesis-testing problem since the parameter values ξt are
not specified underH0 orH1. Due to the presence of multiple
criteria and multiple genes, this problem falls into the area of
multiple testing, simultaneous inference, and repeated tests
of significance [25, 26]. Two standard measures of statistical
significance of a test of (1) are its FWER and its FDR [25]. A
mathematically convenient notation for a test of (1) is φ(g),
which is called a test function, taking on values 0 or 1 de-
pending on whether the test declares H0 or H1 for probe g,
respectively. With �0 denoting the probes not having positive
responses, the FWER and FDR of a test φ can be mathemati-
cally defined as

FWER
(
�0
) = 1− E

[
ΠG

g=1
(
1− φ(g)

)
ψ�0 (g)

]
,

FDR
(
�0
) = E



∑G

g=1 φ(g)ψ�0 (g)∑G
g=1 φ(g)


, (2)

where E[Z] denotes statistical expectation of a random vari-
able Z and ψ�0 (g) is the indicator function of the set �0. In
words, the FWER is the probability that the test of all G pairs
of hypotheses (1) yields at least one false positive in the set
of declared positive responses. In contrast, the FDR is the av-
erage proportion of false positives in the set of declared pos-
itive responses. The FDR is dominated by the FWER and is
therefore a less stringentmeasure of significance. Both FWER
and FDR have been widely used for gene microarray analysis
[16, 17, 24, 27].

It is useful to contrast the FWER and FDR to the per-
comparison error rate (PCER). The PCER refers to the false
positive error rate incurred in testing a single pair of hypoth-
esisH0(g) versusH1(g) for a single gene, say, gene g = go, and
does not account for multiplicity of the hypotheses (1). The
PCER is the probability that random sampling errors would
have caused go to be erroneously selected, generating a false
positive, based on observing microarray responses for gene
go only. If an experimenter were only interested in deciding
on the biological significance of a single gene go, based only
on observing probes for that gene, then reporting PCER(go)
would be sufficient for another biologist to assess the statis-
tical significance of the experimenter’s statement that go ex-
hibits a positive response. In contrast to the PCER, FWER
and FDR communicate statistical significance of an experi-
menter’s finding of biological significance after observing all
gene responses. The FWER is the probability that there are
any false positives among the set of genes selected. On the
other hand, the FDR refers to the expected proportion of
false positives among the selected genes. The FDR is a less
stringent criterion than the FWER [25, 27, 28].

The FWER can be upper bounded as a function of
{PCER(g)}Gg=1 using Bonferroni-type methods [26] or it can
be computed empirically from the sample by resampling
methods [29]. The FDR can be computed by applying the
step-down procedure of Benjamini and Hochberg [25] to the
list of PCER P values over all genes. For a given g, the PCER P
value, denoted p(g), of a test φ is a function of themicroarray
measurements and is defined as the minimum value of PCER
for which H0(g) would be falsely rejected by the test. The set
of gene responses which pass the test φ at a specified FDR
can be simply determined after ordering the genes indices ac-
cording to increasing PCER P value p(g(1)) ≤ · · · ≤ p(g(G)).
Specifically, for a fixed value α ∈ [0, 1] of maximum accept-
able FDR, the FDR-constrained test will declare the following
set �1 of genes as positive responses [28]:

�1 =
{
g(1), . . . , g(K)

}
,

K = max
{
k : p

(
g(k)
) ≤ kα

Gν

}
.

(3)

In this expression, ν = 1 if the decisions φ(g) can be as-
sumed statistically independent over g = 1, . . . ,G, while
ν = 1/

∑G
k=1 k−1 without the independence assumption.

A test which controls a maximum level α of acceptable
FDR is said to be an FDR test of level α. We propose a test
φ of (1) at FDR level α and MAD level fcmin based on in-
tersecting simultaneous CIs on the T differences ξ(g) with
the unacceptable difference region [−fcmin, fcmin]. We will
specify a two-stage direct implementation and a single-stage
inverse implementation in the following subsections. First,
however, we recall some facts about simultaneous CIs.

Let θ be an unknown parameter, for example, a gene’s
foldchange ξ1(g) at time t = 1. A PCER (1−α)×100% CI on
θ is an interval I(α) = [a, b] with random data-dependent
endpoints that covers the true θ value, say θo, with probabil-
ity at least 1− α:
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P
(
a ≤ θo ≤ b | θ = θo

) ≥ 1− α. (4)

There is always a trade-off between confidence level 1−α and
precision (CI length) since the length b − a of I(α) generally
increases as α decreases. Let � be any subset of R. A PCER
CI on θ can be converted to a PCER level-α test of the hy-
potheses H0(g) : θ ∈ � versus H1(g) : θ �∈ � by the simple
procedure: “reject H0 if the (1− α)× 100% CI on θ does not
intersect �” [22].

Multiple parameters, θ1, . . . , θP , can be simultaneously
covered by FWER (1−α)×100% CIs {I p(1−(1−α)1/P)}Pp=1,
where I p(α) is a PCER (1 − α) × 100% CI on θp. Under
the assumption that each of the P PCER CIs are statistically
independent, the FWER intervals cover all the parameters
with probability at least 1 − α [26]. A less stringent set of
CIs {I p(α/P)}Pp=1, which can be applied to dependent sets of
PCER CIs, is guaranteed to cover at least (1− α)P of the un-
known parameters [26, 30]. When the number of P of pa-
rameters is random, as occurs when the number of parame-
ters results from some initial screening, the above methods
cannot be applied. It was for this situation that the FDR-
CI approach was developed [10]. If P is the result of initial
screening at an FDR level α of Q parameters having PCER-
CIs {I p(α)}Qp=1, then the FDR-CIs on the P parameters are
defined as {I p(Pα/Q)}Pp=1. The FDR-CIs are guaranteed to
cover at least (1− α)× 100% of the P unknown parameters.

Below, we give two equivalent FDR-CI procedures for
screening differentially expressed genes with FDR and MAD
constraints.

3.1. Direct two-stage screening procedure

Stage 1. Gene screening at MAD level 0 extracts a set of G1

genes �1 by testing (1) under the relaxed MAD constraint
fcmin = 0 using an FDR level-α test via the step-down pro-
cedure (3).

Stage 2. Gene screening at MAD level fcmin > 0 extracts
a set �2 of positive genes from those in �1 as follows. For
each gene g ∈ �1, construct T simultaneous CIs, denoted as
{Igt (α)}Tt=1, of FWER level (1 − α) × 100% on the true fold-
changes {µt(g)−ηt(g)}t=1. Convert these into (1−α)×100%
FDR-CIs by the method of Benjamini and Yekutieli [10]:
I
g
t (α) → I

g
t (G1α/G), t = 1, . . . ,T , g = 1, . . . ,G. Finally, define

the set of indices �2 of gene profiles having at least one-time
point, where the FDR-CI does not intersect [−fcmin, fcmin]:

�2=
{
g∈�1 :

(∪t=1,2,3 I
g
t

(
G1α/G

)∩[−fcmin, fcmin]
)=∅},

(5)

where∅ denotes the empty set. It follows from [10, Section
3.1] that the set �2 has FDR less than or equal to α at MAD
level fcmin.

3.2. Inverse screening procedure: FDR P values

In many practical situations, the experimenter may not be
comfortable in specifying a MAD or FDR criterion in ad-
vance. In these situations, it is more useful to solve the fol-
lowing “inverse problem:” what is the most stringent pair of

criteria (α, fcmin) that would lead to including a particular
gene among the positives �2? For fixed fcmin, the most strin-
gent (minimum) value α for which a gene would fall into �2

is called the FDR P value. The FDR P value for a gene go can
be computed by (1) computing the PCER P value sequence
{p(g)}Gg=1; (2) arranging the PCER P value sequence in an in-
creasing order p(g(1)) ≤ · · · ≤ p(g(G)); (3) finding the min-
imum value α = α(go) for which at least one of the PCER
CIs {Igot (α)}Tt=1 does not intersect [−fcmin, fcmin]; and (4)
computing the integer index

N
(
α
(
go
)) = G∑

k=1
I
(
p
(
g(k)
) k
G
≤ 1− (1− α

(
go
))T)

, (6)

where I(A) = 1 if statement A is true and I(A) = 0 oth-
erwise; the FDR P value of go is then simply p(gi), where
i = N(α(go)). Repeating this as go ranges over 1, . . . ,G gives
a sequence of FDR P values at MAD level fcmin that can be
thresholded to determine the set of positive genes �2 at any
desired FDR level of significance.

4. APPLICATION TO AWILD-TYPE VERSUS
KNOCKOUT EXPERIMENT

These experiments were performed to investigate the role
of a specific retinal transcription factor Nrl [31] in the de-
velopment of mouse retina. The retinal samples were taken
from four pairs (“biological replicates”) of wild-type and
knockout (Nrl deficient) mice [32] at three different time
points: postnatal day 2 (Pn2), postnatal day 10 (Pn10), and 2
months of age (M2). The samples were then hybridized to a
total of twenty-four MGU74Av2 Affymetrix GeneChips. The
log base 2 probe responses were extracted from Affymetrix
GeneChips using the robust microarray analysis (RMA)
package [33]. We denote the measured wild-type and knock-
out responses by Wt,m(g) and Kt,m(g), where m = 1, . . . ,M,
t = 1, . . . ,T , and g = 1, . . . ,G are microarray replicate, time,
and gene probe location on the microarray, respectively. For
this experiment, G = 12421, M = 4, and T = 3. To con-
struct CIs on foldchanges, we define the vector of paired t-
test statistics:

ξ̂(g) =
[∣∣W1(g)− K1(g)

∣∣
s1(g)/

√
M/2

,

∣∣W2(g)− K2(g)
∣∣

s2(g)/
√
M/2

,

∣∣W3(g)− K3(g)
∣∣

s3(g)/
√
M/2

]
,

(7)

where g = 1, . . . ,G. Here, Wt(g) = M−1∑M
m=1Wt,m(g) and

Kt(g) = M−1∑M
m=1 Kt,m(g) denote the sample mean of the

M replicates at time t for wild-type and knockout treatments,
respectively, and

s2t (g) =
(
2(M − 1)

)−1( M∑
m=1

(
Wt,m(g)−Wt(g)

)2

+
M∑

m=1

(
Kt,m(g)− Kt(g)

)2) (8)

denotes the pooled sample variance at time t.
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Table 2: Two stage FDR-CI algorithm for screening genes from the
knockout versus wild-type experiment.

Stage 1
Compute and sort PCER P values according to (9)
Select gene indices �1 according to (3)

Stage 2
Construct simultaneous PCER CIs using (10)
Select gene indices �2 according to (5)

For Stage 1 of the screening procedure, we consider
the simple and standard (see [26]) simultaneous test
of (1) at MAD level fcmin = 0: “decide H1(g) if
maxt=1,2,3(|Wt(g)− Kt(g)|/st(g)/

√
M/2) > fcmin.” Under

the large M approximation that the paired t test statistic has
a Student t distribution [34], and assuming time indepen-
dence of cells in the two-way layout of Table 1, we can easily
compute both the PCER P value for this test:

p(g) = 1− [2�2(M−1)
(
ξ̂(g)

)− 1
]3
, (9)

and simultaneous (1−α)×100% CIs, I
g
1 (α), I

g
2 (α), I

g
3 (α), for

the temporal foldchanges {µt(g)− ηt(g)}t=1,2,3 of gene g:

Wt(g)− Kt(g)− st(g)√
M/2�−1

2(M−1)

(
1− α

2

)

≤ µt(g)− ηt(g)

≤Wt(g)− Kt(g) +
st(g)√

M/2�−1
2(M−1)

(
1− α

2

)
,

(10)

t = 1, 2, 3. In the above inequality, �ν : R 
→ [0, 1] denotes
the Student t cumulative distribution function with ν degrees
of freedom and �−1

ν denotes its functional inverse, that is, the
Student t quantile function.

With the above expressions, we can find the set �1 of
gene indices which pass Stage 1 FDR screening by substitut-
ing the sorted PCER P values (9) into the step-down algo-
rithm (3). Stage 2 of screening selects gene indices accord-
ing to the FDR-CIs from (5). This direct two-stage screening
stage procedure is summarized in Table 2. Alternatively, the
inverse procedure of Section 3.2 can be implemented using
(9) and the explicit expression for the α(g) sequence

α(g) = 2


1−�2(M−1)


max

∣∣Wt(g)− Kt(g)
∣∣− fcmin

st(g)/
√
M/2




,
(11)

where g = 1, . . . ,G.

4.1. Experimental results

Figures 3 and 4 illustrate the direct and inverse implemen-
tations of the FDR-CI screening procedure. In Figure 3, the
direct screening procedure is constrained by MAD and FDR
criteria fcmin = 2.0 and α = 0.2, respectively. As there
are (T = 3)-time points and G = 12 421 genes, there are

GT = 37 263 parameters for which FDR-CIs are constructed.
A gene passes the screening if at least one of the three time
instants has an FDR-CI that does not intersect the interval
[−fcmin, fcmin]. The test is implemented by defining two
rank orderings of the FDR-CIs of the genes according to
(1) the FDR-CI with minimum upper boundary over the
three time points; and (2) the FDR-CI with maximum lower
boundary over the time points. Figures 3a and 3b show rele-
vant segments of these two ordered sequences of CIs. Screen-
ing all genes with maximum lower endpoints > fcmin and
minimum upper endpoints < −fcmin generates the set of de-
clared positive genes �2.

Figure 4 illustrates the inverse procedure specified in
Section 3.2 for screening differentially expressed genes. First,
the FDR P values are computed for each gene at several MAD
levels of interest. For each MAD level fcmin, we plot the or-
dered FDR P values. These can be plotted on the same gene
index axis since the induced gene ordering is independent
of MAD level. FDR P value curves for four different lev-
els of fcmin are illustrated in Figure 4. The figure also il-
lustrates how for FDR and MAD constraints α = 0.2 and
fcmin = 0.32, respectively, the G2 positive responses �2 can
be extracted from the FDR P value curve by thresholding.
Notice that for fixed α, the size G2 decreases rapidly as the
MAD criterion becomes more stringent, that is, as fcmin in-
creases.

Figure 5 shows nine of the top ranked (in FDR P value)
differentially expressed gene profiles in (log base 2 scale)
among the 59 genes selected by either the direct or inverse
implementations of the FDR-CI screening procedure. In the
figure, the level of significance constraint is FDR ≤ α = 0.2
and the minimum foldchange constraint is MAD > fcmin =
1.0.

In Table 3, we compare the performance of the proposed
screening algorithm, labeled “Two-stage FDR-CI,” to two
other algorithms, called “Thresholded FDR” and “Thresh-
olded RMA.” All three algorithms aim to control MAD at
a level of fcmin = 1.0 (log base 2). The “Two-stage FDR-
CI” and “Thresholded FDR” algorithms aim to control FDR
at a level of α = 0.2 in addition to MAD. Both of these
latter algorithms were implemented as two-stage algorithms
with common Stage 1, which is to select the gene responses
g ∈ �1 that pass the paired-t test of hypotheses (1) with
fcmin = 0 at a FDR level of 20%. The second stage of
the “Two-stage FDR-CI” algorithm selects �2 as a subset of
�1 at the prescribed FDR-CI level of 20%. Stage 2 of the
“Thresholded FDR” algorithm simply selects the subset of
genes g ∈ �1 having at least one sample mean foldchange
exceeding fcmin = 1.0, that is, it implements the following
filter:

max
t=1,2,3

∣∣Wt(g)− Kt(g)
∣∣ > 1.0 (12)

on probes g ∈ �1. The single-stage “Thresholded RMA” al-
gorithm, a nonstatistical method commonly used in many
microarray studies, implements the filter (12) on the re-
sponses of each g in the original set of 12 421 genes as in-
dicated in Figure 2.
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Figure 3: Segments of upper and lower curves specifying the 80% FDR-CI on the foldchanges {µt(g)− ηt(g)}t=1,2,3 for the knockout versus
wild-type study. Upper and lower curves in each figure sweep out FDR-CI upper and lower boundaries on foldchange for all genes (indexed
by probe set number). In (a) the curves sweep out the sequence of FDR-CIs indexed in an increasing order of the (maximum) lower CI
boundary and in (b) the ordering is in an increasing order of the (minimum) upper CI boundary. Only those genes whose three FDR-CIs
do not intersect [−fcmin, fcmin] are selected by the second stage of screening. When the MAD foldchange criterion is fcmin = 2.0 (1.0 in
log base 2), these genes are obtained by thresholding the curves as indicated.
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The number of screened and discovered genes for the
three algorithms is indicated in the first two columns of
Table 3. The maximum and median of the FDR P values

of the discovered genes is indicated in the third and fourth
columns for each algorithm. The last column indicates the
maximum length of the FDR-CIs on foldchanges of the dis-
covered genes. We conclude from Table 3 that the proposed
“Two-stage FDR-CI” algorithm outperforms the other algo-
rithms in terms of (1) maintaining the FDR requirement that
false positives do not exceed 20% (column 4); (2) ensuring
a substantially lower median FDR P value than the others
(column 5); (3) discovering genes that have tighter (on the
average) CIs on biologically significant (> 1.0) foldchange
(column 6).

5. CONCLUSION

Signal processing for analysis of DNA microarrays for gene
expression profiling is a rapidly growing area and there are
enough challenges to keep the community busy for years.
It is essential that signal processing methods be relevant
and capture the biological aims of the experimenter. To
this aim, in this paper, we developed a flexible multicrite-
ria approach to gene selection and ranking for screening
differentially expressed gene profiles. The proposed crite-
ria capture the gene expression differences at multiple time
points, account for minimum acceptable foldchange con-
straints, and control false discovery rate. In many cases, bi-
ological significance requires minimum hybridization levels,
for example, as implemented by Affymetrix in their “absent
calls” for weakly expressed genes. This can be easily cap-
tured by incorporating an addition criterion, the minimum
acceptable mean expression level, into our multicriteria ap-
proach.
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Table 3: Performance comparison of three algorithms for selecting genes with magnitude (log base 2) foldchange > 1.0. Thresholded RMA
and Thresholded FDR are significantly worse in terms of statistical significance (P value) than the proposed Two-stage FDR-CI algorithm
(columns 4 and 5). Furthermore, the average length of the CIs on foldchanges of the discovered genes are shorter for the Two-Stage FDR-CI
algorithm than for the other algorithms (column 6).

# Screened # Discovered Max(Pv) Median(Pv) Avg(FDR-CI length)

Thresholded RMA 12, 421 159 1.0 0.80 1.52

Thresholded FDR 303 127 1.0 0.31 1.17

Two-stage FDR-CI 303 59 0.19 0.02 1.09
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Figure 5: Gene profiles of nine of the differentially expressed genes discovered using the proposed two-stage FDR-CI procedure with con-
straints on level of significance α = 0.2 and minimum foldchange fcmin = 1.0. Knockout “◦” and Wildtype “∗” are as indicated, and the
numbers on each panel denote gene indices (related to the positions of the gene probes on the microarray).
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