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Video streaming over wireless networks faces challenges of time-varying packet loss rate and fluctuating bandwidth. In this paper,
we focus on streaming precoded video that is both source and channel coded. Dynamic rate shaping has been proposed to “shape”
the precompressed video to adapt to the fluctuating bandwidth. In our earlier work, rate shaping was extended to shape the channel
coded precompressed video, and to take into account the time-varying packet loss rate as well as the fluctuating bandwidth of the
wireless networks. However, prior work on rate shaping can only adjust the rate coarsely. In this paper, we propose “fine-grained
rate shaping (FGRS)” to allow for bandwidth adaptation over a wide range of bandwidth and packet loss rate in fine granularities.
The video is precoded with fine granularity scalability (FGS) followed by channel coding. Utilizing the fine granularity property
of FGS and channel coding, FGRS selectively drops part of the precoded video and still yields decodable bitstream at the decoder.
Moreover, FGRS optimizes video streaming rather than achieves heuristic objectives as conventional methods. A two-stage rate-
distortion (RD) optimization algorithm is proposed for FGRS. Promising results of FGRS are shown.
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1. INTRODUCTION

Due to the rapid growth of wireless communication, video
over wireless network has gained a lot of attention [1, 2, 3].
However, wireless network is hostile for video streaming be-
cause of its time-varying error rate and fluctuating band-
width. Wireless communication often suffers from multipath
fading, intersymbol interference, and additive white Gaus-
sian noise, and so forth; thus, the error rate varies over time.
In addition, the bandwidth of the wireless network is also
time varying. Therefore, it is important for a video stream-
ing system to address these issues.

Joint source-channel coding (JSCC) techniques [4, 5] are
often applied to achieve error-resilient video transport with
online coding. Given the bandwidth requirement, the joint
source-channel coder seeks the best allocation of bits for the
source and channel coders by varying the coding parameters.
However, JSCC techniques are not suitable for streaming pre-
coded video. The precoded video is both source and chan-
nel coded prior to transmission. The network conditions are
not known at the time of coding. “Rate shaping,” which was

called dynamic rate shaping (DRS) in [6, 7, 8], was proposed
to solve the bandwidth adaptation problem. DRS “shapes,”
that is, reduces the bit rate of the single-layered pre source
coded (pre-compressed) video to meet the real-time band-
width requirement. DRS adapts the bandwidth by dropping
either high-frequency coefficients of each block or by drop-
ping several blocks in a frame.

To protect the video from transmission errors, source
coded video bitstream is often protected by forward error
correction (FEC) codes [9]. Redundant information, known
as parity bits, is added to the original source coded bits,
assuming that systematic codes are adopted. Conventional
DRS did not consider shaping for the parity bits in addi-
tion to the source coding bits. In our earlier work, we ex-
tended rate shaping for streaming the precoded video that
is both pre-source-and-channel coded [10]. Such a scheme
was called “baseline rate shaping (BRS).” BRS can be ap-
plied to precoded video that is source coded with H.263 [11],
MPEG-2 [12], or MPEG-4 [13] scalable coding and chan-
nel coded with Reed-Solomon codes [9] or rate-compatible
punctured convolutional (RCPC) codes [14]. By means of


mailto:tchen@nvidia.com
mailto:tsuhan@cmu.edu

FGRS for Video Streaming over Wireless Networks

177

ancader

Enhancement FEC
layer bitstream encoder
Y Precoded
video bitstream
Base layer FEC
bitstream encoder

FIGURE 1: System diagram of the precoding process: scalable encoding followed by FEC encoding.

discrete rate-distortion (RD) combination, BRS chooses the
best state, which corresponds to a certain way to drop part of
the precoded video, to satisfy the bandwidth constraint.

The state chosen by BRS, however, only allows for coarse
bandwidth adaptation capability. In this paper, we adopt
MPEG-4 fine granularity scalability (FGS) [15] for source
coding, and erasure codes [9, 16] for FEC coding. Unlike
conventional scalability modes such as signal-to-noise ratio
(SNR) scalability, MPEG-4 FGS generates a bitstream that is
partially decodable over a wide range of bit rates. The more
bits the FGS decoder receives, the better the decoded video
quality is. On the other hand, it has been known that erasure
codes are still decodable if the number of erasures is within
the error/loss protection capability of the codes. Therefore,
the proposed “fine-grained rate shaping (FGRS),” which is
based on the fine granularity property of FGS and erasure
codes, allows for fine rate shaping. Moreover, the proposed
FGRS optimizes video streaming rather than achieves heuris-
tic objectives such as unequal packet loss protection (UPP).
A two-stage (RD) optimization algorithm is proposed. Note
that FGRS focuses on the transport aspect as opposed to the
coding aspect of video streaming.

The two-stage RD optimization is designed to find the
solution fast and optimally. In Stage 1, a model-based hy-
persurface is trained with a small set of rate and distortion
pairs to approximate the relationship between all rate and
distortion pairs. The solution of Stage 1 can be found in the
intersection in which the hypersurface meets the bandwidth
constraint. In Stage 2, the near-optimal solution from Stage 1
is refined with the hill-climbing-based approach. We can see
that Stage 1 aims to find the optimal solution globally with
the model-based hypersurface and Stage 2 refines the solu-
tion locally.

This paper is organized as follows. In Section 2, we intro-
duce BRS for bandwidth adaptation of the precoded video,
which is both scalable and FEC coded. Discrete RD combi-
nation algorithm is applied to deliver the best video quality.
In Section 3, FGRS is proposed for streaming the FEC coded
FGS bitstream. We first formulate the RD optimization prob-
lem then provide a two-stage RD optimization algorithm to
solve the problem. In Section 4, experiments are carried out
to show the superior performance of the proposed FGRS.
Concluding remarks are given in Section 5.

2. BASELINE RATE SHAPING

We propose to use BRS to reduce the bit rate of the precoded
video, which is both source and channel coded, given the
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FIGURE 2: Streaming of the precoded video with BRS.

time-varying error rate and bandwidth. Unlike JSCC tech-
niques that allocate the bits for the source and channel coders
by varying the coding parameters, BRS performs bandwidth
adaptation for the precoded video at the time of delivery. BRS
decision, as to select which part of the precoded video to
drop, varies from time to time. There is no need to reen-
code as JSCC with different source and channel coder param-
eters at later time with a different channel condition. Only a
different BRS decision needs to be made for the same bit-
stream. In addition, rate shaping can be applied to adapt to
the network condition of each link along the path of trans-
mission from the sender to the receiver. This is in particular
suitable for wireless video streaming since wireless networks
are heterogeneous in nature. One single joint source-channel
coded bitstream cannot meet the needs of all the links along
the path of transmission. Rate shaping can optimize video
streaming for each link.

We start by giving the system description of BRS then
provide the algorithm for RD optimization.
2.1. System description of video streaming
with baseline rate shaping

Video streaming consists of three stages from the sender to
the receiver: (i) precoding, (ii) streaming with rate shaping,
and (iii) decoding, as shown in the following from Figure 1
to Figure 3.

The precoding process (Figure 1) refers to source cod-
ing using scalable video coding [11, 12, 13] and FEC coding.
Scalable video coding yields prioritized video bitstream. The
concept of rate shaping works for any prioritized video bit-
stream in general.! Without loss of generality, we consider
SNR scalability. Reed-Solomon codes [9] are used as the FEC
codes in this paper.

For example, in DRS [6], bits that carry the information of the low-
frequency DCT coefficients are ranked with high priorities in the video
bitstream, as opposed to the ones that carry the information of the high-
frequency DCT coefficients. By means of data partitioning, the single-
layered nonscalable coded bitstream can have different priorities among dif-
ferent segments of the video bitstream.
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FIGURE 3: System diagram of the decoding process: FEC decoding followed by scalable decoding.
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FIGURE 4: (a) All four segments of the precoded video and (b)—(g)
valid states of BRS: (b) state (0, 0), (c) state (1,0), (d) state (1, 1), (e)
state (2,0), (f) state (2, 1), and (g) state (2,2).

In Figure 2, the pre-source-and-channel coded bitstream
is then passed through BRS to adjust its bit rate before being
sent to the wireless network. BRS will perform bandwidth
adaptation considering the given packet loss rate in an RD
optimized manner. The distortion here is described by the
mean square error (MSE) of the decoded video. Packet loss
rate, instead of bit error rate (BER), is considered since the
shaped precoded video will be transmitted in packets.

The decoding process (Figure 3) consists of FEC decod-
ing followed by scalable decoding. The task of rate shaping is
performed in the sender and/or midway gateways/routers.

2.2. Discrete rate-distortion optimization algorithm

BRS reduces the bit rate of each decision unit of the precoded
video before it sends the precoded video to the wireless net-
work. A decision unit can be a frame, a macroblock, and so
forth, depending on the granularity of the decision. We use a
frame as the decision unit herein. BRS performs two kinds of
RD optimizations with (i) mode decision and (ii) discrete RD
combination, depending on how much delay the rate shap-
ing decisions can allow. We will discuss both mode decision
and discrete RD combination in the following.

(a) BRS by mode decision

We consider the case in which the video is scalable coded into
two layers: one base layer and one enhancement layer. These
two layers are FEC coded with UPP. That is, the base layer
is FEC coded with stronger packet loss protection. There-
fore, there are four segments in the precoded video. The
first segment consists of the bits of the base layer video bit-
stream (upper-left segment of Figure 4a). The second seg-
ment consists of the bits of the enhancement layer video bit-
stream (upper-right segment of Figure 4a). The third seg-
ment consists of the parity bits for the base layer video bit-
stream (lower-left segment of Figure 4a). The fourth seg-
ment consists of the parity bits for the enhancement layer
video bitstream (lower-right segment of Figure 4a). BRS de-
cides a subset of the four segments to send. Note that some

constraints need to be imposed for a valid subset. For exam-
ple, if the segment that consists of the parity bits for the base
layer video bitstream is selected, the segment that consists of
the bits of the base layer video bitstream must be selected as
well. In the case of two layers of video bitstream, six valid
combinations are shown in Figures 4b, 4c, 4d, 4e, 4f, and 4g.
We call each valid combination a stafte. Each state is repre-
sented by a pair of integers (x, y), where x is the number of
segments selected counting from the segment consisting of
the bits of the base layer, and y is the number of segments se-
lected counting from the segment consisting of the parity bits
for the base layer. Note that x counts from the base layer be-
cause the enhancement layer cannot be decoded without the
base layer; y counts from the base layer because the base layer
needs to be protected by parity bits more than the enhance-
ment layer. The two integers x and y satisfy the relationship
of x > y.

Each state has its RD performance represented by a dot
in the RD map, such as the ones shown in Figures 5a and
5b. The state constellations are different for different frames
because of variations in video content and packet loss rate
for different frames. If the bandwidth requirement is “B” for
each frame, BRS performs mode decision by selecting the
state that has the least distortion. For example in Figure 5,
state (1, 1) of Frame 1 and state (2,0) of Frame 2 are chosen.

(b) BRS by discrete RD combination

By allowing some delay in making the rate shaping decision,
BRS can optimize video streaming with a better overall qual-
ity. By allowing some delay, we mean to accumulate the to-
tal bandwidth for a group of pictures (GOP) and to allocate
the bandwidth intelligently among frames in a GOP. Video
is typically coded with variable bit rate in order to maintain
a constant video quality. We want to allocate different num-
bers of bits for different frames in a GOP to utilize the total
bandwidth more efficiently.

Assume that there are F frames in a GOP and the total
bandwidth budget for these F frames is C. Let x(i) be the state
(represented by a pair of integers mentioned in (a)) chosen
for frame i, and let D; ;) and R; ,(;) be the resulting distortion
and rate allocated at frame i, respectively. The goal of the rate
shaper is to minimize

F
> Dix (1)
i=1

subject to

F
ZRi)X(i) <C (2)

i=1
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FIGURE 6: Discrete RD combination algorithm: (a) and (b) elimination of states inside the convex hull of each frame, and (c) allocation of

rate to the frame m that utilizes the rate more efficiently.

The discrete RD combination algorithm [10, 17] finds
the solution by first eliminating the states that are inside the
convex hull (Figures 6a and 6b) for each frame. The algo-
rithm then allocates the rate step by step to the frame that
utilizes the rate more efficiently. That is, among frame m and
frame n, if frame m gives a better ratio than frame » regard-
ing distortion decrease over rate increase by moving from the
current state u(m) to the next state u(m) + 1, then the rate is
allocated to frame m (the next state u(m)+1 of frame m is cir-
cled in Figure 6¢) from the available total bandwidth budget.
The allocation process continues until the total bandwidth
budget has been consumed completely.

3. FINE-GRAINED RATE SHAPING (FGRS)

As mentioned, BRS performs the bandwidth adaptation for
the precoded video by selecting the best state of each frame
at any given packet loss rate. Since the packet loss rate and
the bandwidth at any given time could lie in any value over
a wide range of values, we want to extend the notion of
rate shaping to allow for finer grained decisions. There then
prompts the need for source and channel coding techniques
that offer fine granularities in terms of video quality and
packet loss protection, respectively.

Enhancement
layer

Base layer

FIGURE 7: Dependency graph of the base layer and FGS enhance-
ment layer. Base layer has temporal prediction with P and B frames.
Enhancement layer is encoded with reference to the base layer only.

FGS has been proposed to provide bitstreams that are still
decodable when truncated at any byte interval. That is, FGS
enhancement layer bitstream is decodable at any rate pro-
vided with an intact base layer bitstream. With such a prop-
erty, FGS was adopted by MPEG-4 for streaming applications
[15]. Figure 7 illustrates two layers of video bitstream: the
base layer and the FGS enhancement layer. The base layer is
predictive coded while the FGS enhancement layer only uses
the corresponding base layer as the reference.

On the other hand, it has been known that the era-
sure codes provide “fine-grained” packet loss protection with
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more and more symbols? received at the FEC decoder [9, 16].
The “shaped” erasure code is still decodable if the number
of erasures/losses from the transmission is no more than
dmin — 1 (number of unsent symbols), where dpin is the min-
imum distance of the code. An erasure code can success-
fully decode the message with the number of erasures up
to dmin — 1, considering both the unsent symbols and the
losses taken place in the transmission. Therefore, the more
symbols are sent, the better the sent bitstream can cope with
the losses. In this paper, we use Reed-Solomon codes as the
erasure codes as mentioned in Section 2. In Reed-Solomon
codes, dmin — 1 equals n — k, where k is the message size in
symbols and 7 is the code size in symbols. Thus, the partial
code with size r < n is still decodable if the number of losses
from the transmission is no more than r — k.

3.1. System description of video streaming
with fine-grained rate shaping

Similar to BRS, there are three stages for transmitting the
video from the sender to the receiver: (i) precoding, (ii)
streaming with rate shaping, and (iii) decoding, as shown in
Figures 8, 9, and 10.

Through MPEG-4 encoding, two layers of bitstream are
generated: one base layer and one FGS enhancement layer
(Figure 7). We will consider hereafter the bandwidth adapta-
tion and packet loss resilience for the FGS enhancement layer
bitstream only, assuming that the base layer bitstream is re-
liably transmitted as shown in Figure 9b or is considered by
approaches outside the scope of this paper. The general rule
is to perform enhancement layer bandwidth adaptation after
the base layer is reliably transmitted. The enhancement layer
bitstream will not enhance the quality of the video if its ref-
erence base layer is corrupted. Otherwise, a drift prevention
remedy is needed.

Recalling that we use a frame as the decision unit, we look
at the FGS enhancement layer bitstream of a frame. FGS en-
hancement layer bitstream consists of bits of all the bit planes
of this frame. The most significant bit plane (MSB plane) is
coded before the less significant bit planes until the least sig-
nificant bit plane (LSB plane). In addition, since the data in
each bit plane is variable-length coded (VLC), if some part of
a bit plane is corrupted (due to packet losses), the remaining
part of the bit plane becomes undecodable. Bits at the begin-
ning of the enhancement layer bitstream of a frame is more
important than the following bits.

Before appending the parity symbols to the FGS en-
hancement layer bitstream, we first divide all the symbols (in
this paper, each symbol consists of 14 bits) for this frame
into several sublayers (Figure 11a). The way to divide the
symbols into sublayers is arbitrary except that the later sub-
layers are longer in length than the previous ones, that is
ki = ky = - - - = ky, since we want to achieve UPP. A natural
way to construct the sublayers is to let Sublayer 1 consist of

2“Symbols” are used instead of “bits” since the FEC codes use a symbol
as the encoding/decoding unit. In this paper, we use 14 bits for one symbol.
The selection of the symbol size in bits depends on the user.

symbols of the MSB plane, Sublayer 2 consist of symbols of
the MSB-1 plane, ..., and Sublayer h consist of symbols of
the LSB plane. Each sublayer is then FEC encoded with era-
sure codes to the same length # (Figure 11b). The lower por-
tions of the stripes in Figure 11b consist of the parity sym-
bols. The precoded video is stored and can be used later at
the time of delivery.

At the transport stage, FEC coded FGS bitstream is
passed through FGRS for bandwidth adaptation, given the
current packet loss rate. Note that FGRS is different from
JSCC-like approaches, which perform FEC encoding for the
FGS bitstream at the time of delivery with a bit alloca-
tion scheme that achieves certain objectives, as proposed by
Radha and van der Schaar [18, 19, 20] and Yang et al. [21].
That is, FGRS focuses on the transport aspect as opposed to
the coding aspect. Moreover, FGRS optimizes video stream-
ing rather than achieves certain objectives. We will elaborate
on the optimization algorithm taken later.

3.2. Fine-grained rate shaping

With the precoded video, bandwidth adaptation can be im-
plemented naively by dropping the symbols in the order
shown in Figure 12a. Given a certain bandwidth require-
ment for this frame, Sublayer 1 has more parity symbols
kept than Sublayer 2 and so on. Shaped bitstream with such
a bandwidth adaptation scheme has UPP to the sublayers.
We will refer to this method as “UPPRS” herein. However,
such UPPRS scheme might not be optimal. We propose
FGRS (Figure 12b) for bandwidth adaptation given the cur-
rent packet loss rate. The darken bars in Figure 12b are se-
lected to be sent by FGRS.

We start from the problem formulation. A FGS enhance-
ment layer bitstream provides better and better video quality
as more and more sublayers are correctly decoded. In other
words, the total distortion is decreased as more sublayers are
correctly decoded. With Sublayer 1 correctly decoded, we re-
duce the total distortion by G, (accumulated gain is G, ); with
Sublayer 2 correctly decoded, we reduce the total distortion
further by G, (accumulated gain is G; + G3), and so on. If
Sublayer i is corrupted, the following Sublayers i + 1, i + 2,
and so forth, become undecodable. Note that gain G; of Sub-
layer i can either (i) be calculated, given the FGS bitstream,
after performing partial decoding; or (ii) be embedded in the
bitstream as the “metadata.” Gain G; of Sublayer i is different
for every frame.

Since the precoded video is transmitted over error prone
wireless networks, sublayers are subject to loss and have cer-
tain recovery rates given a particular rate shaping decision.
The expected accumulated gain is then

6~ (al1v) .

where h is the number of sublayers of this frame and v; is
the recovery rate of Sublayer j, which is a function of r; as
will be shown later. Sublayer j is recoverable (or successfully
decodable) if the number of erasures resulting from the lossy
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FIGURE 8: System diagram of the precoding process: FGS encoding followed by FEC encoding.
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FIGURE 9: Transport of the precoded bitstreams: (a) transport of the FEC coded FGS enhancement layer bitstream with rate shaper via the
wireless network and (b) transport of the base layer bitstream via the reliable channel.
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FIGURE 10: System diagram of the decoding process: FEC decoding followed by FGS decoding.

Sublayer

Sublayer
1 2 3 h

(a) (b)

FIGURE 11: Precoded video: (a) FGS enhancement layer bitstream
in sublayers and (b) FEC coded FGS enhancement layer bitstream.

transmission is no more than r; — kj; k; is the message (the
symbols from the FGS bitstream) size of Sublayer j, and r; is
the number of symbols selected to be sent for Sublayer j. The
recovery rate v; is the summation of the probabilities that no

loss occur, one erasure occurs, and so on until r; — k; erasures
occur:

rj—kj
vi= > pill, j=1~h, (4)
=0

where [ is the number of erasures that occur. If each erasure
occurs as a Bernoulli trial with probability e,,, the probability
of having I erasures out of r; symbols is

pil} = (rl]) (em) (1 — €)™ (5)

The symbol loss rate can be derived from the packet loss rate
as ey, = 1 — (1 —e,)™, where s is the packet size and m is the
symbol size in bits. Depending on the error model (Bernoulli
trial, two-state Markov model, etc.), (5) can be replaced with
different probability functions.

By choosing different combinations of the number of
symbols for each sublayer, the expected accumulated gain
will be different. The rate-shaping problem can then be for-
mulated as follows: maximize

G= Z (Gi]}i[vj) (6)

i=1 j=1
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FIGUre 12: Bandwidth adaptation with (a) UPPRS and (b) FGRS.
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FIGURE 13: Intersection of the model-based hypersurface (dark sur-
face) and the bandwidth constraint (gray plane), illustrated with
h=2.

subject to

M=
)
A
S8

Ul
—

(7)

To solve the problem, an exhausted search on all possi-
ble combinations of r = [r1 12 - 1] or hill-climbing-
based approaches as described in [22, 23, 24], where RD op-
timization is made for automatic repeat request (ARQ) deci-
sions, can be performed. We propose in this paper a two-
stage RD optimization algorithm. The two-stage RD opti-
mization algorithm first finds the near-optimal solution fast.
The near-optimal solution is then refined by the hill climb-
ing approach. The proposed two-stage RD optimization is
different from [22, 23, 24] in three folds. First, the model-
based Stage 1 allows us to examine fewer samples from all
operational RD states. Only a small set of samples are needed
to train the model needed for RD optimization. Second,
the proposed distortion measure (or “expected accumulated
gain” in the terminology of the paper) accounts for the ef-
fects of packet loss as well as the channel codes by means
of recovery rates. Finally, the proposed two-stage RD op-
timization algorithm can avoid the problem that the solu-
tion could be trapped in the local maximum or reach the
local maximum too slow. Due to the complexity consider-
ation, Stage 2 can be skipped. Stage 1 does not just serve as a
simple initialization stage. It can already find a near-optimal
solution.

Packetization is performed after rate shaping. That is,
symbols are grouped into packets after the decision of
r=1[nn - 1] has been made. Similar packetization
method can be found in [20], while [25] applied bit errors
on the bitstream directly. The packets can be sent with “user
datagram protocol (UDP)” [26]. It is assumed that any error
in the packet will result in a packet loss. More considerations
on packetization can be found in UDP-Lite [27]. This pa-
per focuses on rate shaping, assuming that the network con-
dition is provided regardless of which specific packetization
method is used.

(1) Two-stage RD optimization: Stage 1

We can see from (3) and (4) that the expected accumulated
gain G is related tor = [r1 12 --- 1] implicitly through
the recovery rates v = [v1 2 - v]. We can instead find
a model-based hypersurface that explicitly relates r and G.
The model parameters can be trained from a set of training
data (r, G), where r values are chosen by the user and G values
can be computed from (3) and (4). The optimal solution is in
the intersection (Figure 13) in which the model-based hyper-
surface meets the bandwidth constraint. A complex model,
with a lot of parameters, can be used to describe as close as
possible the true distribution of the RD states. The solution
obtained with this model will be as close to optimal as possi-
ble. However, the number of (r, G) pairs needed to train the
model-based hypersurface increases with the number of pa-
rameters.

In this paper, we use a quadratic equation to describe the
relation between r and G as follows:

h h h
G= Zairiz + Z b,‘j?’,‘?’j + Z citi +d. (8)
i=1 i,j=1,i#j i=1
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To distinguish the hypersurface modeled G from the real ex-
pected gain G, we denote the former with a “head” sign. The
model parameters a;, b;j, ¢;, and d are trained differently for
each frame. They can be solved by surface fitting with a set of
training data (r, G) obtained by (3) and (4). For example, the
parameters can be computed by

a;’s ;g

b,‘"S —

ci]’s = (R™R) RT| |, 9)
d EG

where the left super index of G is the index of the training
data and R is a matrix consisting & rows of (r7’s, riri’s, 1S, 1).

The complexity of computing a;’s, b;;’s, ¢;’s, and d relates
to the number of parameters h*> + h + 1 and the number of
training data E, using (9). Note that the number of train-
ing data E is in general much greater than the number of
parameters h* + h + 1. Thus, a more complex model, such
as a third-order model with h* + k% + h + 1 parameters, is
not suitable since it requires much more training data than a
quadratic model. In addition, second-order Taylor expansion
can nicely approximate most functions. Equation (8) can
be seen as a second-order approximation to (3). To reduce
the computation complexity in reality, we can also choose a
smaller h if the precoding process is also under our control
(which is outside the scope of the rate shaper).

With (8), the near-optimal solution can be obtained by
the use of Lagrange multiplier as follows:

h h h
] = (Z(Jlﬂ’iz‘f' Z b,-jrirj +ZCi7’i+d)
i=1 i=1

ij=1,i#j
h (10)
+ )t( Z ri — B)'
i=1
By dJ/0r; = 0, we get
-1 h
I’i=_< > bijrj+c,-+/\), (11)
Zai ) -
j=1, j#i
where
ZBJ'_Z?: (l/a,) Zh: . ibi.r,_;’_ci
A= ! ( j=1,j#i YijTj ) (12)

_Z?:l (1/a;)

The near-optimal solution can be solved recursively using

(11) and (12), starting from the initial condition that all sub-

layers are allocated with equal number of symbols, r; =7, =
- =1, = B/h.

(2) Two-stage RD optimization: Stage 2

Stage 1 of the two-stage RD optimization gives a near-
optimal solution. The solution can be refined by a hill-
climbing-based approach (Algorithm 1). The solution from
Stage 1 is perturbed in Stage 2 in order to yield a larger ex-

While (stop == false)
Zi=r foralli=1~h
For(j=1;j<=h;j++)
For(k=1;k<=hk++)
zF = 25 + delta for k == j //Increase sublayer j
ZF = zF — delta /(h — 1) for k! = j //Decrease others
End
Evaluate G;
End
Find the j* with the largest G;.
For(i=1l;i<=h;i++)

ri=ri+ deltafori==j*
ri=ri— delta/(h—1) foril = j*
End
Calculate the stop criterion.

End

ArLgoriTHM 1: Pseudocodes of hill-climbing algorithm.
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FIGURE 15: Packet loss rate as a function of the transition probability
and the packet size.

pected accumulated gain. The process can be iterated until
the solution reaches a stopping criterion such as the conver-
gence.

The idea of allocating bandwidth optimally for sublayers
can be extended to a higher level to allocate bandwidth effi-
ciently among frames in a GOP. The problem formulation is
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slightly different from the original (6) as follows: maximize

G= mil [é (Gm,]lf[lvmjﬂ (13)

subject to

=

F
>,
m=1

Ymi < C, (14)
1

i

where F is the number of frames in a GOP. FGRS will incur
delay with duration of F frames if it allows for optimization
among frames in a GOP.

To summarize, the proposed FGRS achieves the best
streaming performance for FEC coded FGS bitstream with
the two-stage RD optimization. The two-stage RD opti-
mization obtains the optimal solution by first finding the
near-optimal solution, then refining the solution with a hill-
climbing-based approach.

4. EXPERIMENT

We start by describing the wireless network simulation for
the experiment. We then compare the proposed FGRS with
the naive UPPRS described in Figure 12a.

4.1. Experiment setup

Wireless networks are generally associated with time-varying
packet loss rate and fluctuating bandwidth. The packet loss
rate and bandwidth vary at each time interval. We simulate
random bandwidth fluctuation according to an autoregres-
sive (AR) process [28] and use a two-state Markov model
[29, 30] to simulate the bursty bit errors. The two-state
Markov model is also adopted by [31, 32]. “Good” and “Bad”
in Figure 14 correspond to error free and erroneous states
of a bit, respectively. The BER e, is related to the transition
probabilities p and g by e, = p/(p + q).

Since the coded bitstream is transmitted in packets, let us
look at how the packet loss rate e, relates to the transition

TaBLE 1: PSNR gains in Y, U, and V components with sequences
Akiyo, Foreman, and Stefan.

PSNR gain (dB) Y component U component V component

Akiyo 1.38 1.28 0.87
Foreman 0.86 0.44 0.52
Stefan 0.76 0.34 0.38

probability p and the BER e,. With BER e, transition prob-
ability p, and packet size s, the packet loss rate of the s-bit
packet is

ep=1-(1—-¢e)(1—p) " (15)

We observe two properties from (15) given the same BER
ep: (1) the smaller the transition probability p, the smaller
the packet loss rate ej,, and (ii) the smaller the packet size s,
the smaller the packet loss rate e,. These two properties are
shown in Figure 15 with ¢, = 1074

Besides the two properties we have just seen, it is also
known that to detect the loss of packets, some information
such as the packet number has to be added to each packet.
The smaller the packet is, the heavier the overhead is. There-
fore, it is a trade-off between the selection of the packet size
and the resulting packet loss rate. We use s = 280 (bits) in
this paper. Users can select the packet size s according to real
system consideration using (15).

The time-varying bandwidth is simulated pseudoran-
domly according to an AR process. The bandwidth available
at current time ¢ is fed to FGRS optimization of time t + 1 in
order to simulate the delay nature of the network feedback.
Such delay in feedback will not affect too much the perfor-
mance since the bandwidth requirements of the two consec-
utive frames are closely related, given the AR assumption. Ex-
ample traces of simulated packet loss rate and bandwidth ob-
served at the rate shaper are shown in Figure 16. The packet
loss rate is plotted using the line and the bandwidth is illus-
trated using the vertical bars. Each interval in the axis of time
index represents 0.33 seconds.

The test video sequences are “Akiyo,” “Foreman,” and
“Stefan” in common intermediate format (CIF) (Figures 17a,
17b, and 17¢). The frame rate is three frames/s.

4.2. Experiment result

Results for sequence Akiyo are shown in Figures 18 and 19.
Results for sequence Foreman is shown in Figures 20 and
21. Results for sequence Stefan is shown in Figures 22 and
23. The overall PSNR performance for all the three test se-
quences are listed in Figure 24 and Table 1. Results for differ-
ent wireless channel conditions are shown in Figure 25.

Figures 18, 20, and 22 show how bit allocation with UP-
PRS and FGRS is done in bytes (converted from number of
symbols) for each sublayer. After bit allocation, the number
of symbols to send is constrained to be at least k; for each
sublayer (i.e., to satisfy r; = k;) by moving the number of
symbols allocated for the higher sublayers to the lower layers
that does not satisfy r; > k; as shown in Algorithm 2.
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FIGURE 17: Test video sequences in CIF: (a) Akiyo, (b) Foreman, and (c) Stefan.
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FiGURE 18: Sublayer byte allocations with sequence Akiyo by (a) UPPRS and (b) FGRS.

With limited bandwidth, FGRS allocates enough bytes to
Sublayer 1 (indicated as sub 1 in the figures) first, than to
Sublayer 2, and so on. Allocating enough bytes to a sublayer
means providing enough packet loss protection, but not al-
locating too many bytes as to include too much redundancy.
The bit allocation process happens automatically by the pro-
posed two-stage RD optimization, considering the current
packet loss rate and the bandwidth requirement.

From the frame-by-frame PSNR performance in Fig-
ures 19, 21, and 23, we see that the proposed FGRS pro-
vides superior results to UPPRS. Comparing performance
with different sequences, the PSNR improvement of FGRS
over UPPRS is the most significant in sequence Akiyo, fol-
lowed by sequence Foreman and Stefan. Sequence Stefan is
the most challenging one with the most complex scene and
the highest motion. The source coding rates of the FGS en-
hancement layer bitstream of Akiyo, Foreman, and Stefan are
354.69 kbps, 747.74 kbps, and 975.70 kbps. Hence, given the

same amount of bits allocated by FGRS, the PSNR of se-
quence Stefan is the smallest among the three. Considering
the gain in the Y component, FGRS yields 0.76 dB to 1.38 dB
improvement compared to UPPRS as shown in Table 1.

To validate the performance of the proposed algorithm,
the performance in terms of the overall PSNR of the Y com-
ponents at various wireless channel conditions is shown in
Figure 25, where we consider a two-state Markov model at
various speeds and SNRs [29]. Figure 25a shows the 3D plots
of the overall PSNR. At all wireless channel conditions, FGRS
outperforms UPPRS.

Figure 25b shows the overall PSNR at various speeds at
SNR = 10dB. Fixed SNR value gives the same BER of the
wireless channel. The higher the speed is, the more bursty the
bit error of the wireless channel is. In other words, the larger
the transition probability is. From the results, we see that the
PSNR drops as the speed increases. The higher the transi-
tion probability is, the higher the packet loss rate is, given
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the same BER. Higher packet loss rate has the effect of re-
quiring more parity bits in the shaped bitstream, and higher
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FIGURE 20: Sublayer byte allocations with sequence Foreman by (a)
UPPRS and (b) FGRS.

probability of corrupting the packets that carries the shaped
bitstream, thus, the PSNR value is lower.

Figure 25¢ shows the overall PSNR at various SNRs at
speed = 10km/h. Fixed speed gives the same burstiness of
the bit errors of the wireless channel. The larger the SNR is,
the smaller the BER is. We see from the results that the PSNR
value increases with SNR. Smaller packet loss rate then leads
to a higher PSNR.

Optimization for video streaming needs to be real time.
As mentioned, in the training process for the model-based
hypersurface, only a few number of operational RD states
need to be examined, which saves the time. Thus, the two-
stage RD optimization is preferred over the hill-climbing-
based approach. In addition, as mentioned in Section 3.2,
Step 2 can be skipped without too much performance degra-
dation.
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FIGURE 21: Frame-by-frame PSNR of UPPRS and FGRS with se-
quence Foreman: (a) PSNR of the Y component, (b) PSNR of the U
component, and (c) PSNR of the V component.

5. CONCLUSION

We proposed in this paper a novel FGRS approach to per-
form bandwidth adaptation for the precoded video, which

(b)

FIGURE 22: Sublayer byte allocations with sequence Stefan by (a)
UPPRS and (b) FGRS.

is both FGS coded and FEC coded. FGRS utilizes the fine
granularity property of FGS and FEC. Moreover, FGRS op-
timizes video streaming rather than achieves heuristic ob-
jectives. A two-stage rate-distortion (RD) optimization al-
gorithm is used. The two-stage RD optimization algorithm
finds the solution efficiently. The proposed FGRS outper-
forms UPPRS.

The novelty of the paper lies in three aspects. Although
FGS has been proposed to provide fine granularity for pre-
compressed video, none of the prior works has shown how
to adapt the rate of the FGS bitstream that is protected by
the FEC codes. Note that related work performs FEC en-
coding for the FGS bitstream at the time of delivery. Sec-
ondly, we formulate the FGRS problem as an RD optimiza-
tion problem, while the work by van der Schaar and Radha
[20] is not optimized but to achieve a certain target recov-
ery rate. In addition, the distortion measure, which is called
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For(i=lyi<=h;i++)

If 1 < ki
a = k,‘ — T
//the difference needed to satisfy r; > k;
b=c=0

For(j=h;j>=1&c<aj—-)
b=rj>a?a:r;
//the symbols got from Sublayer j

c+=b
ri—=b
End
T = ki
End
End

ALGoRrITHM 2: Pseudocodes satisfying r; > k; after bit allocation.

“gain” in the paper, is derived from the current packet loss
rate in addition to the video characteristics. The gain is de-
fined as the expected gain given the current packet loss rate.
Prior work of DRS defines the distortion measure solely from
the video characteristics. Thirdly, the RD optimization prob-
lem is solved by the proposed two-stage RD optimization al-
gorithm, which can achieve the optimal solution fast. It is
crucial that optimization for video streaming is done in real
time.

Future work includes considering the smoothness crite-
rion in FGRS optimization such as [33] to smooth the fluc-
tuating PSNR resulted from the time-varying network con-
ditions. Such fluctuation is not inherent from the FGRS al-
gorithm. We can also investigate more the effect of outdated
network information on FGRS, in addition to the simulation
done in this paper by delaying the network bandwidth feed-
back. Moreover, deploying FGRS in a large network system,
such as the “end system multicast (ESM)” [34] system, can
be an exciting future research direction.
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