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The design of statistical classification systems for optical character recognition (OCR) is a cumbersome task. This paper proposes
a method using evolutionary strategies (ES) to evolve and upgrade the set of parameters in an OCR system. This OCR is applied to
identify the tail number of aircrafts moving on the airport. The proposed approach is discussed and some results are obtained using
a benchmark data set. This research demonstrates the successful application of ES to a difficult, noisy, and real-world problem.
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1. INTRODUCTION

We describe the design of an image-based aircraft identifi-
cation system for an advanced surface movement guidance
and control systems (A-SMGCS) [1, 2]. This work is aimed
at implementing some functions of the A-SMGCS concept
in Madrid-Barajas international airport, in order to provide
aircraft identification. A-SMGCS requires the unambiguous
identification of all aircraft and vehicles in the airport move-
ment area. Cameras for this function should be deployed
near taxiways and runways, in positions being traversed for

all the interest targets, prior to their entrance into the area to
be controlled (mainly runways and taxiways). When an air-
craft passes in front of the camera (which may be predicted
using a tracking system), an image of its tail is captured. An
optical character recognition (OCR) applied over aircraft tail
number is used to identify aircraft [3, 4]. In this paper, it
is proposed to tune the parameters of the statistical classi-
fier used in the OCR applying an evolutionary computation
algorithm. Then, the aircraft identification algorithm is ap-
plied and the tracking system is updated with this informa-
tion. This process is shown in Figure 1.
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Figure 1: Real-time identification procedure of an aircraft.

The aircraft tail number recognition is related to the
word recognition problem. Word recognition is done by
adding preprocessing and postprocessing steps to the charac-
ter recognition. Generally, a three-step process is common in
character-based methods: character segmentation, character
recognition, and contextual postprocessing. The surface air-
port control maintains a database with aircrafts in runways,
taxiways, and terminal areas. This database will be used as
the lexicon that specifies the set of allowable words.

Each process in the character-based method has been
profusely studied. The character segmentation process could
take into account heuristic rules, contour analysis, con-
nected components, and so forth. Previously and related
to the election of a classifier, a set of features describ-
ing the relevant information of the characters must be se-
lected. A feature, in general terms, is an entity defined by
an estimation algorithm. The selected features must be ef-
ficiently computable, versatile to represent patterns of the
same class, and sensitive to discriminate patterns of dif-
ferent classes. In this domain, the aircraft tail number ty-
pography presents a wide variation in the sizes and type-
sets. Therefore, those features are invariant to transfor-
mations on the character needed to be used. A great va-
riety of classification approaches have been studied [5]:
neural networks, structural and syntactic classifiers, fuzzy
clustering, and statistical [6] and nearest-neighbor classi-
fiers.

In this paper, in order to improve the classification ca-
pability, the statistical classifier was fitted by means of an
evolutionary strategy (ES). The reason for using this tech-
nique is the big size of the space of solutions and the cor-
relations among the parameters of the classifier, requiring
an automatic optimization to search appropriate designs. In
the evolutionary computation field, the potential correlation
among parameters is referred to as epistasis. Problems with
little epistasis are easily solved (many gradient descent algo-
rithms can solve them), but highly epistatic problems are dif-
ficult and modification of the standard algorithm must be
carried out.

Evolutionary Strategies (ES) [7] were developed to
solve technical optimization problem. They are based on a
metaphor of the theory of evolution proposed by Darwin.

Nowadays, ES are a kind of evolutionary algorithm largely
applied to optimization problems in a wide range of technol-
ogy fields, such as, scheduling, robot controllers, design of
electronic circuits, and aerodynamic design.

Fast identification of the aircraft is the main purpose of
our system. Therefore, the recognition algorithm must be
fast. With this limitation, the simple (but robust) OCRmod-
els will be considered. The OCR will be adapted to the char-
acteristics of the tail number typography; we do not intend to
develop a general-purpose OCR. The designed OCR will be
tuned in order to obtain the best performance for the prob-
lem described in this work.

The outline of the paper is as follows. Section 2 describes
the features selected to represent characters that are man-
aged by the OCR. In Section 3, the statistical classification
model is explained in detail, especially focused in the statis-
tical distance measuring similarity among patterns. The evo-
lutionary learning to adjust the set classifiers parameters is
explained in Section 4. The incorporation of the classifier to
the whole system and its validation is shown in Section 5.
Finally, Section 6 discusses the potential limitations of this
approach and presents some conclusions.

2. AIRCRAFT IDENTIFICATION ALGORITHM

The tail number recognition can be divided in the following
stages.

(i) Frame captures.
(ii) Preprocessing: two preprocessing steps are carried out.

The first one searches in the extracted image to identify
the region containing the tail number. The second one
is applied over this region to isolate single characters.

(iii) Feature extraction: a zoning algorithm is applied to
translate each individual character into a vector with
the estimated attributes.

(iv) Classification: the pattern with the best matching for
each character in the tail number is searched using the
statistical classifier described later.

(v) Postprocessing: the airport database is used as a lexi-
con to solve potential ambiguities in identifications of
some characters.
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Figure 2: General steps for tail number identification.

In Figure 2, previous stages are represented, highlighting the
input and output data associated with each stage.

The characteristics of images require robust features that
are invariant to changes in size, deformations, brightness,
and typography. Thus, the feature extraction procedure must
show insensitivity to these changes [8]. Zoning procedures,
representing characters as a grid of subimages sampled, show
this insensitivity to image conditions on the number of zones
selected [9]. The less the number of zones, the more the ro-
bustness (but the definition of character is less precise) and
more zones show a higher precision (but the behavior with
perturbation is less robust).

The proposed procedure uses nine zones (3 × 3 subim-
ages, see Figure 3). This value maintains the tradeoff between
computation cost and robustness. On the one hand, an incre-
ment in the number of zones demands the application of sev-
eral algorithms to correct some character deformations as ro-
tation and skew. On the other hand, less than nine zones are
insufficient to distinguish characters. Additionally, we will
use the number of holes in the character as an additional fea-
ture. Figure 3 shows the obtained vector for character “H.”

The classifier compares the characters found in the im-
age (its vector representation) with synthetically generated
patterns, assigning the joint probability for each pattern
(p(C,Pi), where C is the character extracted from the image
and Pi is the ith pattern). The classifier is optimized using an
ES to maximize the posterior probability of assignments.

The comparison between vectors (acquired vector and
pattern vector) is performed through a distance function

evaluating the similarity between detected characters and
ideal patterns. A detailed description of the distance function
will be shown in the following section.

Finally, the classifier identifies an aircraft based on the use
of the airport database, in which tail numbers for every air-
craft in the airport are included. The identification method
starts requesting all those tail numbers. We first suppose all
tail numbers in the database had the same length (N) and
there were only one candidate zone (the correct one) com-
prising a number of tentative characters equal to that length.
In that case, the method to be used would be searching for
the maximum joint probability, calculated for each tail num-
ber in the database as

Ptail-number =
N∏
i=1

p
(
Ci,Ptail-number(i)

)
, (1)

where Ptail-number(i) is the vector representation of the pat-
tern associated to the ith character in the tail number, Ci is
the vector representation of the tentative character at the ith
position in the candidate region, and p(C,Pj) is the above-
explained probability.

3. PROBLEMDEFINITION

We have defined a function to evaluate the similarity between
the characters extracted in the image and the ideal patterns
representing each alphanumeric symbol. So, it is a classifica-
tion problem with the patterns represented by real vectors of
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Figure 4: Difference between the ideal pattern “H” and the extracted form image.

10 components (the average grey levels in the 3×3 subimage
samples and the number of holes), and there are 35 possible
classes (possible characters in a given tail number).

The characters are classified using both the distance be-
tween the 3 × 3 density, δ(Ci,Pj), and the difference in the
number of holes, δH(Ci,Pj), of the tentative characters and
the predefined patterns. The density distance is defined as

δ
(
Ci,Pj

) = vTΣ−1v, (2)

v =



∣∣c1i − p1j

∣∣
...∣∣c9i − p9j

∣∣


 , Σ−1 =



α1,1 · · · α1,9
...

. . .
...

α9,1 · · · α9,9


 , (3)

with the restriction
∑9

i=1
∑9

j=1 αi j = 1, αi j = αji.
Here v is the difference between ideal pattern (Pj) and

detected character (Ci) (see Figure 4) and Σ−1 is a relative
weighting matrix. Terms in Σ represent covariances in vector
components and could be tuned by means of an adjustment
process. As an example, Figure 4 illustrates the attribute vec-
tors v extracted from character “H,” rotated and skewed, and
those predefined for its “ideal” pattern.

Regarding the number of holes, the distance associated is
defined as

δH
(
Ci,Pj

) = ∣∣C(holes)i − P(holes) j
∣∣. (4)

A generalized exponential probability density function, dρ,
is proposed to describe the variations in the extracted at-
tributes. The joint pdf for differences in attributes between
a character Ci and its pattern Pj is given by the following ex-
pression:

dρ
(
Ci
) = exp

(− (δ(Ci,Pj
)
+ αHδH

(
Ci,Pj

))
/δP
)

∑Patterns
j=1 exp

(− (δ(Ci,Pj
)
+ αHδH

(
Ci,Pj

))
/δP
) ,
(5)

where αH is a parameter that weights the contribution of the
number of holes to the global distance and that also should
be tuned by the ES in the optimization process, and δP is a
normalization parameter.

The classifier performance could be improved if some
regularity in the features of patterns is taken into account.
It is assumed that the relevance of every sector is different
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Figure 5: General outline of an evolution strategy.

in order to discriminate different patterns. For example, the
density of central sector discriminates quite well those pat-
terns with a central hole (O, D, Q, G, and U) from the rest.
Conversely, the first sector does not incorporate much infor-
mation as all patterns have similar density values. Thus, the
distance measure may be adjusted through the distance ma-
trix Σ−1, taking into account this domain information.

However, the design of matrix Σ−1 can be defined as an
optimization problem to globally search the sector weights
maximizing the discrimination capacity over all predefined
patterns. This optimization process could automatically ob-
tain both the weight terms in attribute distance and the
holes-based distance. In the next section, the ES procedure
will be applied to optimize this distance measurement be-
tween patterns.

4. LEARNING CLASSIFIER PARAMETERS BYMEANS
OF EVOLUTIONARY STRATEGIES

Evolutionary algorithms combine characteristics of both
classifications of classical optimization techniques, volume-
oriented and path-oriented methods. Volume-oriented
methods (Monte Carlo strategies, clusters algorithms) carry
out the searching process scanning the feasible region while
path-oriented methods (pattern search, gradient descent al-
gorithms) follow a path in the feasible region. A definition of
a restricted search space of the finite volume and the start-
ing point is required to volume-oriented and path-oriented
methods, respectively. Evolutionary algorithms characteris-
tics change during the evolutionary process and both ex-
ploitation and exploration searches take place. ES are tech-
niques widely used (and more appropriated than genetic al-
gorithm) in real-values optimization problems. Evolution-
ary computation algorithms offer practical advantages facing
difficult optimization problems [10]. These advantages are
conceptual simplicity, broad applicability, potentiality to use
knowledge and hybridize with other methods, implicit par-
allelism, robustness to dynamic changes, capability for self-
optimization, and capability to solve problems that have no
known solutions.

A general ES is defined as an 8-tuple [7]:

ES = (I ,Φ,Ω,Ψ, s, ι,µ, λ), (6)

where I = (�x,�σ ,�α ) = Rn ×Rnσ
+ × [−π,π]nα is the space of

individuals, nα ∈ {1, . . . ,n} and nα ∈ {0, (2n − nα)(nσ −

1)/2}, Φ : I → R = f is the fitness function, and Ω =
{m{τ,τ′ ,β} : Iλ → Iλ} ∪ {r{rx,rσ ,rα} : Iµ → Iλ} are the ge-
netic operators, mutation and crossover operators. Ψ(P) =
s(P ∪m{τ,τ′ ,β}(r{rx,rσ ,rα}(P))) is the process to generate a new
set of individuals, s is the selection operator, and ι is the ter-
mination criterion.

In this work, the definition of the individual has been
simplified: the rotation angles nα have not been taken into
account, nα = 0.

The mutation operator generates new individuals as fol-
lows:

σ ′i = σi · exp
(
τ′ ·N(0, 1) + τ ·Ni(0, 1)

)
,

�x′ = �x + σ ′i · �N(�0, 1).
(7)

In Figure 5, the general outline of ES is showed.
ES has several formulations, but the most common form

is (µ, λ)-ES, where λ > µ = 1, (µ, λ) means that µ-parents
generate λ-offspring through crossover and mutation in each
generation. The best µ offsprings are selected deterministi-
cally from the λ offspring and replace the current parents. ES
considers that strategy parameters, which roughly define the
size of mutations, are controlled by a “self-adaptive” prop-
erty of their own. An extension of the selection scheme is the
use of elitism; this formulation is called (µ + λ)-ES. In each
generation, the best µ-offspring of the set µ-parents and λ-
offspring replace the current parents. Thus, the best solutions
are maintained through generation. The computational cost
of (µ, λ)-ES and (µ + λ)-ES formulation is the same.

The type of crossover used in this work is the discrete
crossover and the two standard types of ES replacement
schemes, (µ+ λ)-ES and (µ, λ)-ES, were used to select the in-
dividual to the next generation.

4.1. Codification of OCRmodel

In this identification model, the parameters αH and αi j-
values in Σ may be correlated, thus, the global optimization
procedure must simultaneously adjust all of them. In this
case, the global optimization problem has a unique restric-
tion; the elements of distance matrix are normalized to 1,
see (2). This restriction is included in the codification and
all individuals are processed to become feasible ones. Then,
in spite of this restriction, the solutions space does not have
infeasible regions. In this way, the problem has a multimodal
solution space and one solution could have several represen-
tations.
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In this work, an individual is codified as a 46-
dimensional real vector as follows: �x = (Σ−1,αH) = (α1,1,
α1,2, . . . ,α9,9,αH), the distance matrix has been taken sym-
metrical, αi, j = αj,i.

The calculation of fitness function is presented now, as-
suming the exponential pdf presented in Section 4 to model
variations in pattern attributes. The design criterion was to
maximize the probability of correctly classifying a pattern
compared with itself and with the rest of patterns, taking as
goal the worst case. The effect of errors in the measurement
of the number of holes is considered in (8), taking no errors
in the number of holes, and in (10), when errors are con-
sidered. Besides, a certain probability of error in classifying
a pattern with itself is included, with term dnoise represent-
ing spurious variations in the features. The associated prob-
abilities for these distances (distance to the own pattern in
comparison to distance to the rest of patterns) are computed
in (9) and (11), with the appropriate normalization. Equa-
tion (12) is the probability, with and without errors, in the
number of holes and (13) is the lower probability of right
classification among all patterns, representing so the worst
case:

dρ
(
Ci
) =




∑n
j=1 exp

(
− δ

(
Ci,Pj

)
+ αHδH

(
Ci,Pj

)
δP

)
, i �= j,

∑n
j=1 exp

(
− dnoise

δP

)
, i = j,

(8)

ρi = exp
(− dnoise/δP

)
dρ
(
Ci
) , (9)

dσ
(
Ci
) =




∑n
j=1 exp

(
− δ

(
Ci,Pj

)
δP

)
, i �= j,

∑n
j=1 exp

(
− dnoise + αH

δP

)
, i = j,

(10)

σi = exp
(− (dnoise + αH

)
/δP
)

dσ
(
Ci
) , (11)

Pi =
(
1− pH

)
ρi + pHσi, (12)

f = min
[
Pi
]n
i=1. (13)

The parameter dnoise represents so the average distance of a
pattern with itself due to noise, and in this work was fixed to
3%; pH , the error probability in the estimation of number of
holes in a character, has been fixed to 0.05. The value of Pi is
the discrimination probability.

The optimization is guided in order to achieve an im-
provement of the discrimination power. The definition of the
discrimination probability allows maximizing the difference
between the probability to recognize a pattern with itself, and
the most similar pattern to it. A slight modification still must
be done in order to apply the ES methodology. The ES is de-
fined to minimize a quality measurement, the fitness func-
tion. Thus, the goal function is defined as the complementary
probability, in order to minimize the probability of error as
follows:

f ′ = 1− f . (14)

5. EXPERIMENTS

In this section, the optimization process performed to adjust
the OCR parameters is described first and then we summa-
rize the validation carried out with the set of available test
images. Regarding this validation, the segmentation phase
was successful for 100% of available images with tail num-
bers, and 100% of characters contained. So, input data to
OCR systemwere the correct subimages representing isolated
characters.

5.1. Evolution strategies to optimize
character identification

The application of ES in order to tune the OCR parameters
was previously used by other authors [11]. In this work, it
has been applied as an optimization method of probabilistic
detection parameters to obtain the distance matrix (αi j) and
αH (that weights the difference in the number of holes).

Following the method suggested by Schwefel [12], that
assures the convergence of ES to a set of solutions with the
same fitness value, the number of different runs must be
N ′ ≈ 90. The parameters of the ES are summarized in
Table 1.

Two different ES procedures (with/without elitism) were
performed using the parameters summarized in Table 1. In
Figure 6, the average of best fitness value (for 100 runs) in
each generation step was plotted. The standard deviation is
drawn as vertical lines.

The convergence of learning process is quite fair, the pro-
cess always converges to solutions with the same fitness value.
As can be appreciated, the shapes of the evolutionary process
are slightly different (as expected). The (µ + λ)-ES (bold line
in Figure 6), using an elitism selection procedure, converges
in 200 generations, while (µ, λ)-ES (thin line) requires 800
generations to be near the final fitness obtained by (µ + λ)-
ES. The analysis of these results seems to conclude that us-
ing a (µ + λ)-ES achieves better results (at least in execu-
tion time) than using a (µ, λ)-ES. This conclusion may be
premature, since results depend on problem specifications.
When the problem has a unique solution (or a small region
of solutions) and fitness functions are smooth, the elitism
selection procedure, that performs a depth search, is highly
recommend. When the problem specification cannot assure
the above premises about the region of solutions and fit-
ness function, a nonelitism procedure, that performs a breath
search, allows obtaining better solutions with a worse time
performance.

A low value of standard deviation in the fitness function
of population (see Figure 6) at the end of the training process
indicates that solutions (100 vectors) have a similar fitness
value. Low fitness value proves the convergence in terms of
fitness, but not that all solutions represent a unique solution.
A clustering algorithm could carry out the evaluation of this
fact.

Let xi (xi1, x
i
2, x

i
3, . . . , x

i
46) be a solution, {xi}i=0,100 the set

of solutions, and assume that each parameter follows a nor-
mal distribution. In this work, we used CLUTO v2.0 [13],
a freely distributed software package for clustering datasets.
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Table 1: Setting of exogenous parameters of the ES.

Parameter Value

Initial standard deviations σi(0) Randomly generated in range [0.0, 3.0]

Number of rotation angles nα 0

Parent population size µ 10

Offspring population size λ 80

Termination criterion ι Number of generation step = 1000
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0.9
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Figure 6: Evolution of best fitness value.

The clusters are obtained applying a graph-partitioning clus-
tering algorithm that computes the similarity between ob-
jects, inversely proportional to the Euclidean distance. Clus-
tering criterion function to be used in finding the minimum
clusters partition was evaluated. The analysis of CLUTO re-
sults validated the hypothesis that lineal solutions, evolved
with (µ, λ)-ES and (µ + λ)-ES, are in just one cluster each.
Thus, the average of solutions (the centroid of the cluster) is
enough to represent the 100 different solutions. In Tables 2
and 3 the averaged parameters are presented.

The fittest result shows nonzero values in the diagonal of
the distance matrix, that is, negligible correlation exists be-
tween different sectors. The distance that maximizes the in-
terclasses discrimination is achieved taking only into account
the differences in common sectors without considering in-
tersector terms. It can be noticed, as the result obtained for
the weight corresponding to the first sector suggests, that this
must not be taken into account in the calculation of distance
among characters and patterns.

5.2. Validation of OCR’s performance

In order to validate the OCR performance, 115 images were
used from a set of one thousand recorded images taken from
60 aircrafts. The discarded images (unresolved for the human
eye) could not be used in the identification process due to
their low quality. The images comprise the tail number and
were taken from several distances and perspectives. Three
types of images have been taken per aircraft (in the same pro-
portion).

(i) Near-distance images, where the tail number is centred
in the image, and it is taken orthogonal to the aircraft.

(ii) Medium-distance images, where the tail number ap-
pears with other objects (e.g., windows, flags, etc.).
Furthermore, the tail number appears distorted by the
effect of the aircraft fuselage curvature.

(iii) Long-distance images, where the tail number is con-
fused with the set of objects that appear in the image
(e.g., wings, motor, soil, sky, staircases, etc.).

In Figure 7, there are some sample images used in this
work, where the variability due to geometric transforma-
tions, intensity and sizes can be observed. The image regions
representing characters may suffer from spatial transforma-
tions (because of the relative position of the camera), vari-
ability of grey-level characteristics (because of different at-
mospheric conditions or color of the character), and vari-
ations in the letters size along different aircraft. Thus, for
example, considering these images, the tail numbers “EC-
DLH” and “EC-FLN” sizes are 526 by 134 pixels and 230 by
45 pixels, respectively.

The distance matrix obtained with the ES and a simple
one used as reference were incorporated to compare perfor-
mances of different classifiers. All components of the refer-
ence matrix were set to 1/81, that is, a classifier without infor-
mation about the features of characters (Euclidean distance)
was considered for comparison. The classifier was applied
over the 115 test images and the postprocessing step selected
the tail number of the airport database, with maximum joint
probability. As mentioned above, the segmentation phase
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Table 2: Distance matrix Σ−1 and αH averaged in 100 runs of (µ, λ)-ES. Values below 1E-3 are set to zero.

0 0 0 0 0 0 0 0 0

0 2,9E-01 0 0 0 0 0 1,0E-03 4,8E-03

0 0 9,6E-03 0 0 0 0 0 0

0 0 0 6,0E-02 0 0 0 0 0

Σ−1 0 0 0 0 9,5E-02 0 1,4E-03 1,5E-03 0

0 0 0 0 0 6,2E-02 1,5E-03 0 0

0 0 0 0 1,4E-03 1,5E-03 2,7E-01 0 0

0 1,0E-03 0 0 1,5E-03 0 0 1,1E-01 0

0 4,8E-03 0 0 0 0 0 0 6,0E-02

αH 342,7

Table 3: Distance matrix Σ−1 and αH averaged in 100 runs of (µ + λ)-ES. Values below 1E-3 are set to zero.

0 0 0 0 0 0 0 0 0
0 3,2E-01 0 0 0 0 0 0 0
0 0 7,6E-03 0 0 0 0 0 0
0 0 0 5,2E-02 0 0 0 0 0

Σ−1 0 0 0 0 9,0E-02 0 0 0 0
0 0 0 0 0 6,9E-02 0 0 0
0 0 0 0 0 0 2,7E-01 0 0
0 0 0 0 0 0 0 1,2E-01 0
0 0 0 0 0 0 0 0 7,0E-02

αH 273,3

Figure 7: Several test images.

was successful for all test images, providing the OCR with
the correct image regions in all the cases.

In Figure 8, the validation results are presented including
the histogram of the maximum joint probability.

Therefore, the best performance was achieved with the
classifier that incorporates the distance matrix evolved by
means of the (10+80)-ES; its histogram is displaced to higher
values of maximum joint probability. The mean improve in
the tail number recognition task is summarized in Table 4.

In this problem, to obtain a better character classifier will
induce achieving a better “word” classifier too. An identifica-
tion improvement of 1.6% per image justifies the application
of an optimization process, in this case, due to the character-
istic of the space problem, applying the ES paradigm.

In our tests, all tail numbers were correctly identified us-
ing the airport database, as far as the maximum probability
corresponds to the actual tail number.

6. CONCLUSIONS

In this work, an ES has been applied to optimize the set of pa-
rameters of an OCR. The method was chosen because of its
easy implementation and good tradeoff between complexity
and performances. The identification of tail number was im-
proved using the correlation of different sectors, to identify
characters, in the statistical classifier. Furthermore, a hierar-
chical discrimination of characters, adding some other char-
acter features, as number of joint points, will surely enhance
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Figure 8: Histogram of OCR results.

Table 4: Percentage of improvement per image of the maximum
joint probability calculates between classifiers.

Classifiers Improvement

(10 + 80)-ES versus (10, 80)-ES 0.1%

(10 + 80)-ES versus reference 1.6%

(10, 80)-ES versus reference 1.5%

the global performance of the tail number identification. We
have tested the behavior of the described systemwith 115 real
images taken in Madrid/Barajas Airport. They were recorded
from 60 different tail numbers, viewed from different posi-
tions. Results show that our system is quite robust although
its discriminating capability would be able to improve.
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Jesús Garcı́a Herrero received his Master’s
degree in telecommunication engineering
from Universidad Politécnica de Madrid
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