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The majority of the nonlinearity in a communication system is attributed to the power amplifier (PA) present at the final stage
of the transmitter chain. In this paper, we consider Gaussian distributed input signals (such as OFDM), and PAs that can be
modeled by memoryless or memory polynomials. We derive closed-form expressions of the PA output power spectral density,
for an arbitrary nonlinear order, based on the so-called Leonov-Shiryaev formula. We then apply these results to answer practical
questions such as the contribution of AM/PM conversion to spectral regrowth and the relationship between memory effects and
spectral asymmetry.
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1. INTRODUCTION

Power amplifiers (PAs) are important components of com-
munications systems and are inherently nonlinear. For Ex-
ample, the so-called class AB PAs, which are moderately non-
linear, are typically employed in wireless base stations and
handsets. When a nonconstant modulus signal goes through
a nonlinear PA, spectral regrowth (broadening) appears in
the output, which in turn causes adjacent channel interfer-
ence (ACI). Stringent limits on ACI are imposed by the stan-
dard bodies and thus the extent of the PA nonlinearity must
be controlled.

We are interested in predicting the amount of spectral re-
growth for a given level of PA nonlinearity. Since more linear
PAs are less efficient, one may want to maximize nonlinearity
(and hence optimize efficiency) subject to the spectral mask
constraint. Such optimization strategy is feasible if we have
tools for spectral regrowth analysis of the nonlinear output.

If the PA input is Gaussian, the PA output power spectral
density (PSD) has been derived for a 5th-order nonlinear PA
in [1, 2]. In [3], the analysis was carried out for a 9th-order
nonlinear PA. The results in [4] are fairly general but devel-
oped for bandpass signals, whereas references [1, 2, 3] and
the present paper adopt a baseband nonlinear formulation.
In [5], a general expression is given without proof. When the
PA input is non-Gaussian, theoretical analysis becomes more

complicated, but results are available in [6] for a 7th-order
nonlinear PA with (non-)Gaussian inputs.

The objective of this paper is to derive closed-form ex-
pressions for the PA output PSD (or output autocovariance
function) for an arbitrary nonlinear order, for both themem-
oryless and memory baseband polynomial PA models. The
PA input is assumed to be Gaussian distributed, which is a
reasonable assumption for OFDM signals [2], forward link
CDMA signals with a large number of Walsh-coded channels
at the same frequency [7], or signals at the satellite-borne re-
lay [4]. The Gaussian assumption significantly reduces the
complexity of the analysis. Equipped with these formulas, we
can then answer practical questions, such as how important
or necessary it is to correct for the AM/PM distortion in the
PA and possible mechanisms for spectral asymmetry in the
PA output spectrum.

We would like to emphasize that the PA models consid-
ered in this paper belong to the polynomial family [8, 9]; that
is, polynomials or Taylor series for the (quasi) memoryless
case, and Volterra series for the case with memory. Polyno-
mials and Volterra series are frequently used in PA modeling;
see, for example, [1, 2, 3, 4, 6, 9, 10, 11].

The organization of the paper is as follows. In Section 2,
we outline the approach of spectral analysis for a base-
band nonlinear system with cyclostationary input, suitable
for digital communication signals. We will investigate the
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well-known (quasi) memoryless PA model in Section 3, and
then study the relatively recentmemory polynomial model in
Section 4. Conclusions are drawn in Section 5. In order not
to interrupt the flow of the paper, we defer the rather techni-
cal proofs of our theorems to Section 6.

2. CYCLOSTATIONARY INPUT AND
SPECTRAL ANALYSIS

A digital communication signal x(t) is represented by

x(t) =
∑
k

skh(t − kT), (1)

where sk is the kth symbol, h(t) is the pulse shaping filter,
and T is the symbol period. Thus, x(t) is strict-sense cyclo-
stationary in general [12, Chapter 12], [13].

We denote by cum{·}, the cumulant operator. The first-
order cumulant is the mean; the second-order cumulant is
the covariance. General definitions and properties of cumu-
lants can be found in [14]. The autocovariance function of
the PA input signal x(t) at time t and lag τ is defined as

c2x(t; τ) = cum
{
x∗(t), x(t + τ)

}
. (2)

Closed-form spectral analysis for a nonlinear systemwith
nonstationary (or cyclostationary) input is in general ex-
tremely difficult (if at all possible), even under the Gaussian
x(t) assumption. Therefore, we focus our attention on the
case where the bandwidth of the pulse shaping filter is lim-
ited to 1/T (i.e., h(t) has no excess bandwidth). Denote by
H( f ) the Fourier transform (FT) of h(t); that is,

H( f ) =
∫
h(t)e− j2π f tdt; (3)

this assumption implies that H( f ) = 0, for all | f | > 1/(2T).
If sk is zero mean, i.i.d. with variance σ2s , we show next

that x(t) in (1) is wide-sense stationary; that is, c2x(t; τ) =
c2x(τ), for all t.

First, it is straightforward to show that

c2x(t; τ) = σ2s
∑
k

h∗(t − kT)h(t + τ − kT) (4)

for the x(t) in (1). Next, recall the inverse FT relationship

h(t) =
∫
H( f )e j2π f tdf . (5)

Substituting (5) into (4) and using the fact that

∑
m

1
T
δ
(
f − m

T

)
=
∑
k

e j2π f kT , (6)

we obtain

c2x(t; τ) = σ2s
T

∑
m

e− j2πmt/T

∫
H∗( f +m/T)H( f )e j2π f τdf .

(7)

H( f + 1/T) H( f ) H( f − 1/T) H( f − 2/T)

−1/T −1/2T 0 1/2T 1/T 3/2T 2/T
f

Figure 1: When H( f ) has no excess bandwidth, H∗( f +m/T)H( f )
= 0, for allm �= 0.

From (7), it is clear that the t-dependence in c2x(t; τ)
comes from the e− j2πmt/T term, if m �= 0. Equation (7) can
also be viewed as a synthesis equation for the time-varying
correlation function in terms of cyclic correlation with cy-
cles −2πm/T . The bandwidth of H( f ) affects the number of
cycles present in c2x(t; τ) [15, 16].

Since the bandwidth of H( f ) is limited to 1/T , H( f +
m/T) and H( f ) do not overlap if m �= 0 (see Figure 1), and
hence the product H∗( f +m/T)H( f ) = 0, for all m �= 0. As
a result, only the m = 0 term survives in the summation in
(7) and

c2x(t; τ) = σ2s
T

∫ ∣∣H( f )
∣∣2e j2π f τdf , (8)

which is not a function of t. Therefore, under the no excess
bandwidth assumption, c2x(t; τ) = c2x(τ), for all t, meaning
that x(t) is wide-sense stationary.

Since all cumulants of order ≥ 3 vanish for Gaussian
processes, a wide-sense stationarity Gaussian x(t) is also
strict-sense stationarity. From now on, we will drop the t-
dependence and express the autocovariance function of x(t)
as c2x(τ).

We point out that (wide-sense) stationarity of x(t) is as-
sumed in [1, 2, 3, 4, 6], often without justification.

The PSD of x(t) is defined as the FT of c2x(τ):

S2x( f ) =
∫
c2x(τ)e− j2π f τdτ. (9)

Next, we will relate the PSD of the baseband PA output y(t)
to that of the baseband PA input x(t), when x(t) and y(t)
obey polynomial nonlinear relationships.

3. QUASIMEMORYLESS PAMODEL

The following model is commonly used to describe memo-
ryless PAs in the baseband; see, for example, [10, page 69],

y(t) =
K∑
k=0

a2k+1
[
x(t)

]k+1[
x∗(t)

]k
(10)

= x(t)
K∑
k=0

a2k+1
∣∣x(t)∣∣2k, (11)

where {a2k+1} are the (complex-valued) coefficients for the
PA. We see from (11) that the complex gain is G(x(t)) =
y(t)/x(t) = ∑K

k=0 a2k+1|x(t)|2k, which is a function of r =
|x(t)| only.
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Writing the complex gain as G(r) = A(r)e jΦ(r), we re-
fer to A(r) as the AM/AM conversion, and to Φ(r) as the
AM/PM conversion. A linear PA would have constant A(r)
and Φ(r) characteristics. If A(r) is nonconstant but Φ(r) is,
the corresponding PA is called strictly memoryless. If both
A(r) and Φ(r) are nonconstant, the resulting PA is called
quasimemoryless. Equation (10) can be used to describe
both types of memoryless nonlinearity, and hence we do not
distinguish the two in subsequent analysis.

3.1. Closed-form expression for spectral regrowth

We assume that x(t) is circular complex in the sense that

cum
{
x(t), x(t + τ)

} = 0, ∀τ. (12)

We write x(t) = xR(t) + jxI(t), where xR(t) and xI(t) are the
real and imaginary parts of x(t), respectively. It can be shown
that (12) is equivalent to

cum
{
xR(t), xR(t + τ)

} = cum
{
xI(t), xI(t + τ)

}
,

cum
{
xR(t), xI(t + τ)

} = − cum
{
xI(t), xR(t + τ)

}
.

(13)

Processes satisfying (12) have also been referred to as com-
plex video processes [17]. This assumption is commonly
used; see [1, 2, 3, 4, 6].

We now present the first theorem which relates the out-
put PSD S2y( f ) to the input PSD S2x( f ) and (quasi) memo-
ryless PA parameters {a2k+1}.

Theorem 1. Assume that x(t) is stationary, zero-mean, com-
plex Gaussian distributed and satisfies (12). If the output y(t)
is related to the input x(t) through (10), then the autocorrela-
tion function of y(t) is

c2y(τ) =
K∑

m=0
α2m+1

∣∣c2x(τ)∣∣2mc2x(τ), (14)

where the constant coefficient

α2m+1 = 1
m + 1

∣∣∣∣∣∣
K∑

k=m
a2k+1

(
k

m

)
(k + 1)!

[
c2x(0)

]k−m∣∣∣∣∣∣
2

,

(
k

m

)
= k!

m!(k −m)!
.

(15)

The PSD of y(t) is related to that of x(t) through

S2y( f ) =
K∑

m=0
α2m+1 S2x( f )� · · ·� S2x( f )︸ ︷︷ ︸

m+1

� S2x(− f )� · · ·� S2x(− f )︸ ︷︷ ︸
m

,
(16)

where� denotes convolution.

Proof. See Section 6.1.

Some remarks are now in order.

(R1) From (16), we infer that if S2x( f ) has bandwidth Bx,
y(t) has bandwidth By = (2K + 1)Bx, due to the spec-
tral expansion caused by the convolution.

(R2) If S2x( f ) is symmetric; that is, S2x( f ) = S2x(− f ), then
S2y( f ) is symmetric as well. This means that a (quasi)
memoryless PA will not lead to spectral asymmetry in
the PA output.

(R3) If S2x( f ) is asymmetric, the 2m times spectral convo-
lution on the RHS of (16) will yield a more symmetric
spectrum for largerm.

Next, we would like to provide detailed expressions for
the 9th-order nonlinear PA; that is, K = 4 in (10). Equation
(16) yields for K = 4,

α1=
∣∣a1+2a3c2x(0) + 6a5c22x(0)+24a7c

3
2x(0) + 120a9c42x(0)

∣∣2,
α3 = 2

∣∣a3 + 6a5c2x(0) + 36a7c22x(0) + 240a9c32x(0)
∣∣2,

α5 = 12
∣∣a5 + 12a7c2x(0) + 120a9c22x(0)

∣∣2,
α7 = 144

∣∣a7 + 20a9c2x(0)
∣∣2,

α9 = 2880
∣∣a9∣∣2.

(17)

It is important to cross-verify (17) with previously pub-
lished results to validate our closed-form expression. We will
compare with three references below.

(i) In [1], c2x(τ) was defined as 0.5 cum{x∗(t), x(t+τ)} [1,
equation (27)]. Once we have taken care of this scaling
difference, (17) can be shown to agree with equation
(38)1 of [1], which holds for up to 5th-order nonlin-
earities.

(ii) In [6], x(t) was assumed to be circular complex sym-
metric which renders c2x(τ) real valued. Except for the
[c2x(τ)]2m+1 vs. |c2x(τ)|2mc2x(τ) difference, (17) agree
with the expressions presented in [6, Section III.B],
where a 7th-order nonlinear model was considered.

(iii) In [3], the output PSD expression was obtained for a
9th-order nonlinear PA model.2 Our equations (17)
agree with the expressions3 found on [3, page 1068].

In conclusion, previously published results in [1, 3, 6] can be
regarded as special cases of our closed-form expression (16).

3.2. Case study: the effect of AM/PM conversion
on spectral regrowth

Although by reducing the input power level to the PA (i.e.,
with input back-off), one can reduce the amount of spectral

1Reference [1] has a typo in equation (38): 48R{η1η∗3 } should be
48R{η1η∗5 }.

2Although the baseband input-output relationship is incorrectly ex-
pressed in [3, equation (7)], the correct baseband model was used in [3,
equation (A.5)].

3Reference [3] has a typo on page 1068: 15ã9Rzo should be 20ã9Rzo.
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Figure 2: Measured AM/AM and AM/PM characteristics of a Class AB PA.

Table 1: Estimated polynomial PA model coefficients for three scenarios: (i) when both AM/AM and AM/PM conversions are present; (ii)
when only the AM/AM conversion is present (Φ(r) = 0); and (iii) when only the AM/PM conversion is present (A(r) = 11.75 was used).

Scenarios (i) AM/AM+ AM/PM (ii) AM/AM only (iii) AM/PM only

a1 14.8526− j0.1337 14.8469 11.7443− j0.1562
a3 −23.1899 + j6.9785 −23.3505 0.4681 + j5.9639
a5 30.5226− j1.9699 33.8272 −4.7569 + j6.9758
a7 −21.5517− j4.7097 −25.4177 4.8612− j13.7023
a9 6.0311 + j2.7527 7.3773 −1.5655 + j5.6319

regrowth, the efficiency of the PA is also diminished. Some
form of PA linearization is often sought in order to achieve
both good linearity and efficiency. In order to adopt an effec-
tive linearization strategy, it is important to understand the
nonlinear effects present and their manifestation in terms of
spectral regrowth.4 For a given (quasi) memoryless PA, it is
useful to assess the relative contributions from the AM/AM
and AM/PM conversions to spectral regrowth. We can do so
using Theorem 1.

Given measured PA AM/AM characteristic A(r) and
AM/PM characteristic Φ(r), we can then calculate the com-
plex gain G(r) = A(r)e jΦ(r). Note that although the PA out-
put y(t) is a nonlinear function of the PA input x(t), y(t) is
linear in the model coefficients {a2k+1}. Therefore, regressing
rG(r) with respect to the basis {r, r3, . . . , r2K+1}, we can esti-
mate the model parameters {a2k+1} via linear least squares.
Afterwards, we apply Theorem 1 to calculate the output PSD
S2y( f ).

To assess the individual contribution from the AM/AM
conversion to S2y( f ), we set,5 Φ(r) = 0 and find the {a2k+1}

4The error vector magnitude should also be reduced, which is not the
subject of this paper.

5If we set Φ(r) = c, the PSD S2y( f ) can be shown to be independent of
the constant c.

coefficients corresponding to G(r) = A(r). On the other
hand, to evaluate the individual contribution of the AM/PM
effect to spectral regrowth, we set A(r) = A (the intended
linear gain of the PA), and find the {a2k+1} coefficients cor-
responding to G(r) = AejΦ(r) as described in the previous
paragraph.

Example 1. Figure 2 shows the AM/AM and AM/PM char-
acteristics of an actual Class AB PA. Table 1 lists the ex-
tracted PA model parameters for three scenarios: (i) when
both AM/AM and AM/PM conversions are present; (ii) when
only the AM/AM conversion is present (Φ(r) = 0); and (iii)
when only the AM/PM conversion is present (A(r) = 11.75
was used so that the corresponding output power c2y(0) re-
mains the same as in case (i) and case (ii)).

First, we would like to verify that the closed-form expres-
sion (16) is accurate. We generated 65,536 samples of the PA
input x(t) by passing a zero-mean, i.i.d., circular complex
Gaussian process, through a 48-tap lowpass filter; the vari-
ance of x(t) was set to σ2x = c2x(0) = 0.322. The PA output
y(t) was formed according to y(t) = x(t)A(|x(t)|)e jΦ(|x(t)|).
The sample and the theoretical S2x( f ) and S2y( f ) are shown
in Figure 3. The sample and the theoretical PSDs are very
close (the dashed line and the dotted line almost coincide;
the solid line and the dashed-dotted line almost coincide),
indicating that formula (16) is accurate. Note that we have
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sample S2x( f ) is shown by the dotted line; the theoretical S2y( f )
is shown by the solid line, and the sample S2y( f ) is shown by the
dashed-dotted line.

lowered S2y( f ) by 21.4 dB to facilitate easier visual compari-
son between S2x( f ) and S2y( f ).

Next, we apply (16) to predict spectral regrowth for the
above three scenarios. From Figure 4, we see that for the
particular PA given in Figure 2 and for the Gaussian in-
put described above, both AM/AM and AM/PM conver-
sions contribute significantly to spectral regrowth. If one
does not apply any linearization technique to the PA, the
output PSD will be at the level indicated by the solid line
in Figure 4. If with a linearization method, we can com-
pletely correct for the AM/AM distortion, the resulting
S2y( f ) would be given by the dashed-dotted line, which is
attributed solely to the AM/PM conversion. The remaining
spectral regrowth is still high and additional linearization,
aimed at reducing the AM/PM distortion, may be neces-
sary.

In [18], a predistortion linearization algorithm was im-
plemented for a handset which only corrects the AM/AMdis-
tortion of the PA. Example 1, however, shows that one should
be careful not to underestimate the effects of AM/PM distor-
tion. Of course, one has to evaluate the particular A(r) and
Φ(r) characteristics to draw pertinent conclusions.

4. MEMORY POLYNOMIAL PAMODEL

For low-power amplifiers and/or narrowband input, the
PA can be regarded as (quasi) memoryless. However, high-
power amplifiers (HPAs), such as those used in wireless base
stations, exhibit memory effects; wideband signals (such as
WCDMA) also tend to induce memory effects in the PA.
In general, the cause of memory effects can be electrical
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Figure 4: The theoretical S2x( f ) is shown by the dotted line, the
theoretical S2y( f ) is shown by the solid line for scenario (i), by the
dashed line for scenario (ii), and by the dashed-dotted line for sce-
nario (iii).

or electrothermal [19]. When long-term memory effects are
present, AM/AM and AM/PM conversions are insufficient to
characterize the PA, and more elaborate models, such as the
Volterra series, can be used; for example, [9, 20].

Although the Volterra series is a general nonlinear model
with memory [8], its application to practical systems is lim-
ited due to the drastic increase in computational complexity
when higher-order nonlinearities are included. Recently, in
[21, 22], it has been shown that the so-called memory poly-
nomial model is a good framework for studying nonlinear
PAs with memory effects; it is also a good model for pre-
distorters. When only odd-order nonlinear terms are consid-
ered, the PA output is related to the input as follows:

y(t) =
K∑
k=0

∫
h2k+1(τ)

∣∣x(t − τ)
∣∣2kx(t − τ)dτ (18)

=
K∑
k=0

∫
h2k+1(τ)

[
x(t − τ)

]k+1[
x∗(t − τ)

]k
dτ (19)

=
K∑
k=0

h2k+1(t)� φ2k+1
(
x(t)

)
︸ ︷︷ ︸

y2k+1(t)

, (20)

where φ2k+1(x(t)) = [x(t)]k+1[x∗(t)]k.
To the best of our knowledge, there has been no pub-

lished results on spectral regrowth analysis for nonlinear PAs
with memory.

4.1. Closed-form expression

We present here a simple closed-form expression for the out-
put PSD of the memory polynomial model (18).
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Table 2: Memory polynomial PA coefficients extracted for a real PA with maximum nonlinearity order 2K +1 = 7 and maximum lagQ = 2.

Diagonal kernel q = 0 q = 1 q = 2

h1[q] 1.1330 + j0.0696 −0.2027 + j0.0338 0.0854− j0.0341

h3[q] −0.2348− j0.0876 0.1809 + j0.2447 −0.0439− j0.0640

h5[q] 0.2675− j0.4113 −0.1376− j0.1862 0.0888 + j0.0197

h7[q] −0.2686 + j0.2694 0.0273 + j0.0504 −0.0457 + j0.0093

Theorem 2. Assume that x(t) is stationary, zero-mean, com-
plex Gaussian distributed and satisfies (12). If the output y(t)
is related to the input x(t) through (18), then the PSD of y(t)
is related to that of x(t) through

S2y( f ) =
K∑

m=0
α2m+1( f ) S2x( f )� · · ·� S2x( f )︸ ︷︷ ︸

m+1

� S2x(− f )� · · ·� S2x(− f )︸ ︷︷ ︸
m

,
(21)

where

α2m+1( f )

= 1
m + 1

∣∣∣∣∣∣
K∑

k=m
H2k+1( f )

(
k

m

)
(k + 1)!

[
c2x(0)

]k−m∣∣∣∣∣∣
2

,

(22)

and

H2k+1( f ) =
∫
h2k+1(t)e− j2π f tdt, (23)

is the FT of the (2k + 1)th-order kernel h2k+1(t).

Proof. See Section 6.2.

We have the following remarks.

(R4) The (quasi) memoryless model (10) can be regarded
as a special case of the memory polynomial model
(18) with h2k+1(t) = a2k+1δ(t). Therefore, Theorem 1
can be regarded as a special case of Theorem 2 with
H2k+1( f ) = a2k+1.

(R5) Since the baseband kernel h2k+1(t) is generally complex
valued, its FT is not guaranteed to be conjugate sym-
metric. Therefore, even if S2x( f ) is symmetric, S2y( f )
may not be symmetric.

4.2. Case study: asymmetric spectral
regrowth andmemory effects

It is commonly known that asymmetry in the PSD of y(t)
is indicative of memory effects in the PA (e.g., [11]). Since
the memory polynomial model has been shown to be a good
model for nonlinear PAs with memory, next, we will carry
out quantitative analysis on spectral asymmetry of a PA with
memory, by applying Theorem 2. We use the adjacent chan-

nel power ratio (ACPR) defined as [3]

ACPR =
∫ f4
f3
S2y( f )df∫ f2

f1
S2y( f )df

, (24)

as the performance metric, where f1 and f2 are the frequency
limits of the main channel, and f3 and f4 are the frequency
limits of the adjacent channel. The two bandwidths ( f2 − f1)
and ( f4 − f3) need not be the same and indeed are not for
many current standards [23, page 39]. For ACPRLOWER, we
use f3, f4 as limits for the lower adjacent channel. Similarly,
for ACPRUPPER, we use f3, f4 as limits for the upper adjacent
channel.

Example 2. In Table 2, we show the memory polynomial ker-
nel coefficients extracted from a PA which is known to ex-
hibit memory effects. The sampling rate was fs = 150MHz.
To calculate the ACPR, we used [−0.15, 0.15] as the normal-
ized frequency limits for the main channel, [−0.45,−0.15] as
the normalized frequency limits for the lower adjacent chan-
nel, and [0.15, 0.45] as the normalized frequency limits for
the upper adjacent channel. In Figure 5, we plot ACPRLOWER

as the solid line, and ACPRUPPER as the dashed-dotted line,
as a function of the input signal power σ2x = c2x(0). The
two curves do not coincide, implying spectral asymmetry
in S2y( f ). At low input power levels, the ACPR curves are
approximately constant—this is because the PA is approxi-
mately linear when it is largely backed off, and spectral re-
growth was almost absent. As the PA is driven into compres-
sion, adjacent channel power increases sharply. Plots similar
to Figure 5 can be used to select the input power level to en-
sure that spectral emission requirements are met.

5. CONCLUSIONS

The focus of this paper was on polynomial type of PA nonlin-
earities and Gaussian inputs. The objective was to obtain an-
alytical expressions for the PA output power spectral density.
We employed the little known Leonov-Shiryaev formula (see
Section 6) to obtain closed-form output PSD expressions
that apply to an arbitrary-order nonlinearity, and showed
that they embody as special cases, previously reported results
for memoryless nonlinear PAs of specific orders. Our spec-
tral regrowth analysis on the PA model with memory is the
first of its kind. These results can help us make important
practical decisions such as what factors contribute to spec-
tral regrowth and how to control or correct them in order to
keep the adjacent channel interference to within limits.
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Figure 5: ACPRLOWER (solid line) and ACPRUPPER (dashed-dotted
line) as a function of the input power c2x(0) for a PA with memory.

6. PROOFS OF THEOREMS

6.1. Proof of Theorem 1

Define φ2k+1(x(t)) = [x(t)]k+1[x∗(t)]k. We can rewrite (10)
as

y(t) =
K∑
k=0

a2k+1φ2k+1
(
x(t)

)
. (25)

Since x(t) is assumed to be zero-mean, Gaussian distributed,
only the second-order statistics of x(t) are nonzero. More-
over, all odd-order moments of x(t) are zero [17]. Therefore,
E[φ2k+1(x(t))] = 0 and E[y(t)] = 0.

The autocorrelation (autocovariance) function of y(t) is

c2y(τ) = cum
{
y∗(t), y(t + τ)

}
(26)

=
K∑
k=0

K∑
l=0

a∗2k+1a2l+1 cum
{
φ∗2k+1

(
x(t)

)
,φ2l+1

(
x(t + τ)

)}
.

(27)

First, we would like to express cum{φ∗2k+1(x(t)),
φ2l+1(x(t + τ))} in terms of c2x(τ).

Since φ2k+1(x(t)) is zero-mean,

cum
{
φ∗2k+1

(
x(t)

)
,φ2l+1

(
x(t + τ)

)}
= E

{[
x∗(t)

]k+1[
x(t)

]k[
x(t + τ)

]l+1[
x∗(t + τ)

]l}
.

(28)

It is possible to use the moment theorem for complex Gaus-
sian processes [17] to simplify (28), but as the authors of [3]
found out, it “requires overwhelmingly complex manual ex-
pansion of the moment expressions.” We adopt another ap-
proach here, which employs the so-called Leonov-Shiryaev
formula [14, page 89].

To utilize the Leonov-Shiryaev formula, we start with
a two-way table. We list the individual elements that form
the product φ∗2k+1(x(t)) = [x∗(t)]k+1xk(t) in the first row
and display the individual elements that form the product
φ2l+1(x(t + τ)) = [x(t + τ)]l+1[x∗(t + τ)]l in the second row:

x∗(t) · · · x∗(t)︸ ︷︷ ︸
k+1

x(t) · · · x(t)︸ ︷︷ ︸
k

x(t + τ) · · · x(t + τ)︸ ︷︷ ︸
l+1

x∗(t + τ) · · · x∗(t + τ)︸ ︷︷ ︸
l

.
(29)

Next, we partition the above (2k + 2l + 2) elements into
subsets, according to the following criteria:

(i) the joint cumulant of the elements in any subset is
nonzero,

(ii) for each partition, there must be at least one subset
that contains elements from both rows of (29). We will
refer to such subset as a “hooking” subset.

When both conditions (i) and (ii) are satisfied, the corre-
sponding partition is called a “valid” partition. We must find
all valid partitions of the two-way table in order to simplify
(28).

Since x(t) is zero-mean, Gaussian, and satisfies (12), the
only nonzero cumulants of x(t) are

c2x(τ) = cum
{
x∗(t), x(t + τ)

}
(30)

and its variants

c2x(0) = cum
{
x∗(t), x(t)

}
,

c∗2x(τ) = cum
{
x(t), x∗(t + τ)

}
.

(31)

Therefore, to meet requirement (i), we only need to con-
sider two element subsets, and the two elements within the
subset must have different conjugation.

To illustrate the above concept, we consider the following
two-way table which would be needed if we are interested in
evaluating cum{φ∗5 (x(t)),φ3(x(t + τ))}:

x∗(t) x∗(t) x∗(t) x(t) x(t)

x(t + τ) x(t + τ) x∗(t + τ).
(32)

One valid partition of the above 8 elements is{
x∗(t), x(t + τ)

}
,
{
x∗(t), x(t)

}
,
{
x∗(t), x(t)

}
,{

x(t + τ), x∗(t + τ)
}
,

(33)

and there are 12 such possibilities (consider each element
unique). In this partition, there is only one hooking subset
{x∗(t), x(t + τ)}.

Another valid partition is{
x∗(t), x(t + τ)

}
,
{
x∗(t), x(t + τ)

}
,
{
x(t), x∗(t + τ)

}
,{

x∗(t), x(t)
}
,

(34)

and the multiplicity also happens to be 12. In this partition,
the first three subsets are hooking subsets.
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These are the only valid partitions for the above 8 element
example.

Once we have found all valid partitions, we take the cu-
mulant of the elements in each subset, multiply the resulting
cumulants from all subsets of a given partition, and then sum
over all valid partitions. For the above 8 element example, we
have

cum
{
φ∗5
(
x(t)

)
,φ3
(
x(t + τ)

)}
= 12c2x(τ)c2x(0)c2x(0)c2x(0)

+ 12c2x(τ)c2x(τ)c∗2x(τ)c2x(0)

= 12c2x(τ)c32x(0) + 12
∣∣c2x(τ)∣∣2c2x(τ)c2x(0).

(35)

Now for the general two-way table in (29), we realize the
following. For each partition to be valid, there need to be
(2m + 1) hooking subsets: (m + 1) subsets are of the form
{x∗(t), x(t + τ)},m subsets are of the form {x(t), x∗(t + τ)},
and 0 ≤ m ≤ min(k, l). To come up with these (2m + 1)
hooking subsets, there are

(k + 1)k · · · (k + 1−m)(l + 1)l · · · (l + 1−m)
(m + 1)!

× k(k − 1) · · · (k −m + 1)l(l − 1) · · · (l −m + 1)
m!

(36)

different possibilities.
Apart from the (2m + 1) hooking subsets, the remaining

elements must be grouped into (k −m) subsets of the form
{x∗(t), x(t)}, and (l−m) subsets of the form {x(t+τ), x∗(t+
τ)}. The multiplicity number for this stage is

(k −m)!(l −m)!. (37)

Multiplying (36) and (37), we find that the multiplicity
number for a partition that involves exactly (m+1) subsets of
{x∗(t), x(t+τ)},m subsets of {x(t), x∗(t+τ)}, (k−m) subsets
of {x∗(t), x(t)}, and (l−m) subsets of {x(t+ τ), x∗(t+ τ)} is

1
m + 1

(
k

m

)(
l

m

)
(k + 1)!(l + 1)!. (38)

Now take the cumulant of each subset and multiply the
resulting cumulants. We infer that the contribution from any
partition described above to (28) is

[
c2x(τ)

]m+1[
c∗2x(τ)

]m[
c2x(0)

]k−m[
c2x(0)

]l−m
. (39)

Summing over all valid partitions, we obtain

cum
{
φ∗2k+1

(
x(t)

)
,φ2l+1

(
x(t + τ)

)}

=
min(k,l)∑
m=0

1
m + 1

(
k

m

)(
l

m

)
(k + 1)!(l + 1)!

× ∣∣c2x(τ)∣∣2mc2x(τ)[c2x(0)]k+l−2m.
(40)

Substituting (40) into (27), we obtain

c2y(τ) =
K∑
k=0

K∑
l=0

a∗2k+1a2l+1
min(k,l)∑
m=0

1
m + 1

(
k

m

)(
l

m

)

× (k + 1)!(l + 1)!
∣∣c2x(τ)∣∣2mc2x(τ)[c2x(0)]k+l−2m.

(41)

The above equation can be simplified once we realize the fol-
lowing:

(i)
∑K

k=0
∑K

l=0
∑min(k,l)

m=0 is equivalent to
∑K

m=0
∑K

k=m
∑K

l=m.
(ii) Since c2x(0) = E[|x(t)|2] is real-valued,

K∑
k=m

a∗2k+1

(
k

m

)
(k + 1)!

[
c2x(0)

]k−m

=

 K∑

l=m
a2l+1

(
l

m

)
(l + 1)!

[
c2x(0)

]l−m∗.
(42)

Therefore,

c2y(τ) =
K∑

m=0
α2m+1

∣∣c2x(τ)∣∣2mc2x(τ), (43)

where

α2m+1 = 1
m + 1

∣∣∣∣∣∣
K∑

k=m
a2k+1

(
k

m

)
(k + 1)!

[
c2x(0)

]k−m∣∣∣∣∣∣
2

. (44)

Since the FT of c2x(τ) is S2x( f ), the FT of c∗2x(τ) is S2x(− f ).
Thus, the input-output PSD relationship is given by (16).

6.2. Proof of Theorem 2

Define

fkl(τ) =
∫
h∗k (t)hl(t + τ)dt (45)

as the (deterministic) crosscorrelation function between the
kernels hk(t) and hl(t).

Define

gkl(τ) = cum
{
φ∗k
(
x(t)

)
,φl
(
x(t + τ)

)}
(46)

as the (statistical) crosscorrelation function between φk(x(t))
and φl(x(t)). The expression for g(2k+1)(2l+1)(τ) was found
previously as (40).

From the linear systems theory, it is well known that
if yk(t) = hk(t) � uk(t), yl(t) = hl(t) � ul(t), then
cum{y∗k (t), yl(t+ τ)} = fkl(τ)� cum{u∗k (t),ul(t+ τ)}, where
fkl(τ) is given in (45).

Since in the memory polynomial model (20), y2k+1(t) =
h2k+1(t)� φ2k+1(x(t)), we use our linear systems knowledge
to infer

c2y(τ) =
K∑
k=0

K∑
l=0

f(2k+1)(2l+1)(τ)� g(2k+1)(2l+1)(τ). (47)
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Recall that the FT of fkl(τ) is H∗
k ( f )Hl( f ). Thus, the FT

(47) yields

S2y( f ) =
K∑
k=0

K∑
l=0

H∗
2k+1( f )H2l+1( f )G(2k+1)(2l+1)( f ), (48)

where G(2k+1)(2l+1)( f ) is the FT of g(2k+1)(2l+1)(τ) given by
(40).

Following the similar procedure as in Section 6.1, we can
simplify S2y( f ) to (21)–(22).
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