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A digital method of calculating the radar backscattering diagrams is presented. The method uses a digital model of an arbitrary
scattering object in the 3D graphics package “OpenGL” and calculates the backscattered signal in the physical optics approxima-
tion. The backscattering diagram is constructed by means of rotating the object model around the radar-target line.
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1. INTRODUCTION

The task, which represents a constant interest in radioloca-
tion, is constructing a scattering diagram of an object illu-
minated by a radar. This task has been resolved more than
once by the accurate mathematical methods of electrody-
namics [1, 2, 3], by experimental modeling of the radar sys-
tems [4, 5], by digital modeling of irradiated objects as com-
bination of elements with known backscattering diagrams
(such as pieces of the flat plates) [6, 7, 8, 9, 10]. The various
methods for electromagnetic field modeling are comprehen-
sively summarized in [11]. A review of generalized moment
methods in the differential equations of electromagnetics is
given in [12].

At present, the first method widely uses the numerical
solution of the problem. Digital electromagnetics simulation
allows accurate modeling of physical systems in combination
with an accurate numerical solution of either differential or
integral formulations of Maxwell’s equations. This compu-
tational electromagnetics can be applied to many practical
engineering problems, for example, antenna design, calcu-
lation, backscattering diagrams, targets recognition, and so
forth. However, the accurate analysis and synthesis of com-
plex electromagnetic systems have remained beyond the lim-
its of computer capabilities up to now.

The most reliable approach has always been a method of
natural modeling. It means that the model of object, con-
structed of real metallic or other materials, is irradiated by
a real radar transmitter, and a real radar receiver gets the
scattered signals. In this case, the very important thing is to
keep the necessary proportions between the irradiated wave-
length, the sizes of the object model, and the distance be-

tween the radar and the object. These conditions are not al-
ways feasible. Besides, the natural and analog modeling are
rather expensive and available for big organizations such as
the White Sands Missile Range (WSMR), which possesses a
highly specialized range instrumentation, technical laborato-
ries, and facilities to support the continuing testing of NASA
foreign and commercial systems. The modeling capabilities
of the complex include tools for performing electromagnetic
analysis, simulating electromagnetic wave propagation, and
calculating antenna patterns. By the way, NASA publishes
data of experimental measurements of radar cross sections
for different shapes of radar targets [13].

Another and one of the most economical methods is
modeling objects as the combination of elements such as
pieces of the flat plates [8, 9, 10, 14]. In [8], this model-
ing is used for simulating aircrafts and is performed in two
steps. First, digital models are generated by the aircraft sim-
ulator tool. It provides information about the real shape and
dimension of an aircraft. Aircraft surfaces are described by
means of the following geometrical primitives: cylinder, frus-
tum of cone, parallelepipeds, dihedral, and trihedral. Then
this model (file description) is used to perform the second
step of the model: a flat plates description of the aircraft. It
uses three-dimensional (3D) representation and each small
flat plate is characterized by its position and orientation with
respect to the aircraft reference system. Each flat plate is an
elementary scattering center that provides contribution to
the signal echo received by radar. Physical optics theory of
backscattering is used in order to simulate real signal. Al-
though this approach can be realized by modern computers,
it demands hard programmer efforts to construct every new
object model. Recently, attempts have been made to apply
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the element approach to curved patches [15] although most
of the works employ flat piecewise representation.

In this article, the method which represents the digital
modeling of an object with the use of 3D graphics pack-
age “OpenGL” is proposed. This method simulates a scalar
electromagnetic radiation of the object, but this task may be
modeled also in the case of the polarized irradiation.

2. THE FORMULA DESCRIPTION OF
THE SCATTERED SIGNAL

In the approximation of physical optics, the complex ampli-
tude of a signal, reflected by a target and received by the radar

position, disposed in the point �R0, can be described by the
Kirchhoff integral [16, 17, 18]. An approximate derivation
of the Kirchhoff integral theorem is given in the appendix.
If the locations of the transmitter and the receiver coincide
(�R0 = �R1), the complex amplitude of the received signal can
be described by the formula (up to a constant complex mul-
tiplier)
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Here δ(x) is the delta function, �r is the coordinate vector of
the point of the object,

F
(
�r
) = 0 (2a)

is the equation of the surface of object,

η(x) =


x, if x � 0,

0, if x < 0,
(2b)

A0 is the complex amplitude of the radar irradiation, |�r − �R0|
is the distance from the point �r to the point of the radar po-

sition �R0, λ is the length of the wave of the radar irradiation,
and �n(�r ) is the vector of the exterior normal to the surface
of the object in the point �r. For the visible part of object

−�n(�r ) · ((�r − �R0)/|�r − �R0|) > 0 always.
If we could model the integral (1) in the various aspects

of an object to the radar, we would get the scattering diagram
of the object illuminated by the radar with wavelength λ.

3. DESCRIPTION OF THEMODEL

Practically, any 3D object can be modeled in the package
OpenGL. This package allows to build spheres, cylinders,
cones, prisms, polygons, and lines. Most complex objects can
be constructed of all these elements. The every point of the
surface of the constructed object has a 3D description in the

Computer
screen

Radar
position

Target
imitator

Figure 1: The whole scene of the model.

package: a two-dimensional (2D) position of the point on the
computer screen (X ,Y) and the distance of the point to the
screen (Z coordinate). The object can be rotated relatively in
any point in the space in an arbitrary way. It can be irradiated
by the source of illumination disposed in an arbitrary space
point. All these program properties permit to exactly simu-
late the radar system practically. And this package is suitable
enough for calculating the backscattering diagram of the ob-
jects with various shapes. The calculation procedure is as fol-
lows.

(1) The object is placed on the screen plane and the radar
irradiates the object in the direction perpendicular to
the screen.

The irradiating scene and the model elements are shown
in Figure 1. The position of the center mass of the object will
be designed as �r0, and this point �r0 lies in the screen (in the
center of the window which is to be processed). For each real
point of the object�r, we will introduce the screen coordinates

�r ′ = �r −�r0. (2c)

(2) Every point of the object �r ′, visible in the screen, has
coordinates (X ,Y) in the screen and coordinate Z (its
distance from the screen).

(3) Every point of the object�r ′, disposed on its surface and
visible in the screen, gives a complex scattered ampli-

tude A(�r ′) in the point of radar �R0:
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(3)

where all designations of the values are the same as in
(1), (2b), and (2c).
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In the process of modeling, we will suppose the vector

�r − �R0 as follows:

�r0 − �R0 =
∣∣∣�r0 − �R0

∣∣∣�e, (4)

where�e = (0, 0, 1) is the normalized vector of the direction of
the radar irradiation, directed perpendicularly to the screen.

The multiplier −�n(�r ′) · ((�r0 − �R0)/|�r0 − �R0|) is created
automatically in the process of the 3D object modeling, as the
packageOpenGL simulates 3D objects and takes into account
the direction of light source irradiation. So, we can get the
value of intensity E(X ,Y) of the screen pixel with the screen
coordinates (X ,Y):

E(X ,Y) = −�n(�r ′) ·
(
�r0 − �R0

)
∣∣∣�r0 − �R0

∣∣∣ . (5)

For getting the visible part of the surface, the package calcu-
lates only values E(X ,Y) > 0. If the object is disposed in a far
zone, the condition is true:

∣∣�r −�r0∣∣ = ∣∣�r ′∣∣�
∣∣∣�r0 − �R0

∣∣∣, (6)

and we can write the distance of each point to the radar as
follows:

∣∣∣�r − �R0

∣∣∣ =
∣∣∣�r ′ +�r0 − �R0

∣∣∣ ≈ Z0 + Z. (7)

Here Z0 = |�r0 − �R0| is the distance from the screen to the
radar and Z is the distance of the point to the screen. So (3)
can be rewritten as follows:
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(4) We must summarize all the amplitudes (8) over the
whole visible and illuminated part of the object sur-
face to get the whole signal received by the radar from
the range Z:
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In (9), the function δ(Zi,Z) is as follows:

δ
(
Zi,Z

) =
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
1, if Zi = Z,

0, if Zi �= Z,
(10)

Zi is the distance from the screen of the pixel with the
screen coordinates Xi, Yi and I is the whole summa-
rized number of pixels in the visible part of the object
surface.

(5) To get the signal S0 received by the radar, we have
to summarize the signals (9) over all the band of the
range values and calculate the total amplitude:

S0 =

√√√√√
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S
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2

, (11)

whereM is the whole number of the discrete ranges in
the band of ranges.

(6) Notice that the signal S0 is the function of the angles of
the object rotation relative to the radar, that is,

S0 = S̃0(α,β, γ), (12)

where α, β, and γ are the angles of rotation around axes
Y , X , and Z, correspondingly. If the object is an axis-
symmetrical body, then expression (12) is the function
of the single angle α between the axis of symmetry and
direction �e (formula (4)) to the radar:

S0 = S̃0(α). (13)

In this case, the construction of the scattering diagram
leads to the calculation of all the meanings (13) over
the whole range of values α. And this sequence is the
scattering diagram.

4. THE RESULTS OF THE DIGITALMODELING

The process of calculations consists of the following opera-
tions:

(1) rotating the object around the vertical axis Y at the an-
gle α. In all the figures, the axis Y is directed from the
bottom to top;

(2) calculating the complex signal (8) from each pixel of
the screen belonging to the visible part of the object;

(3) summarizing these signals from the pixels lying at the
same distance Z from the screen by formula (9). As
a result, we get a coherent complex wideband signal
from the object;

(4) accumulating signals of all ranges and calculating the
amplitude of the signal by formula (11);

(5) recording the diagram for value α;
(6) calculating the new angle α for the new object aspect;
(7) transfering to the point of calculations (1).

The results of modeling are shown in Figures 2, 3, 4, 5, 6, and
7 for the sphere, cylinder, cone, and object representing the
combination of the cone and cylinder.

In all the figures, the relative position of the object to the
screen (just the same as to the radar) is shown at the moment
of getting the current point of the diagram. The graphic of
the diagram is being drawn moving with a discrete of angle
α equal to delα = 0.5◦ (Figures 2, 3, 4, 5, 6, and 7).

The initial angle α = 45◦ in all the figures and the mean-
ings of α are decreasing (rotating over y-axis in the clockwise
direction).

It is necessary to notice that all the dimensions of objects,
pointed below, were used in the process of calculations, but
these dimensions are not exactly supported in Figures 2, 3, 4,
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Figure 2: The whole scattering diagram of the sphere (45◦ ÷ 45◦ −
360◦).

Fi = 270
Fi = 180

Fi = 0
Fi = 90

Figure 3: The whole scattering diagram of the cylinder (45◦ ÷45◦ −
360◦).

Fi = 197

Fi = 270

Fi = 343

Fi = 90

Figure 4: The whole scattering diagram of the cone (45◦ ÷ 45◦ −
360◦).

Fi = 180

Fi = 197

Fi = 270

Fi = 343

Fi = 0

Fi = 90

Figure 5: The whole scattering diagram of the cone-cylinder com-
position (45◦ ÷ 45◦ − 360◦).

Figure 6: Signal in the direction of the normal to the surface of
cylinder in the cone-cylinder composition.

Figure 7: Signal from the bottom of the cylinder in the cone-
cylinder composition.
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5, 6, and 7. Some of the objects are increased in sizes for the
better visualization of the figures.

In Figures 3, 4, and 5, the angle values Fi are shown,
which are equal to the corresponding value of angle α at the
moment.

All the calculations have been performed in the windows
with the dimension of 360 × 360 pixels in Figures 2, 3, and
4, and in Figures 5, 6, and 7 in the window with the size of
400×400 pixels. The width of the single pixel was taken equal
to λ/15.0 in all the calculations.

Figure 2 shows the diagram from the sphere, which is
constructed by 32 vertical slices. The radius of the sphere is
equal to 50 pixels. Figure 2 shows the whole diagram when
angle α becomes equal to α = 45◦ − 360◦ and the sphere is
turned at the angle of −360◦.

From Figure 2, it is seen that the signal repeats itself 32
times round the y-axis. It matches the reflection from the 32
identical slices. If the number of slices streams to infinity, the
sphere will be entirely smooth and its signal will be the same
in all the directions.

Figure 3 shows the diagram of a cylinder. The cylinder is
200 pixels long and it has radius of 30 pixels. As the cylinder is
an axis-symmetrical body, all the diagram is symmetrical rel-
ative to the main maximum. This maximum is received from
the lateral surface of the cylinder as the lateral surface has
the maximal radar cross section (in this example). This max-
imum is the narrowest among the others because the height
of the cylinder is approximately 3 times more than the diam-
eter of the bottom.

Two maximums of the second magnitude are produced
by the bottom of the cylinder.

In Figure 3, the cylinder is turned to the angle of −360◦
from its start angle position α = 45◦.

Figure 4 shows the diagram of a cone. The cone is 100
pixels long and has a bottom radius of 30 pixels. As the cone
is an axis-symmetrical body, all the diagram is symmetrical
relative to the main maximum. This maximum is received
from the bottom of the cone, as the bottom has the maximal
radar cross section (in this example). This maximum is the
widest among the others because the diameter of the bottom
is ∼1.7 times less than the height of the cone.

Two maximums of the second magnitude are produced
by the flank of the cone when the direction to the radar re-
ceiver has the perpendicular angle to the flank surface of the
cone. At this moment, α becomes equal to α = β, where 2β is
an angle at the top of the cone and β = arctg(0.3) ≈ 17◦, and
the cone is turned at the angle of β − 45◦ = −28◦.

The two more small maximums of the diagram are ob-
tained when the visible part of the cone has the largest sur-
face, but the normal is not directed to the radar receiver.

At last, the smallest maximum is provided by the nose of
the cone from the direction opposite to the direction of the
main maximum.

In Figure 4, the cone is turned to the angle of−360◦ from
its start angle position α = 45◦. Figures 5, 6, and 7 show the
diagram from a cone plus a cylinder composition. The cylin-
der is 200 pixels long and has a radius of 30 pixels. The cone
is 100 pixels long and has a bottom radius of 30 pixels. The
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Figure 8: The scattering diagram of the cone-cylinder composition
obtained by the method of flat plates.
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Figure 9: The scattering diagram of the cone-cylinder composition
obtained by using OpenGL package.

composition is also the axis-symmetrical body and all the di-
agram (Figure 4) is symmetrical relative to the maximum re-
ceived from the bottom of the cylinder.

The main maximum is given by the lateral surface of the
composition at the moment when the direction to the radar
receiver has the perpendicular angle to the lateral surface of
the cylinder. All the construction has themaximal radar cross
section in this aspect. This maximum is the narrowest among
the others as the length of the construction is more than the
diameter of the cylinder bottom.

Two maximums of the second magnitude are produced
by the flank of the cone when the direction to the radar re-
ceiver has the perpendicular angle to the flank surface of the
cone. The central maximum is provided by the bottom of the
cylinder.

Figure 5 shows the whole diagram when angle α becomes
equal to 45◦−360◦ and the construction is turned at the angle
of −360◦.

Figures 6 and 7 are given as an illustration of process-
ing the diagrams. The drawings of the diagrams built until
the moment and the aspect of the construction at the mo-
ment are shown. Figure 6 shows the maximum of the dia-
gram from the lateral side of the cylinder when the direction
to the radar receiver has the perpendicular angle to the lateral
surface of the cylinder. At this moment, α becomes equal to
0◦ and the whole construction is turned at the angle of−45◦.

Figure 7 shows the maximum of the diagram from the
bottom of the cylinder.

Analysis of Figure 5 shows a good coincidence with ana-
logue results obtained in [19] for analogue composition. In
Figure 8, a diagram is shown, which was obtained by the
method of flat plates for the cone-cylinder combination in
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[19]. Correspondingly, in Figure 9, the diagram of cone-
cylinder (Figure 5) is unrolled in the angle space. The posi-
tions of maximums from the flank surface of the cone are
different because the cone in Figure 8 has the angle at its
top equal to 40◦, and in Figure 9, it is equal to 34◦. A ratio
λ/Dim, where Dim is a size of the whole object, is higher
in Figure 8. That is why all the lobes in Figure 8 are wider
than in Figure 9. The diagram in Figure 8 is given in dB/m2;
in other words, it is normalized to the cross section, and in
Figure 9, it is given simply in logarithmic scale. But the whole
pattern of the diagrams is the same.

There is a need to say that accurate building of diagrams
with thorough drawing all the side lobes is achievable only
when the ratio of each pixel width to the wave lambda λ
is small enough. In the calculations of the paper, this ra-
tio was taken equal to 1/15. So the accurate calculation of
the large objects diagrams will demand the displays of large
sizes.

5. DISCUSSION

The digital modeling of the physical optics integral (1) by
the 3D graphics methods gives results (Figures 2, 3, 4, 5, 6,
and 7) rather close to those obtained by the methods of flat
places [19]. The described approach seems to be much less
labor-intensive because it uses the ready-made 3D model of
the object, and the algorithm only substitutes the coordinates
and intensity of the screen pixels into the sum (9).

Using the flat places, approximation includes both the
construction of an object and the calculation of (1). The
whole volume of the works using this method can be es-
timated from [8, 9]. Some steps have to be made: the first
step is the definition of the whole set of the object flat plates;
the next one is the analysis of elementary flat plates visible
from the radar, and the calculation of the radar cross sec-
tion of each scattering center of the object as function of
flat plate orientation and position. After this, the complex
echo signal received from each center and the total power
of the echo signal for each radar resolution cell are calcu-
lated.

As it has been previously mentioned, the nature model-
ing may appear to be expensive or not available in the condi-
tions of the theoretical laboratories.

As for the method of building backscattering diagrams
by means of numerical solutions of Maxwell’s equations, it
should be mentioned that the equations are usually digi-
tized with the help of a set of known expansion functions.
This leads to a linear system of equations with N unknowns,
where N is the number of expansion functions. In this case,
the computer requirements are at least proportional to N2

in terms of both computer time and memory. Since N may
be very large, these requirements are beyond the capabili-
ties of today’s computers (e.g., 76GB RAM if N = 100.000)
[20, 21].

To resolve the problem, researchers have developed the
fast multipole method (FMM) and the multilevel fast mul-
tipole algorithm (MLFMA) [22, 23, 24]. It has been demon-
strated that, using this MLFMA procedure, the calculations

can be performed with order N logN complexity. Addition-
ally, improved MLFMA approach is developed in [25]. This
approach is more efficient computationally, especially as the
number of N increases.

In the presented method of modeling, the main compu-
tational requirements are imposed on the speed of reading
pixels from the screen, in other words, on the speed of per-
forming the OpenGL functions. The whole diagram of 720
points with reading all the pixels in the window of 400× 400
pixels was calculated in 4.5 minutes at the computer with
256MB RAM and 1300MHz clock rate.

By the way, the method calculates the wideband signal in
the process of building diagram (formula (9)), which can be
used in a lot of radar simulation software.

So the presented results allow to draw a conclusion that
the digital modeling of object with the use of 3D graphics
package OpenGL gives opportunity of simulating electro-
magnetic radiation of the object. This method can reduce
the workload of radar data simulation by using 3D graphics
package constructed by many compilers. This method can be
used by researchers who have no radar data simulation soft-
ware.

The algorithm, proposed in this article, requires the pre-
sentation of the object with the dimensions of pixels much
less than the length of wave λ for the proper working. It is
only the serious restriction on the method because a large
object consists of large number of pixels and it will enlarge
the time of calculations and will require a big display.

APPENDIX

The Fresnel-Kirchhoff approximation to diffraction is well
known [16, 17, 18]. It is Fresnel diffraction principle that
states that every unobstructed point of a wavefront, at a given
instant time, serves as a source of spherical secondary waves
(with the same frequency as that of the primary wave). The
amplitude of the field at any point beyond is the superpo-
sition of all these waves (considering their amplitudes and
phases). This rather hypothetical principle has been later on
developed in a more rigorous way by Kirchhoff, who proved
that it can be derived from the scalar diffraction theory.

Consider a radar transmitter and a receiving position dis-

posed in the points �R0 and �R1, respectively.
The electromagnetic field at the receiver is a solution of

the wave equation

∇2P = 1
c2

∂2P

∂t2
. (A.1)

We can express the solution in the form P(t, �R) = P̃(�R )e jkct
(where c is the light speed, k = 2π/λ is the wave number,
λ is the wavelength, ω = kc). Substituting this in the wave
equation, we obtain the Helmoltz equation:

∇2P̃ + k2P̃ = 0. (A.2)

Solving this equation with the help of Green’s theorem leads

to an expression of the field at point �R1 of the receiver in
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terms of the field and its gradient assigned on an arbitrary

scattering surface S enclosing �R1:
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(A.3)

which is known as the Kirchhoff integral theorem.
In (A.3), �r designates the coordinates of the surface S

point, dS is the differential of the surface, and∇�n(�r ) f (�r ) des-
ignates the gradient of f (�r ) along the normal �n(�r ) to the
surface S in the point�r. The boundary conditions P̃(�r )|S and
∇�n(�r )P̃(�r )|S can be chosen as the values of the primary spher-
ical wave irradiated by the transmitter and its gradient pro-
jections to the vector �n(�r ), respectively.

The primary radiated spherical wave in the surface point
�r has the form

P
(
t,�r
) = A∣∣∣�r − �R0

∣∣∣ e
j(ωt−k|�r−�R0|) = P̃

(
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e jωt, (A.4)

where
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− jk|�r−�R0|, (A.5)

|�r − �R0| is the distance from the transmitter in the point �R0

to the point of the surface �r, and A is the wave amplitude at
the unit distance from the transmitter.

By direct calculations of (A.3), we can obtain the expres-

sion for the field in the point of observation �R1:
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Here�e0(�r ) and�e1(�r ) are the normalized vectors of view from
the transmitter and the receiver, respectively,

�e0
(
�r
) = �r − �R0∣∣∣�r − �R0

∣∣∣ , �e1
(
�r
) = �r − �R1∣∣∣�r − �R1

∣∣∣ . (A.7)

Neglecting the small terms of the values 1/|�r − �R0| and

1/|�r − �R1|, we can write the final expression for the received

field:

P̃
(
�R1

)

= jkA

4π
·
∫
S

e− jk(|�r−�R1|+|�r−�R0|)∣∣∣�r − �R1

∣∣∣∣∣∣�r − �R0

∣∣∣�n
(
�r
) · (�e0(�r ) +�e1(�r ))dS.

(A.8)
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