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We present a hybrid soft detector that has a good performance/complexity trade-off for a multiple-input multiple-output (MIMO)
wireless communication system with known channel information. The new soft detector combines the merits of a simple unstruc-
tured least-squares (LS)-based soft detector and a list sphere decoder (LSD)-based soft detector for data bit detection. The former
is computationally much more efficient than the latter at the cost of poorer performance. The poor performance of the former
occurs mainly when the channel matrix is ill-conditioned. Whenever this happens, we use the LSD-based soft detector in the hy-
brid soft detector; otherwise, we use the LS-based one. Moreover, we provide a tight radius for a sphere decoder, a hard detector,
via using the output of an LS-based hard detector. These two hard detectors are needed to determine if LS or LSD should be
used in the hybrid soft detector. As an application example, we consider doubling the maximum data rate of the IEEE 802.11a
conformable wireless local area networks by a MIMO system with two transmit and two receive antennas. For this application,
the new soft detector is about 10 times faster than the LSD-based one and is about 10 times slower than the LS-based one. Yet the

packet error rate due to using the new soft detector is quite close to that of using the LSD-based one.
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1. INTRODUCTION

High transmission data rate is of particular importance for
future wireless communication services. One promising way
of increasing the transmission data rate is to deploy mul-
tiple antennas at both the transmitter and receiver ends to
exploit the huge channel capacity offered by such a system
in a multipath-rich environment [1, 2]. The correspond-
ing system is referred to as a multiple-input multiple-output
(MIMO) wireless system.

In practical communication systems, forward error cor-
rection codes, such as the convolutional code, are often used
to lower the transmission error rate to an acceptable level
[3, 4] by adding redundancy in the transmission. Soft detec-
tors have been preferred to hard detectors since the former
can lead to better detection/decoding performance. For the
single-input single-out (SISO) systems, soft detectors have
been well studied [3, 4]. Lately, much attention has been paid
to the soft detectors for the MIMO systems.

The space-time bit-interleaved coded modulation
(STBICM) scheme [5, 6] seems to be the best (in terms of
performance) soft detector for a Bell-lab layered space-time

(BLAST) system [7, 8, 9], an especially attractive form of
the MIMO systems. However, STBICM can only be imple-
mented via the extremely inefficient brute-forth search. In
practice, soft detectors with good performance/complexity
trade-offs are desired.

Among the other existing soft detectors, the following
two are particularly attractive. One is the unstructured least-
squares (LS)-based soft detector of [10], which focuses more
on the computational efficiency side. The other is the list
sphere decoder (LSD)-based soft detector of [11], which fo-
cuses more on the performance side. The former is very
simple since, for example, it decouples a multidimensional
QAM symbol detection into multiple one-dimensional QAM
symbol detections. However, the performance of this detec-
tor can be poor, especially when the channel matrix is ill-
conditioned. The latter has a performance close to that of
STBICM with a significantly improved computational effi-
ciency; it is based on the STBICM principle but searches
in a small sphere, via modifying the sphere decoder (SPD),
which is a hard detector [12]. (SPD is an efficient algorithm
to implement the computationally expensive maximum-
likelihood (ML) hard detector.) However, the LSD-based soft
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detector still requires orders of magnitude with more com-
putations than its LS-based counterpart.

In this paper, we combine the merits of the LS- and LSD-
based soft detectors to obtain a new soft detector, referred to
as the hybrid soft detector, which has a better performance
than the LS-based one and a higher computational efficiency
than the LSD-based one. The poor performance of the LS-
based soft detector is mainly due to providing poor soft in-
formation to the Viterbi decoder as a result of the channel
matrix being ill-conditioned. Whenever this happens, we use
the LSD-based soft detector in the new hybrid soft detec-
tor; otherwise, we use the LS-based one. To decide if LS or
LSD should be used in the hybrid detector, we check to see
whether or not the output of the LS-based hard detector is
the same as the output of SPD. If so, we choose LS; otherwise,
we use LSD. To further improve the computational efficiency,
we provide a tight radius for SPD based on the output of the
LS-based hard detector.

As an example, we consider doubling the maximum data
rate of the IEEE 802.11a [13] conformable wireless local area
networks (WLANs) by a BLAST system with two transmit
and two receive antennas. At the receiver, we use soft detec-
tors for data bit detection. We compare the performance of
the new hybrid soft detector with that of the LS- and LSD-
based soft detectors. The hybrid detector is about 10 times
faster than the LSD-based one and is about 10 times slower
than the LS-based one. Yet the packet error rate (PER) due to
using the hybrid soft detector is quite close to that of using
the LSD-based one.

The remainder of this paper is organized as follows.
Section 2 describes the channel encoding and decoding for
a BLAST system that employs the convolutional encoder.
Section 3 gives the data model and formulates the soft in-
formation, that is, bit metric. Section 4 presents the pro-
posed new hybrid soft detector. Simulation results are given
in Section 5. Finally, we provide our comments and conclu-
sions in Section 6.

2. CHANNEL CODING

Consider a BLAST system with M transmit and N (N > M)
receive antennas, as shown in Figure 1. Figures 2 and 3, re-
spectively, show the diagrams of the BLAST transmitter and
receiver. At the transmitter, a convolutional encoder (CC) is
employed, and an interleaver is used to break the memory
of bad channels of the transmission. At the receiver, a dein-
terleaver is used before the convolutional (channel) decoder,
for example, the Viterbi algorithm, to recover the order of
the coded bit sequence. A 1 : M DEMUX and M : 1 MUX
pair is used at the transmitter and receiver, respectively, to
accommodate the BLAST scheme.

At the transmitter, as shown in Figure 2, the CC, which
has a constraint length K, takes a block (also called packet)
of bits d = {di,d>,...,dx} € {—1,+1}%K [with (K¢ — 1)
(—1)’s at the tail to reset the CC] as its input and gives a larger
block of bits u = C(d) = {uy,uz,...,ug} € {—1,+1}1xK
as its output, where —1 and +1 denote the binary digits 0

Transmitter Receiver

F1GURE 1: Diagram of a MIMO system.

and 1, respectively. The CC coding rate is then defined as
Rc = K/K. We can puncture the CC output block u to obtain
a smaller block of bits v = {vi,v5,...,vg} € {—1,+1}1*K
(K < K) to increase the transmission data rate. The punctur-
ing rate is Rp = K/K, and the coding rate of the punctured
CCis R = R¢/Rp = K/K. The output v of the (punctured)
CC is then fed to the interleaver whose output is denoted as
v = {vW,y@ &) e {—1,+1}K Let K’ = K/M be
an integer. Then the outputs of the 1 : M DEMUX are M
independent layers, denoted as v,, = w2, vy e
{—1,+1}%K m = 1,2,..., M. The modulator maps each
layer of the bits into data symbols through the mapping
f:{-1,41}"*B — @, where C denotes the data symbol con-
stellation and B = log, |G| is the number of bits represented
by a data symbol. Let K = K'/B be an integer, which is the

number of data symbols in each layer. Then the outputs of

the modulators can be denoted as X,,, = {x;(ﬁ),xfﬁ), . ,xﬁnK) b

m = ., M. Finally, the M X 1 data symbol vector
x®) = [x{B 5 xl(\];)]T, where ()T denotes the trans-
pose, is transmitted through the M transmit antennas at the
same time, with k denoting the time index, k = 1,2,...,K.

The bits corresponding to x*) are denoted as a BM x 1 vec-

tor bO = [pF pF . b1, with b € (-1,+13,
i =1,2,...,BM. Note that x¥) is a one-to-one map of b"®,

and if needed it can be written as x*) = x(b®)) to stress its
dependence on b

At the receiver, as shown in Figure 3, the soft detector
R 1R with 15 be-
ing the bit metric corresponding to bfk), i=1,2,...,BM, at
time k = 1,2,...,K. The soft detector then rearranges the
bit metrics to obtaln {Vm pilk= I]BH) ([k_l]B”),. C f/ﬁy]fB)} for the
bits {vi (k- ”BH) ([k I]BH) R (kB }, which were mapped to
the data symbol xm) Let v = {f/fnl), D ),...,ﬁan,)}, m =
1,2,..., M, denote the bit metric sequence corresponding
to the mth transmitted layer. The M bit metric sequences
are combined into one longer bit metric sequence v =
(H H@  pE)y by the M : 1 MUX. Passing the above
bit metric sequence v through the deinterleaver, we obtain
the deinterleaved bit metric sequence v = {91, 7,,...,7¢}.
For the punctured CC codes, we need the bit metric for
each punctured bit as well before using the Viterbi algo-
rithm. This can be done easily by using zero as the bit met-
ric for each punctured bit. Once we get the bit metric se-
quence @ = {#1}, &h,..., U} corresponding to the CC output
u, we can use the Viterbi algorithm to obtain the estimate
d= {cfl, aiz, s ch} of the source bit sequence d.

first generates the bit metrics {15
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FIGURE 2: Diagram of a BLAST transmitter employing convolutional channel coding.
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FI1GURE 3: Diagram of a BLAST receiver employing Viterbi decoding for convolutional codes.

In the sequel, we focus on the calculation of the bit met-
rics for the bits in the QAM symbol, due to our WLAN ap-
plication.

3. DATA MODEL AND BIT METRIC
We now give the data model and formulate the bit metric for

the BLAST system.

3.1. Data model

The channel matrix of a MIMO time-varying flat Rayleigh-
fading channel at time k can be written as

k) ) ()

hl,l h1,2 hl,M

R k) )

- h2,1 h2,2 e hZ,M
H® = € CNM, (1)

(I (k)

hN,l hN,Z e hN,M

where hif, is the gain from the mth transmit antenna to the
nth receive antenna at time k, Whi%h is assumed to be known.
Withx® = [ P ... x®]" denoting the M x 1 QAM
symbol vector being sent at time k, the received signal can be
written as

y® = HOx® 4t n® e ¥, k=1,2,...,K, (2)

where n® ~ N(0, O'I%IN) is the additive zero-mean white cir-
cularly symmetric complex Gaussian noise.

With an appropriate pair of interleaver and deinterleaver,
the MIMO channel can be assumed to be block flat Rayleigh
fading [14, 15], that is, H® is constant at time k for the trans-
mission of x*) but changes independently from one time in-
dex to another. In the sequel, we focus on obtaining the soft
information given that we know the channel matrix H®, the

2

noise variance 0i> and the received data vector y(k>. For no-

tational convenience, we drop the superscript k in (2) to get

the data model
y = Hx +n € CV*1, (3)
or
y = Hx(b) + n. (4)

3.2. Bitmetric

The bit metric (also known as the L-value) for the ith bit,
i=1,2,...,BM,is defined as

P(bl = +1|Y,H)

= -1ly,H)’ >

Assuming equal probability for each data bits and using
Bayes’ theorem, the bit metric can be written as

zbeﬂm P(Y|b’H)

li = 10 >
g zbEéBirl P(Y|b’ H)

(6)

where 8B; 1 and 8B;_; are the set of 22M~! bit vectors b with
b; being +1 and —1, respectively.

With the assumption of additive zero-mean white cir-
cularly symmetric complex Gaussian noise for the received
data, the above equation can be written as
Sheg ., e (Va)ly-Hxb)|?

i+1
08 Shes, ¢ Vol HxBI (7)

i =1

which, by using the max-log approximation [16], can be
written as

1
l; ~ max {— ;Hy—Hx(b)Hz}

beBi

1
- max { = Iy~ Hxo)|| ®

1 . 2 . 2
- [bg}%{}llly—HX(b)II - min |ly ~ Hx(b)| |
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This is in fact the optimal but extremely inefficient STBICM
soft detector.

In the sequel, we present the hybrid soft-detector, which
has a good performance/complexity trade-off, for calculating
the bit metric.

4. THE PROPOSED SOFT DETECTOR

The proposed soft detector is based on the combination of
the LSD- and LS-based soft detectors. As a result, before pre-
senting the new soft detector, we summarize and comment
on the merits of these two existing detectors, which are dif-
ferent approximations of (8) with different focuses on the
performance/complexity trade-off.

4.1. TheLSD-based soft detector

The LSD-based soft detector focuses mainly on the per-
formance side of the performance/complexity trade-off. It
maintains the framework of the STBICM detector and im-
proves the efficiency of (8) by searching in much smaller sub-
sets By C Biy and B; | C Bi_ 1 with |Bj 4| < 2BM-1
and | B;_1| < 2BM-1 The LSD-based soft detector is imple-
mented in the following two steps.

Step SD1. Obtain the set B of vectors b which satisfies

lly —Hx(b)|| <d;, Vbe B, 9)

by using the modified SPD algorithm that has
a fixed sphere radius dj, determined by the an-
tenna numbers and noise variance [11].

Step SD2. For each i = 1,2,...,BM, calculate B;,; =
BiNBand B; | = B; 1 N B and obtain
the bit metric by

(SD) _ i[ . _ 2 ~ 2]
; 2 bg%glll‘/ Hx(b)|| bg%ﬂl”‘/ Hx(b)||"|.
(10)

At the cost of some performance degradation, the LSD-
based soft detector improves the computational efficiency of
the STBICM detector significantly due to limiting the search
over the much smaller sets. (We do not know the exact degra-
dation for our WLAN application since the STBICM detector
is too slow to make a reasonable comparison.) However, the
LSD-based soft detector is not as efficient as SPD due to the
following reasons: (a) LSD in Step SD1 uses fixed sphere ra-
dius whereas SPD uses changing sphere radius that shrinks
with the finding of a new point in the sphere with a shorter
distance and (b) the bit metric calculation in Step SD2 needs
additional computations.

4.2. ThelLS-based soft detector

The LS-based soft detector focuses mainly on the computa-
tional complexity side of the performance/complexity trade-
off. While the LSD-based soft detector improves the effi-
ciency of (8) by limiting the search on smaller sets, the LS-
based soft detector decreases the computation of (8) by de-
coupling the distance ||y — Hx||? into M separate distances,

that is, it decouples a MIMO channel into multiple SISO
channels that are processed independently of each other. The
LS-based soft detector has the following two main steps.

Step LS1. Ignore the discrete constellation of x to obtain
an unstructured LS symbol estimate x5 of x
as

x19 = (HYH) 'H"y
=x+ (H'H) 'H"n (11)
Sx+e

Step LS2. For j = 1,2,...,Band m = 1,2,..., M, obtain
the bit metric for each bit using the scheme
(similar to (8), but for the SISO case) given in

(17]
1 . 2
1) = [, min (x5 - x(ba)]
05 Lby €8y j1
(12)
_  mi LS _ (b 2]
bmg}é&#llxm x(bw) |” |,

where By, j,+1 and B, j,-1 are the set of 2581
bit vectors b,, € {—1,+1}5! with the jth
bit being +1 and —1, respectively, xS s
the mth element of x5, x(b,,) € €, and
o2, = o?[(HFH) '], with [A],,» denoting
the (m, m)th element of matrix A.

We remark that for the SISO systems, we usually con-
sider an ordinary QAM symbol as two PAM symbols (e.g.,
a 64-QAM symbol can be considered as two 8-PAM sym-
bols) due to the orthogonality between the real and imagi-
nary parts of a QAM symbol as well as the independence be-
tween the real and imaginary parts of the additive circularly
symmetric Gaussian noise. The same is true for the BLAST
systems employing the LS-based soft detector since the real
and imaginary parts of e, the mth element of e in (12),
m = 1,2,...,M, are independent of each other, as shown
below:

1

Elee’] = (HFH)™ E[nnT]H*[(HHH)“]T =0, (13)
where we have used the fact that E[nn”] = 0.

The LS-based soft detector is orders of magnitude more
efficient than the LSD-based soft detector due to the decou-
pling, as will be analyzed later. However, the performance of
the former is worse than the latter (more than 2 dB for the
M = N = 2 case for our WLAN application, to be shown by

the simulation examples later).

By rounding x,(ﬂLS), m = 1,2,..., M, to the closest point

in the constellation G, we obtain the output of the LS-based
hard detector, which will be used latter.

Note that the minimum mean-squared error (MMSE)-
based soft detector is often deemed to be better than the LS-
based one [18]. Although this can be true for the constant-
modulus constellations, such as PSK, it is not necessarily
true for QAM symbols, as suggested by our simulation re-
sults (not provided here) due to the different power levels
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of the QAM symbols. Hence the LS-based soft detector is
more preferable than the MMSE-based one since the former
is slightly more computationally efficient than the latter.

4.3. The hybrid soft detector

The above two soft detectors provide different perfor-
mance/complexity trade-offs for data bit detection, with the
LSD-based one focusing on the performance and the LS-
based one on the computational efficiency. In practice, it is
desirable to have a soft detector that is better than the LS-
based one in performance and faster than the LSD-based one
in computational complexity. We show that this can be done
by combining these two soft detectors, and the correspond-
ing new detector is referred to as the hybrid soft detector.

Now, we examine what hinders the performance of the
LS-based soft detector. We can readily see that when HH
is close to a scaled identity matrix, the bit metrics from
the LS-based soft detector will not be worse than those
from the LSD-based one. However, when H?H becomes ill-
conditioned, the bit metrics from the former will be much
worse than those from the latter, because of the following
reasons: (a) some elements of the noise vector e in (11) are
magnified drastically due to the poor channels and (b) useful
information is lost due to the decoupling. Hence, these (bad)
bit metrics corresponding to the ill-conditioned channels can
be seen as the bottleneck for the performance of the LS-based
soft detector. If we can identify these bad bit metrics and re-
place them by those from the LSD-based soft detector, we can
improve the detection performance significantly.

We identify the bad bit metrics by comparing the LS-
based hard detector output X and the SPD output PP
If they are not the same, x5 is more likely to have error(s)
since XPP) is an ML estimate, which is better than the for-
mer theoretically. In this case, the corresponding bit metrics
from the LS-based soft detector are considered bad; other-
wise, these bit metrics can be considered reliable.

In view of the above, we have the following steps for the
hybrid soft detector.

Step HY1. Obtain the LS symbol estimate x> by using
(11) of Step LSI.

Step HY2. Determine the LS hard detection result x5,

Step HY3. Calculate the SPD detection result x(5°P),

Step HY4. Check the hard detection results—if 'S =
%PP)then go to Step HY5; otherwise, go to
Step HY6.

Step HYS5. Obtain bit metrics by (12) of Step LS2 based
on x from Step HY1 and then stop.

Step HY6: obtain bit metrics by performing Steps SD1
and SD2 and then stop.

The computational complexity of the hybrid soft detec-
tor is dominated by SPD and the LSD-based soft detector,
that is, Steps HY3 and HY6. To speed up the calculation of
SPD in Step HY3, we need to consider the determination of
its initial radius, which is a crucial issue for SPD. If the initial
radius is too small, there will be no point (x) in the sphere—
SPD cannot find the ML solution. On the other hand, if the
initial radius is too large, SPD will be very slow due to the un-

necessary additional searches. The number of the additional
searches can be reduced by using a modified searching ap-
proach given in [19]. However, it complicates the algorithms
itself. Here, we give a tight sphere radius, based on the LS-
based hard-detector output X, by using

d, = |ly — Hx™|| + €4, (14)

where €; > 0 is a very small value. Note that this radius will
contain at least one point—the output of the LS-based hard-
detector. Note also that, for most cases (98 out of 100 for the
signal-to-noise-ratios (SNRs) of interest in our WLAN appli-
cation, as will be shown by the simulation results in the next
section), this radius contains only one point. By using this
tight radius, our preliminary simulation results show that
SPD can be as efficient as the interference cancellation and
nulling algorithm [8] and uses only 5 times as many flops as
the LS-based soft detector.

The computational complexity, in terms of flops, for each
step of the LSD-based soft detector, can be estimated as fol-
lows. (We assume M = N for convenience.)

Step HY1: @O(M?) for matrix multiplications and inver-
sion. For example, a calculation using Matlab
indicates that the number of flops is 444 for
the M = 2 case.

Step HY2: Negligible.

Step HY3: O(M?) to O(M®) for SPD, depending on the
SNR and B [12, 20]. For example, preliminary
calculations using Matlab show that, by using
the tight radius, SPD uses only 5 times as many
flops as LS in Step HY1 for 64-QAM, M = 2,
and the SNRs of interest.

Step HY4: Negligible.

Step HY5: Negligible by table checking for the PAM sym-
bols.

Step HY6: (a) O (M?) to @ (M®) for LSD, which, as shown
by simulation results, uses typically 2 to 10
times as many flops as SPD in Step HY3, that
is, 10 to 50 times as many flops as LS in Step
HY1. (We use the average 25 in the sequel.)
(b) O(NZBM) for bit metric calculation,
where N¢ is the number of candidates in the
list for LSD and the operation of finding the
minimum is performed by using the conven-
tional bubbling algorithm; for example, for
M = 2, B = 6, and Nc = 120 (which is
typical for a good performance), this amounts
to about 43200 flops (assuming [Bii| =

|Bi_11 =60,i=1,2,...,12, for convenience),
which is about 95 times as many flops as LS in
Step HY1.

As will be seen from the simulation results in the next
section, less than 2% of the cases have different SPD and LS
hard detection results. Hence, we can see that the hybrid soft
detector is about

1 +5 +0.02x|25+95|=8.4 (15)
—~ =~ -
LS SPD LSD
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F1GURE 4: Packet structure of the IEEE 802.11a standard.

times as slow as the LS-based soft detector, which indicates
that the hybrid soft detector is about 10 times slower than the
LS-based soft detector. We can also see that the LSD-based
soft detector needs 120 times as many flops as the LS-based
one, which means that the hybrid soft detector is about 10
times faster than the LSD-based one. (This will be elaborated
in the next section based on the parameters of our WLAN
application.) Note that the new hybrid soft detector is more
efficient for high SNRs than for low SNRs since at high SNRs
the probabilities of x'S) = %(5PP) are high and the chances of
using the computationally expensive LSD-based soft detector
are low. Note also that the above analysis of the complexity
is only intended to give a feeling about the efficiency of the
hybrid soft detector and is by no means very accurate. More
accurate analysis of the complexities, including those for SPD
and LSD, is still an open topic.

We remark that the bad bit metrics can also be identi-
fied by using the condition number (CN) of HH, and the
resulting soft detector can be referred to as the CN-hybrid
soft detector. However, the CN-hybrid soft detector is infe-
rior to its hybrid counterpart due to the following reasons.
First, it is hard to determine a threshold for the CN. If the
threshold is too high, many bad bit metrics from the LS-
based soft detector will be used in the hybrid soft detector,
which will lead to degraded performance. On the other hand,
if the threshold is too low, the computationally expensive
LSD-based soft detector will be used too often, which will re-
sult in increased computational complexity. Second, a large
CN does not necessarily result in detection differences be-
tween SPD and the LS-based hard detectors. Neither does a
small condition number guarantee the same detection result
for the two hard detectors. As will be demonstrated using the
simulation results in the next section, for a practical choice of
CN, say 100, the CN-hybrid soft detector has a comparable
(0.06 x (25 +95) = 7.2 times as many flops as LS) complex-
ity with the hybrid soft detector; yet, the performance of the
former is inferior to the latter.

5. SIMULATION RESULTS

Our results obtained under the flat fading channel condition
can be readily extended to the orthogonal frequency-division
multiplexing (OFDM)-based WLAN systems operating over
frequency-selective fading channels [21]. This is because for
each subcarrier the channel is a flat fading one. In our simu-
lations, we follow the IEEE 802.11a 5 GHz band high-speed
WLAN standard [13] whenever possible.

The OFDM-based WLAN system, as specified by the
IEEE 802.11a standard, uses packet-based transmission.
Figure 4 shows the packet structure specified by the standard.

Each packet consists of many OFDM symbols. Each OFDM
symbol occupies 64 subcarriers, among which 48 are used
for data symbols and 4 for pilot symbols. There are also 12
null subcarriers. The OFDM symbols are obtained via taking
the inverse fast Fourier transform (FFT) of the data, pilots,
and nulls on these subcarriers. The nominal bandwidth of
the OFDM signal is 20 MHz and the I/Q sampling interval is
50 nanoseconds. Due to the fact that the modulation and de-
modulation are done in the frequency domain, a frequency
domain bit-level interleaver is used to segment the encoded
bit sequence according to the transmission data rate and to
scatter them over the 48 different data-carrying subcarriers.
Before interleaving, an industrial standard constraint length
7 and R¢ = 1/2 CC is employed to code the source bit se-
quence. In the IEEE 802.11a standard, the maximum trans-
mission data rate is 54 Mbps; in this case the 64-QAM con-
stellation is used and the channel coding rate is R = 3/4,
which comes from puncturing the Rc = 1/2 convolution-
ally encoded sequence with the puncturing rate Rp = 2/3.
The channel is assumed to be fixed during the packet trans-
mission.

We consider doubling the maximum 54 Mbps transmis-
sion data rate by using a BLAST system with two trans-
mit and two receive antennas, that is, M = N = 2. This
OFDM-based BLAST WLAN system is backward compat-
ible with its SISO counterpart, with the packet structure
shown in Figure 5. (See [21] for more detailed description
of the MIMO system design.) In our simulations, each of
the MN = 4 time domain MIMO channels is generated ac-
cording to the exponential channel model [22] with the root-
mean-square spreading time f,»s being 50 nanoseconds; the
4 channels are statistically independent of each other. After
FFT at the receiver, the channel matrix for each subcarrier
has the same form as in (1), with the k being the subcar-
rier index in this case. This subcarrier index is equivalent to
the time index for time-varying flat fading channels since the
channel for the OFDM-based WLANSs is assumed to be fixed
for the entire packet, with the changes across the subcarri-
ers due to the delay time spreading. (Note that the intersym-
bol interference is avoided in the OFDM-based systems due
to using the cyclic prefix [13].) We consider the case of per-
fect channel knowledge, where the carrier frequency offset,
symbol timing, channel response, and noise variance are all
known in all our simulations; in practical applications, these
parameters can be estimated via applying the channel param-
eter estimation methods, such as those in [21, 23, 24, 25], to
the packet preambles.

Due to the fact that 52 out of 64 subcarriers are used in
the OFDM-based SISO WLAN system, the SNR used herein
is defined as 520%/64 for the 64-QAM constellation whose
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FIGURE 5: Packet structure for the OFDM-based BLAST WLAN system.
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FIGURE 6: PER versus SNR comparisons for the soft detectors.

average energy is normalized to 1. For the OFDM-based
BLAST WLAN system, we keep the same total transmission
power and maintain the same subcarrier structure as its SISO
counterpart.

We give two simulation examples to demonstrate the per-
formance and computational complexity of our hybrid soft
detector.

Example 1 (Performance). The PER (one packet consists of
1000 bytes, which are contained in 19 OFDM symbols) is
an important parameter for the OFDM-based WLAN sys-
tems. (In an OFDM-based WLAN system, even if only one
error occurs, the entire packet is considered to be wrong.) In
Figure 6, we show the PER comparison for the LS-based soft
detector, the CN-hybrid soft detector (with CN being 100),
the hybrid soft detector, and the LSD-based soft detector as a
function of SNR for the OFDM-based BLAST WLAN system
at the 108 Mbps data rate. We also give the PER curve of using
the soft detector for the SISO system at the 54 Mbps data rate
as a reference. We can see from the simulation results that for
the OFDM-based BLAST WLAN system, the performance
of the hybrid soft detector is close to that of the LSD-based
soft detector. We can also see that the hybrid soft detector
outperforms its CN-hybrid counterpart. Moreover, the PER
curve of the hybrid soft detector has nearly the same slope

1071_ — T T — T A T

Probabilities of using LSD

23 24 25 26 27 28 29 30
SNR (dB)
—*— CN-hybrid
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FIGURE 7: Probabilities of using LSD in the hybrid and CN-hybrid
soft detectors as SNR varies.

as the LSD-based one, which means that at high SNRs, the
hybrid soft detector can offer much better performance than
the LS-based one. Also, by comparing the solid line with the
dashed line, we can see that if we use the hybrid soft detector
at the receiver, we need about 1.5 dB more SNR to keep the
same 10% PER (we are currently mostly interested in PERs
of 10%) to double the data rate with M = N = 2. Note that
even with the need of this 1.5 dB extra SNR, that is, 1.5dB
more total transmission power, the PER performance of the
OFDM-based BLAST WLAN system with the hybrid soft de-
tector is still impressive since even if we wish to double the
transmission data rate using two separate SISO systems over
two different physical channels by doubling the bandwidth,
we still need 3 dB extra SNR or total transmission power. If
we consider the case of 1% PER, we can double the data rate
with about 0.5 dB less total transmission power.

Example 2 (Complexity). To facilitate the analysis of the
complexity of the hybrid and CN-hybrid (with CN being
100) soft detectors, we provide a simulation example to
demonstrate the probability of using the LSD-based soft de-
tector in these soft detectors. We can see from Figure 7 that
for the SNRs of interest, the probability of using the LSD-
based soft detector in the CN-hybrid soft detector is about
6% and less than 2% in the hybrid soft detector.
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6. CONCLUDING REMARKS

We have proposed a hybrid soft detector with a good perfor-
mance/complexity trade-off by combining the LS- and LSD-
based soft detectors. The combination is performed based on
comparing the outputs of SPD and the LS-based hard de-
tector. To speed up the computation of SPD, we have also
provided a tight sphere radius that can be used to guarantee
the finding of at least one solution. Simulation results have
shown that the performance of our hybrid soft detector is
close to that of the LSD-based soft detector in our WLAN
application. The new detector is about 10 times faster than
the LSD-based and about 10 times slower than the LS-based
soft detectors.
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