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Multiple-input and multiple-output (MIMO) systems formed by multiple transmit and receive antennas can improve perfor-
mance and increase capacity of wireless communication systems. Diagonal Bell Laboratories Layered Space-Time (D-BLAST)
structure offers a low-complexity solution for realizing the attractive capacity of MIMO systems. However, for broadband wireless
communications, channel is frequency-selective and orthogonal frequency division multiplexing (OFDM) has to be used with
MIMO techniques to reduce system complexity. In this paper, we investigate D-BLAST for MIMO-OFDM systems. We develop
a layerwise channel estimation algorithm which is robust to channel variation by exploiting the characteristic of the D-BLAST
structure. Further improvement is made by subspace tracking to considerably reduce the error floor. Simulation results show that
the layerwise estimators require 1 dB less signal-to-noise ratio (SNR) than the traditional blockwise estimator for a word error
rate (WER) of 1072 when Doppler frequency is 40 Hz. Among the layerwise estimators, the subspace-tracking estimator provides
a 0.8 dB gain for 10~2 WER with 200 Hz Doppler frequency compared with the DFT-based estimator.
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selective fading wireless channels. As in [3], when combining

Multiple-input and multiple-output (MIMO) systems
formed by multiple transmit and receive antennas are under
intense research recently for its attractive potential to offer
great capacity increase. Space-time coding, proposed in [1],
performs channel coding across the space and time to exploit
the spatial diversity offered by MIMO systems to increase
system capacity. However, the decoding complexity of the
space-time codes is exponentially increased with the number
of transmit antennas, which makes it hard to implement
real-time decoding as the number of antennas grows. To
reduce the complexity of space-time based MIMO systems,
diagonal Bell Laboratories layered space-time (D-BLAST)
architecture has been proposed in [2]. Rather than try to op-
timize channel coding scheme, in D-BLAST architecture, the
input data stream is divided into several substreams. Each
substream is encoded independently using one-dimensional
coding and the association of output stream with transmit
antennas is periodically cycled to explore spatial diversity.
Orthogonal frequency division multiplexing (OFDM)
systems have the desirable immunity to intersymbol interfer-
ence (ISI) caused by delay spread of wireless channels. There-
fore, the combination of D-BLAST with OFDM is an attrac-
tive technique for high-speed transmission over frequency-

D-BLAST structure with OFDM, we implement the space-
time structure in space-frequency domain to avoid decoding
delay. To decode each layer, channel parameters are used to
cancel interference from detected signals and suppress inter-
ference from undetected signals to make the desired signal as
“clean” as possible. Therefore, estimation of channel param-
eters is a prerequisite for realizing D-BLAST structure and
to a great extent determines system performance. In this pa-
per, we investigate D-BLAST OFDM systems and address the
channel estimation problem.

DFT-based least-square (LS) channel estimation for
MIMO-OFDM systems and simplified estimation algorithm
using parallel interference cancellation have been addressed
in [4, 5], respectively. For D-BLAST OFDM, we propose a
layerwise LS channel estimator that exploits the characteris-
tics of the system structure by updating channel parameters
after each layer is detected so that later layers in the same
OFDM block can be detected with more accurate channel
state information.

In spite of low complexity of DFT-based channel esti-
mators, there is leakage when the multipaths are not ex-
actly sample spaced [6], which induces an error floor for
channel estimation. To reduce the error floor of DFT-based
algorithm and increase estimation accuracy, more taps have
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to be used. Consequently, the estimation problem becomes
ill-conditioned and noise may be enhanced. To improve the
channel estimation accuracy for D-BLAST OFDM, we use
optimum training sequences in [5, 7] not only for initial
channel estimation but also for tracking channel autocorre-
lation matrix and then its dominant eigenvectors. The resul-
tant eigenvectors are then used to form a transform which
requires fewer taps to be estimated and reduces the error
floor. The low-rank adaptive filter 1 (LORAF 1) in [8] is used
for subspace tracking. For both proposed estimators, further
refinement can be achieved by a robust filter [9] to exploit
time-domain correlation.

The rest of this paper is organized as follows. In Section 2,
we introduce D-BLAST OFDM systems. Then, in Section 3,
we derive a layerwise LS channel estimator and analyze the
mean square error (MSE) performance. Next, in Section 4,
we propose an improved channel estimator based on sub-
space tracking. In Section 5, we evaluate the performance of
a D-BLAST OFDM system with different channel estimation
algorithms by computer simulation and major results of the
paper are summarized in Section 6.

2. D-BLAST OFDM SYSTEM

Before introducing the channel estimation algorithm, we
briefly describe D-BLAST for MIMO-OFDM in this section.

The complex baseband representation of a delay spread
channel can be expressed as [10]

h(t,7) = > a(t)A(r - ), (1)
1

where o;(t)’s are wide-sense stationary narrowband com-
plex Gaussian processes and are assumed to be independent
among different paths. The channel may vary from block to
block but stays the same within each OFDM block, which
means that the effect of intercarrier interference (ICI) is not
considered. Moreover, we assume the same normalized time-
domain correlation function for all paths, that is,

ofri(At), 1=m,

0, I+ m. )

E{ay(t+ At)af (1)} = {

Without loss of generality, we assume the total average power
of the channel impulse response to be unity, that is,

Zo,z =1 (3)
]

For a MIMO-OFDM system with N; transmit and N, re-
ceive antennas (N, > Ny), the received signal at the kth sub-
carrier of the nth block from the jth receive antenna can be
expressed as

N;
xj[n,k] = > Hij[n, k]bi[n,k] + wj[n, k], (4)

i=1
forj =1,...,N,and k = 0,...,K — 1, where K is the total
number of subcarriers of OFDM, b;[n, k] is the symbol trans-
mitted from the ith transmit antenna at the kth subcarrier of

the nth block, H;;[n, k] is the channel’s frequency response at
the kth subcarrier of the nth block corresponding to the ith
transmit and the jth receive antenna, and w; [, k| is additive
(complex) Gaussian noise that is assumed to be independent
and identically distributed (i.i.d.) with zero-mean and vari-

ance p.
Equation (4) can also be written in matrix form as
x[n, k] = H[n,k]b[n, k] + w(n, k], (5)
where
x1[n, k]
x[n, k] = : »
xn, [, k]
Hy[n,k] Hal[n k] --- Hyaln k]
Hy[n, k] Hxnln,k] --- Hyaln k]
Hin, k] = . . . ,
Hin, [n, k] - Hyn, [n, k] (6)
bi[n, k]
b(n, k] = : ,
by, [n, k]
wi[n, k]
win, k] =
wn, [1, k]

D-BLAST is an effective MIMO technique [2] that has
been originally developed for a single-carrier system with flat
fading channel. In this paper, we will use this technique for
a MIMO-OFDM system, which can be shown in Figure 1.
From the figure, the set of all subcarriers in an OFDM block
is divided into N; subsets, each with L = K/N; subcarriers.
Each layer, composed of N; such subsets associated with dif-
ferent transmit antennas, is encoded and decoded indepen-
dently. Note that each layer still has K subcarriers, but dif-
ferent subcarriers may be associated with different transmit
antennas. Layers starting at block n are denoted as L,[n],
p = 1,2,...,N;. With some abuse of notations, k is both the
subcarrier index and the symbol index for each layer. Given
the structure of D-BLAST OFDM, the received signal at each
receive antenna is the superposition of the desired signal, the
signals already detected in the previous layers, and those un-
detected.

The signal detection of D-BLAST MIMO-OFDM is also
very similar to the original D-BLAST. Assume that layer
Ly[n], p = 1,2,..., Ny, is to be detected. From (4) we have

xj[gp(n, k), k] = Hy ), [8p (1, k), kb, 1) [gp (n, k), K]

fplk)—1
+ > Hij[gp(n, k), k]bi[gy(n, k), k]

. (7)
+ > Hijlgy(n k), k]bi[gy(n, k), k]
i=f,(k)+1

+wilgp(n, k), k],
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Ficure 1: D-BLAST MIMO-OFDM structure.

for j = 1,2,...,N;and k = 0,...,K — 1, where f,(k) and
gp(n, k) are associations of the kth symbol of layer L, [#] with
transmit antenna and OFDM block, respectively, that is, the
kth symbol of layer L,[n] is sent from the f,(k)th transmit
antenna via the kth subcarrier of the g, (#, k)th OFDM block.
Note that, in general, a layer spans two consecutive OFDM
blocks, thus g, (1, k) is either n or n + 1. Equation (7) can be
written in matrix notation as

x[gp(n, k), k] = Hy, ) [8p(n, k), kb, 0 [gp (1, ), K]
fplk)-1
+ Z Hi[gp(”)k):k]bi[gp(n:k)ak]

i=1

. (8)

+ Z Hl[gp(n)k))k]bl[gp(n)k))k]
i=f(k)+1

+wlgy(n,k), k],

where H;[n, k] is the ith column of H[#, k]. Signals from an-
tennas 1 to f,(k) — 1 have been detected and those from an-
tennas f,(k) + 1 to N, are yet to be detected.

First, interference cancellation is carried out by subtract-
ing detected signals from the received signal:

XP[gP(n’k)’k] = X[gp(”lyk); k]
frk)-1 ) (9)
— > Hilgy(n,k),k]bilg,(n, k), k],

i=1

where b; [n, k]’s are detected symbols. Then interference from
undetected signals is suppressed by linear combination that
yields the maximum signal-to-interference-plus-noise ratio
(SINR). Let

I:Ip [n) k] é (pr(k)+1 [n) k]) pr(k)+2 [n) k]) ceed HNt [n) k]))
(10)

then from [11], we have the following weighting vector:
vyln k] = (Hp[n, k1H} [n,k] + pI)_lep(k) [n,k]. (11)

Thus, if we assume Gaussian distribution for the residual in-
terference plus noise, the maximum likelihood decoding of
layer L,[n] is to find {bf, ) [gp(n, k), k]} that minimizes

M({Zlfp(k)[gp(l’l,k),k]; k=0,1,...,K-1})

K-1

1
B ,§0 v [m, k] (Hp [m, kKJHE [m, k] + pI)v,[m, k]

| V], K (% [, K] =B o s Kb b K [

(12)

which can be solved by standard Viterbi algorithm when
convolutional codes are used. From the above discussions,
channel information is crucial for the signal detection of D-
BLAST MIMO-OFDM. Therefore, we focus on channel esti-
mation in the paper.

3. LAYERWISE CHANNEL ESTIMATION

In this section, we develop a layerwise LS channel estimation
algorithm and analyze its performance.

3.1. Layerwise least-square channel estimation

Due to layerwise detection in D-BLAST, usually only par-
tial knowledge of the symbols transmitted from all transmit
antennas at one OFDM block is available after decoding of
each layer. To exploit the characteristics of D-BLAST struc-
ture, channel estimation is carried out each time a layer is de-
tected. Since channel responses are independent among dif-
ferent transmit-receive antenna pairs, we consider the chan-
nel estimation for one particular receive antenna and omit
the receive antenna subscript j in (4) to get

N
x[n, k] = ZHi[n, klbi[n, k] + w[n, k]. (13)

i=1

After detection of layer L, [n], we estimate the channel re-
sponses at the nth block. Since only part of all the subcarriers
of the current OFDM block have signals from all transmit an-
tennas detected, we replace the received signals at subcarriers
not fully detected with those of the previous OFDM block to
form a complete received signal vector, due to the fact that
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H;[n,k] = Hi[n — 1, k]. Define 3.2. Performance analysis
Here, we briefly analyze the performance of the above chan-
() x[n-1,k], kex® nel estimator for D-BLAST OFDM. Let
zZPn, k] = (] L
x[n, k], else,
AP [, k) 2 {{%[n - Lk], kez® P 2 biln—1,k], kex®
bi[n, k], else, Py 0, else, (24)
a(p) T A(p) A(p)
where Z(P) = {k;gp(n,k) = nand f,(k) < N;} is the set of §;" [n] = diag {§;"[n,0],...,8 [n, K — 1]},

subcarriers with signals not fully detected.
It is observed that with some leakage [6], channel fre-
quency response can be approximated as

x-1
Hi[n,k] = > hi[n, JW{, (15)
1=0

where Wi = e 7@K v > [t,/t], t4 is the maximum de-

lay spread and ¢, is the sampling interval which is equal to
1/KAf with A f being the tone spacing.

Let

2P [n] = (2P [n,0],...,2[n,K — 1])T, (16)

DP[n] = diag{d " [n,01,...,d" [n,K — 11},  (17)
1 1 .- 1
1 Wx - Wil

U=1. - : ’ (18)

i WK-I) W)(lKl)

B (] 2 B (n], B ], BE [, (19)

B [n) 2 (WP (0,0, P [, — 11) (20)

The LS channel estimation is to minimize the following cost
function [4]:

C(h?;i=1,2,....N, - 1})
2 (21)
2P [n ZDP) Uh(P [n]
Then
H(P)[n] — (T(p)” [n]T(P)[n])flT(P)H [n]Z(P)[n], (22)
where
T [n] = (DP [n]U, DL [n]U,..., DL []U).  (23)

The above estimate is further refined by applying a robust
estimator for OFDM systems in [9], which makes full use
of the correlation of channel parameters at different OFDM
blocks.

GP[n] 2 (T(P)H[n]T(P)[n])_lT(P)H[n]SEP)[n],

The MSE of the channel estimator is

hin)|*}

“[n] T [n])"!

MSE®) [n] 2 LE{HB("’) [n]

- (»)
NtXTr{ p(T

+ G [n] E(Ah[n] AW [n]) G [n]],

(25)

where E{-} denotes expected value of a random variable.
Clearly the first term in the above equation results from noise
and the second term is due to channel variation.

From the above discussion, the MSE of the channel esti-
mate depends on the inverse of T®)" [1]T® [1], which relates
to the condition number of T [n]T® [n]. It can be proved
in the appendix using the bordering theorem for Hermitian
matrices [12] that condition number of T®¥" [#]T® [n] in-
creases with x. It implies that the channel estimation becomes
more ill-conditioned as the number of parameters to be esti-
mated increases. Thus we should choose the number of pa-
rameters as small as possible while preserving energy of the
channel response, which is the reason for tracking the opti-
mum transform matrix U in Section 4.

4. SUBSPACE TRACKING

The major problem of decision-directed channel estima-
tion is the randomness of the symbol sequences during
data transmission mode. For example, when the symbol se-
quences from any two of the transmit antennas are the same
or very close, it is impossible or very hard to distinguish
channel responses corresponding to different transmit an-
tennas. The greater the number of transmit antennas, the
more likely the channel is unidentifiable, or the more ill-
conditioned channel identification is. Furthermore, to re-
duce the leakage of decision-directed DFT-based channel es-
timation in MIMO-OFDM systems, the number of taps rep-
resenting channel frequency response has to be increased,
which will make channel identification more ill-conditioned
at the same time, as shown in Section 3. Moreover, increas-
ing the number of taps makes the inverse operation of matri-
ces in (22) more complicated. Hence, it is essential for low-
complexity and high-performance channel estimator to re-
duce the number of parameters to be estimated while pre-
serving most of the energy of channel frequency responses
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during the data transmission mode. Therefore, we will de-
velop subspace tracking approaches to estimate channel pa-
rameters. And since the subspace only depends on channel
autocorrelation matrix, which is time-invariant or chang-
ing very slowly, we apply subspace tracking only to training
blocks and use the derived transform matrix instead of U de-
fined in (18) for channel estimation during data transmission
mode.

Let the K X K channel autocorrelation matrix (Ry )k, x, =
E{H[k|]H*[k,]} have singular value decomposition as fol-
lows:

Ry = UfAU? , (26)

where Uy is a K x K unitary matrix and A = diag{A,,
As. Ak, A= Ay = - - - > 0. From [13], optimum rank-y
estimator is to select eigenvectors uj, uy, ..., uy correspond-
ing to the y biggest eigenvalues. Then the optimum rank-y
transform matrix is

Ugpt = (up, ..., 1), (27)

Therefore, channel autocorrelation matrix is needed here for
the optimum low-rank channel estimation.

To obtain the channel autocorrelation matrix, first we
have to separate channel responses H;i[n,k]’s for differ-
ent i’s. This can be done by appropriately designing the
training block. In [5, 7], optimal training sequences have
been proposed to maximally separate frequency responses
of different transmit antennas while preserving most of the
energy of each channel response. The training sequences
are

biln, k] = by [n, k] W0k, (28)

fori=1,2,...,N;, where Ky = | K/N;| > [t4/t] is the num-
ber of taps used to represent the channel response as a DFT
transform. During the training period, we choose K; taps
in approximating the channel response according to (15).
Since the leakage introduced by the DFT-based approxima-
tion is decreased as Ky increases and the well-designed train-
ing sequences provide maximum separability, we can set Ko
to be big enough such that the leakage is negligible while in-
troducing little aliasing between different channel responses
[5]. The procedure to separate channel responses can be de-
scribed in Algorithm 1.

The dimension y of the subspace can be either deter-
mined by minimum description length (MDL) criterion [14]
that is not accurate for low signal-to-noise ratio (SNR) or
slow channel variation, or by the approach in [13, 15] which
argues that the essential dimension of a random signal is
about the product of the bandwidth and time interval of
the signal plus one. We just choose the latter approach for
its simplicity and effectiveness; therefore, y = [t4/t;]. Sub-
space tracking approach can be summarized, which is in
Algorithm 2 modified LORAF 1 in [8].

It should be noted that the robust channel estimator
depends only on the subspace spanned by the dominant

(a) During each training block, #[n, k] = x[n, k] - b{ [n, k].

(b) Perform IFFT on (5[n,0],7[n, 11,...,1[n, K — 1])
to get ({[n,0],{[n,1],...,{[n,K — 1]).

(c) For the channel response of transmit antenna i,
circularly left shift ({[#,0],{[n,1],...,{[n, K —1])
by (i — 1)Ky to get ({'[n,0],{"[n,1],...,{"[n,K — 1]).
Let ¢ [mk] 2 {'[n k], ke[0,Ky—1],

0, else.

(d) A channel estimate H;[n, k] is obtained by performing
FFT on (" [n,0],{" [n,1],...,{"[n,K — 1]).

ArcoriTHM 1: Channel separation using the optimum training se-
quences.

Initialization:

(Uil0Dks = WE/VK,0<k<K-1,0<1 <x-1
O0]=L0<a<1;

During each training block:

inputv;[n] = (H;[n,0], Hi[n,1],...,Hi[n,K — 1])7,
ci[n] = Uf'[n - 1]v;[n],

Ai[n] = aAi[n = 1]®i[n — 1]+ (1 — &)vi[n]cf [n],
A;[n] = Ui[n]R;[n] QR decomposition,

®;[n] = Uf'[n - 1]U;[n],

Low-rank channel approximation:

vi[n] = Uiln]h;[n]

ALGORITHM 2: Subspace tracking for channel estimation.

eigenvectors rather than the particular eigenvectors. Let
lA]i[n] = Uothi[n]y (29)

where Q;[n] is a y X y unitary matrix which accounts for
the change of dominant eigenvectors without changing the
subspace. Substituting (29) into (25), it can be easily verified
that the MSE of the channel estimator is invariant to rota-
tion of the dominant eigenvectors, which can also be seen in
[9]. Therefore, it is the dominant subspace spanned by chan-
nel frequency responses that affects the performance of the
subspace tracking-based channel estimator.

5. SIMULATION RESULTS

In this section, we evaluate the performance of differ-
ent decision-directed channel estimation algorithms for D-
BLAST OFDM by computer simulation. Typical-urban (TU)
channel with Doppler frequency f; = 40 and 200 Hz is used
in our simulation. Performance of the proposed 7-tap lay-
erwise subspace tracking estimator is simulated. As a com-
parison, performances of systems with ideal channel param-
eters, 7-tap layerwise estimator with optimum transform, as
defined in (27), and 10-tap layerwise DFT-based estimator
with significant tap selection (STS) [4] are evaluated. The
performance of the traditional 10-tap blockwise DFT-based
channel estimator is also given, where channel estimation is
carried out once per OFDM block and the estimated chan-
nel parameters are used for the detection of the next OFDM
block.
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Four transmit antennas and four receive antennas are
employed to form four D-BLAST layers. Channel parameters
corresponding to different transmit and receive antenna pairs
are assumed to be independent but have the same statistics.
The system bandwidth of 1.25 MHz is divided into 256 sub-
channels: 2 subchannels on each side are used as guard tones,
and the rest of the subchannels are used for data transmis-
sion. The symbol duration is 204.8 ys and another 20.2 ys is
added as cyclic prefix (CP), resulting in a total block duration
of 225 us. A 16-state binary-to-4-ary convolutional codes of
rate 1/2 with the octal generators being (26,37) [16] is used
to encode the information bits in each layer. Four tail bits are
used for trellis termination, leaving 248 information bits per
layer. The encoder output is interleaved before sending to a
transmit antenna at a particular subcarrier.

In each independent simulation, 2000 OFDM blocks of
data are transmitted with 1 training block sent every 10
blocks. The performance averaged over independent sim-
ulations is evaluated. For channel estimator with subspace
tracking, the first 50 blocks use 10-tap DFT-based estima-
tor with STS. The estimated channel parameters are used for
initial subspace acquisition so that initial training overhead
can be saved at the expense of negligible performance loss
for continuous data transmission. Then channel estimation
is switched to the estimator with subspace tracking and the
subspace is updated at each training block. The forgetting
factor « is chosen to be 0.995.

Figures 2a and 2b compare the word error rate (WER)
and bit-error-rate (BER) performance of different channel
estimation algorithms when Doppler frequency is 40 Hz. Of
all estimators, the blockwise DFT-based channel estimator
has the worst performance since it uses channel state in-
formation at the previous OFDM block for detection and
thus is most susceptible to channel variation. The blockwise
DFT-based estimator requires about 1 dB more SNR than the
layerwise DFT-based estimator for a WER of 1072 and its
WER curve levels off quickly at high SNR’s since its perfor-
mance is bounded by channel variation. Among layerwise es-
timators, the subspace tracking estimator, requires 0.7 dB less
SNR than the DFT-based estimator for 10~ WER. Figure 2c
shows how MSE evolves as the layerwise channel estimation
progresses. From the figure, we can see that for all layerwise
channel estimation methods, the most significant MSE im-
provement is seen after detection of the first layer of the cur-
rent OFDM block, which is 0.7dB at SNR = 16dB, com-
pared with about 0.16 dB per layer improvement for layers
detected later with the proposed subspace tracking channel
estimator.

For f; = 200Hz, from Figure 3 we see that the perfor-
mance difference between the blockwise channel estimator
and layerwise estimators is even bigger now that the system
performance is dominated by fast variation of channel pa-
rameters. The SNR gain for using layerwise subspace track-
ing estimator is about 0.8 dB for 1072 WER compared with
layerwise DFT-based estimator. It is clear that as the channel
variation rate increases, the MSE performance improvement
with layerwise channel estimation becomes more significant,
with the successive MSE improvements being 3.4 dB, 1.2 dB,

100 P

— 10-tap blockwise DFT est. with STS
—0— 10-tap layerwise DFT est. with STS
—8- 7-tap layerwise subspace tracking est.
—o— 7-tap layerwise optimum basis est.
—x— Ideal parameters

10°1}

WER
)
b
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FIGURE 2: (a) WER, (b) BER, and (c¢) MSE of D-BLAST systems for
channels with TU delay profile and f; = 40 Hz.



D-BLAST OFDM with channel estimation

611

100 - . : : : : :
——10-tap blockwise DFT est. with STS
“|-¢-10-tap layerwise DFT est. with STS
—e-7-tap layerwise subspace tracking est.
—o-7-tap layerwise optimum basis est.
——Ideal parameters
1071 L
24
=
=
1072 L
1073 L L L L L L L L
0 2 4 6 8 10 12 14 16 18 20
SNR (dB)
(a)
100 T T T - -
— 10-tap blockwise DFT est. with STS
—0— 10-tap layerwise DFT est. with STS
—&- 7-tap layerwise subspace tracking est.
1 -6 7-tap layerwise optimum basis est.
107" ¢ —*— Ideal parameters
1072 L
[~
=5
=
1073 L
1074}
0 2 4 6 8 10 12 14 16 18 20
SNR (dB)
(b)
0 T T T T T T
—— 10-tap layerwise DFT est. with STS
28 = 7-tap layerwise subspace tracking est. H
P 7-tap layerwise optimum basis est.
—4 - |* Before detection of Ist layer
¢ After detection of 1st layer
-6 f - |v After detection of 2nd layer
A After detection of 3rd layer
. -8t o After detection of entire block |
@ . . . .
S o}
m
1%}
e R R SN\ N R S i bt
‘ oo )
—14 + o 5
-16 e GAEEE: {
S s O T 4
e L] R Y R S --r@;,,_ﬁ_’; deoiq
-20 O S S G SOV SRS SRS ditaits
0 2 4 6 8 10 12 14 16 18 20

SNR (dB)
(c)

FIGURE 3: (a) WER, (b) BER, and (c) MSE of D-BLAST systems for
channels with TU delay profile and f; = 200 Hz.

1.2dB, and 1dB at SNR = 16dB, as observed in Figure 3c.
For both f; = 40 and 200 Hz, the subspace tracking estima-
tor can effectively reduce the error floor thus provide better
performance than that of the DFT-based estimator.

6. CONCLUSION

MIMO-OFDM is a promising technology that embraces ad-
vantages of both MIMO system and OFDM, that is, immu-
nity to delay spread as well as huge transmission capacity.
In this paper, we apply the D-BLAST structure to MIMO-
OFDM systems and develop a channel estimator that up-
dates the estimated channel parameters in a layerwise fash-
ion. Since we update channel estimation using detected sig-
nals to improve detection of the rest of the signals in the cur-
rent OFDM block, the system is more robust to fast fading
channels when compared with the traditional blockwise es-
timator. To further reduce the channel estimation error, we
use the training blocks not only for channel estimation, but
also for tracking of the dominant subspace spanned by the
channel frequency response to reduce the number of param-
eters to be estimated during data transmission mode. Thus,
additional performance improvement is obtained by using
subspace tracking for the layerwise estimator, which is about
0.8 dB for 1072 WER with f; = 200 Hz.

APPENDIX

Let U = (U, uy41), and from U’, we define T%?)' [n] as in (23)
by substituting U’ for U. We will show that

cond(T®" [n]T? [n]) = cond (T?" [n]TP[n]), (A.1)
where cond(-) means condition number of a matrix.

Proof. Let the eigenvalues of TP [n]T® [n] be YLz y =
- 2 yyn, > 0. From (23) and by exchanging columns which
does not change the eigenvalues, we have

TP [n] = (TP [n], Y [n]), (A.2)
where

YO ] = (DY [n]uges,..., DY [n]uyes ),

) , T [T [n] T [n]YP)[n]
(p)H (p) =
o <Y<P>”[n1T<P>[n1 YO [n]YP)[n] )
(A.3)
Let the eigenvalues of T?)" [n]T® [n] be y| = y5 = - - - =

4

Y+, > 0- By the bordering theorem for Hermitian matri-
ces [12], we have

VIZY =P = VE)(+1)N¢ >0, (A.4)
thus
cond (T®" [n]T® [n]) = -1 — » YL
Y(X+1)Nf YN (AS)

= cond (T?" [n]T® [n]). O
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