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In the last few years it has been made clear to the research community that further improvements in classic approaches for solving
low-level computer vision and image/video understanding tasks are difficult to obtain. New approaches started evolving, em-
ploying knowledge-based processing, though transforming a priori knowledge to low-level models and rules are far from being
straightforward. In this paper, we examine one of the most popular active contour models, snakes, and propose a snake model,
modifying terms and introducing a model-based one that eliminates basic problems through the usage of prior shape knowledge
in the model. A probabilistic rule-driven utilization of the proposed model follows, being able to handle (or cope with) objects of
different shapes, contour complexities and motions; different environments, indoor and outdoor; cluttered sequences; and cases
where background is complex (not smooth) and when moving objects get partially occluded. The proposed method has been
tested in a variety of sequences and the experimental results verify its efficiency.

Keywords and phrases:model-based snakes, rule-driven tracking, object partial occlusion.

1. INTRODUCTION

In the last decade, snakes, a major category of active con-
tours, have been given special attention in the fields of com-
puter vision, image and video processing. They employ weak
models, which deform in conformance with salient image
features. The approaches proposed in the literature focus on
either the highest accuracy of estimating moving silhouettes
or the lowest computational complexity.

Active contours (snakes) were first introduced by Kass et
al. [1]. A snake is actually a curve defined by energy terms,
being able to deform itself in order to minimize its total en-
ergy. This total energy consists of an “internal” term, that en-
forces smoothness along the curve, and an “external” term,

thatmakes the curvemove towards the desired object bound-
aries. Many variations and extensions of snakes have been
proposed and applied to certain applications [2, 3]. However,
the majority of them faces three main limitations. The first
one is the quality of the initialization that is crucial for the
convergence of the algorithm. The second one is the need for
parameter tuning that may lead to loss of generality, and the
third one is the sensitivity to noise, clutter, and occlusions.

During the last decade, snakes and their variants were ap-
plied to motion segmentation [4, 5, 6, 7], object detection,
localization, and tracking in video sequences [8, 9, 10, 11].
Most approaches require an initial shape approximation that
is close to the objects’ of interest boundaries [12]. The
straightforward incorporation of prior knowledge in such
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models is a very interesting property that makes them appro-
priate for capturing case-dependent constraints. Constrain-
ing the active contour representation to follow a global shape
prior while preserving local deformations has drawn the in-
terest of the research community. Cootes et al. [13] intro-
duced the term “active shape models” to compensate for the
extension of classical snakes with global constraints. They
described a technique which allows an initial rough guess
for the best shape, orientation, scale, and position to be
refined by comparing a hypothesized model instance with
image data, and using differences between model and im-
age to deform the shape. The results demonstrate that their
method can deal with clutter and limited occlusion. An ef-
ficient method towards the combination of low- and high-
level information in a consistent probabilistic framework is
proposed by Isard and Blake [14, 15]. The result is highly
robust tracking of agile motion in clutter that runs in near
real time. The condensation algorithm they introduced is a
fusion of the statistical factor sampling algorithm for static,
non-Gaussian problems with a stochastic differential equa-
tion model for object motion. Rouson and Paragios [16]
proposed a two-stage approach using level-set representa-
tions. During the first stage, a shape model is built directly
on the level-set space using a collection of samples. This
model allows shape variabilities that can be seen as an “un-
certainty region” around the initial shape. Then, this model
is used as a basis to introduce the shape prior in an energetic
form.

In the proposed approach, we consider a knowledge-
based view of active contourmodels, which is appropriate for
handling object tracking in partial occlusion, as well as track-
ing objects whose shape can be approximated by parameter-
based models. We use shape priors and set them in a rather
loose way to preserve the required deformations and intro-
duce an uncertainty region around the contour to be ex-
tracted, which is based on motion history. In order to cope
with partial occlusion, we use a rule-driven approach and
provide several results. The algorithm seems to provide effi-
cient solutions in terms of both accuracy and computational
complexity. Head tracking has been selected as a test-bed
application of the integrated model, where head is approx-
imated by shape priors derived from an ellipsoid. This ap-
proach provides the constraint that the desired object is not
strongly deformed in successive frames of video sequences,
which is actually valid for most cases.

The paper is organized as follows. In Section 2 we re-
view the classic snake model and provide information on the
adopted model-based approach. Section 3 describes in detail
the proposed tracking approach and Section 4 provides the
experimental results. Future research directions are given in
Section 5.

2. SNAKEMODEL

In general, snakes concern model and image data analysis
through the definition of a linear energy function and a set
of regularization parameters. Their energy function consists

of two components, the internal or smoothness-driven one,
which enforces smoothness along the snake, and the external
or data-driven component, which depends on the image data
according to a chosen criterion, forcing the snake towards the
object boundaries. The goal is to minimize the total snake
energy and this is achieved iteratively after considering an
initial approximation of the object shape (prototype). Once
such an appropriate initialization is specified, the snake can
converge to the nearby energy minimum, using gradient de-
scent techniques. According to that formulation, a snake is
modeled as being able to deform elastically, but any defor-
mation increases its internal energy causing a “restitution”
force, which tries to bring it back to its original shape. At the
same time, the snake is immersed in an energy field (created
by the examined image), which causes a force acting on the
snake. These two forces balance each other and the contour
actively adjusts its shape and position until it reaches a local
minimum of its total energy.

We consider a snake Csnake defined by a set V(s) of N or-
dered points (snaxels) {Vi(s) | i = 1, 2, . . . ,N}, correspond-
ing to the positions (xi(s), yi(s)) in the image plane (s is a
parameter denoting the normalized arc length in [0 1]. For
simplicity, in the following the parameter swill bementioned
only when necessary). The total energy function Esnake is then
defined by the weighted summation of the internal energy
Eint, corresponding to the summation of the stretching and
bending energies of the snake, and the external one which
indicates how the snake evolves according to the features of
the image:

Esnake(V) = a1 · Eint(V) + a2 · Eext(V), (1)

Eint(V) =
N∑
i=1

eint
(
Vi
)
, (2)

Eext(V) =
N∑
i=1

eext
(
Vi
)
, (3)

where eint(Vi) and eext(Vi) are the internal and external en-
ergies corresponding to the point Vi, and the procedure of
snake’s convergence to the object boundary is given by the
solution of its total energy minimization:

Csnake = argmin
[
a1 · Eint(V) + a2 · Eext(V)

]
, (4)

where a1 and a2 are the snake’s regularization parameters.

2.1. Internal energy

The internal energy Eint has been given various definitions
in the literature [17, 18, 19], depending on the application
criteria. In our approach, we define the internal energy in
terms of the snake curvature CUsnake and its point density
distribution DVsnake,

CUsnake = ẋ · ÿ − ẍ · ẏ(
ẋ2 + ẏ2

)3/2 ,
DVsnake =

√
ẋ2 + ẏ2,

(5)
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where (x, y) parameterize the curve as Vi = [xi, yi] and the
first and second derivatives of (x, y) denote the velocity and
the acceleration along the curve (ẋ = dx/ds, ẏ = dy/ds) and
(ẍ = d2x/ds2, ÿ = d2y/ds2). Thus, the internal energy of the
snake is defined as

eint
(
Vi
) = ∣∣CUsnake

(
Vi
)∣∣ +DVsnake

(
Vi
)
, (6)

where |·| denotes the magnitude of the corresponding quan-
tities. In the discrete case, the value of the curvature at the
kth point is calculated using the neighboring points to each
side of it; the sign of the curvature is positive if the contour is
locally convex, and negative if concave. Moreover, curvature
distribution/function uniquely defines a propagating curve
at different time instances although it is not affine invariant,
and thus it is inappropriate in object recognition problems
[18, 20]. In the proposed snake model, the points constitut-
ing a curve are not equally spaced and thus the distances be-
tween successive points represent the local elasticity of the
snake. Finally, it should be noted that curvature and point
density terms are often used in the literature [1, 19, 21], and
in the present work they are used both as smoothness and
curves similarity criteria, as described in the following sec-
tions. Figure 1 illustrates the curvature (curve smoothness)
and point density (elasticity) distributions of a given snake.

2.1.1. Priormodel constraints

The inclusion of a global shape model biases the snake con-
tour towards a target shape, allowing some selectivity over
image features. In several applications, the general shape, and
possibly the location and orientation of objects, is known,
and this knowledge may be incorporated into the deformable
adaptive contour in the form of initial conditions, data con-
straints, constraints on the model shape parameters, or into
the model fitting procedure. However, for efficient interpre-
tation, it is essential to have a model that not only describes
the size, shape, location, and orientation of the target object,
but that also permits expected variations in these character-
istics.

A number of researchers have incorporated knowledge
of object shape into deformable models by using deformable
shape templates. These models usually use global shape pa-
rameters to embody a priori knowledge of expected shape
and shape variation of the structures and have been used suc-
cessfully for many applications of automatic image interpre-
tation. An excellent example in computer vision is the work
of Yuille et al. [22], who constructed deformable templates
for detecting and describing features of faces, such as the eye.
Staib and Duncan [23] used probability distributions on the
parameters of the representation and biased the model to
a particular overall shape while allowing for deformations.
Boundary finding is formulated as an optimization problem
using a maximum a posteriori objective function. A model-
based snake that is directly applicable in image space as op-
posed to parameter space is proposed in [24]. This method is
simple and fast and therefore fits well to our intention to ex-
tend the previous formulation with a model prior constraint.
We mention here that our goal is to illustrate the increased
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Figure 1: Curvature and point density distributions of a given con-
tour. (a) The snake is locked at car boundaries whereas the circled
areas denote parts of the curve of high curvature and point density:
(b) curvature distribution and (c) point density distribution.

robustness of the proposed method provided by the inclu-
sion of shape information rather than incorporating a novel
shape prior constraint representation.

We formulate the model energy function by using a
slightly different shape modeling than the one adopted
in [24]. Therefore, we define the constraint energy term
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Emodel(V(s)) as

Emodel
(
V(s)

) = λ · 1
2
·

N∑
i=1

emodel
(
Vi(s)

)

= λ · 1
2
·

N∑
i=1

{
Vi(s)−model

(
Vi(s)

)}T
· {Vi(s)−model

(
Vi(s)

)}
,

(7)

where λ is parameterized, since it can vary with position, and
(6) is reformulated as

eint
(
Vi
) = ∣∣CUsnake

(
Vi
)∣∣ +DVsnake

(
Vi
)
+ emodel

(
Vi
)
. (8)

As an example, a generalized ellipse represented by (9) is used
as a model (modelellipse) here. Ellipse is a typical model for
human faces and therefore is appropriate for head tracking,
which is our test-bed application,

modelellipse
(
Vi(s)

)
=
[
a · cos ϑ · cos(2πs− ϑ)− b · sin ϑ · sin(2πs− ϑ)
a · sin ϑ · cos(2πs− ϑ) + b · cos ϑ · sin(2πs− ϑ)

]
,

(9)

where a and b are the minor and major axes, respectively,
and ϑ is the ellipsoid rotation. The model should take scal-
ing, translation, and rotation under consideration. In order
to meet the previous requirements, we base the minor and
major axes and rotation calculation on a statistical represen-
tation of an ellipsoid as the covariance matrix S derived from
the distribution of the last recovered (previous frame) solu-
tion points,

S =
[
e1 e2

]
·
[
λ1 0
0 λ2

]
·
[
e�1
e�2

]
. (10)

The eigenvalues λ1 and λ2 (λ1 ≥ λ2) correspond to each of the
principal directions e1 and e2, respectively. The eigenvalues
determine the shape of the ellipsoid, while the eigenvectors
determine the orientation as shown in Figure 2.

2.2. External energy

The external energy term, in most approaches, for each point
Vi, is defined as

eext
(
Vi
) = 1− ∣∣∇Gσ∗I

(
xi, yi

)∣∣ · ∣∣g(Vi
) · n(Vi

)∣∣, (11)

where |∇Gσ∗I(xi, yi)| denotes themagnitude of the gradient
of the image convolved with a Gaussian filter, of variance σ
at point (xi, yi) corresponding to the snaxel Vi; g (Vi) is the
respective gradient direction; and n(Vi) is the normal vector
of the snake at the snaxel Vi.

The common problems in snake models are the pres-
ence of noise, background edges close to object boundaries,
and edges in the interior of the desired object. These prob-
lems flow from the definition of the external energy and
the Laplacian-of-Gaussian (LoG) term ∇Gσ∗I , especially in

λ2

λ1

e2

e1

Figure 2: Proposed model constraining the obtained solutions to
the application of the human head modeling and tracking.

cases where the initialization is not close enough to object
boundaries. For that reason, snakes turn out to be efficient
only in specific cases of images and video sequences. In the
proposed model, another term is introduced instead, min-
imizing the local variance of the image gradient and pre-
serving the most important image regions. This is achieved
through morphological operations leading to a modified im-
age gradient. In particular, the expression |∇Gσ∗I(xi, yi)| is
replaced by amodified image gradientGm and the image data
criterion is strengthened through the square of Gm:

eext
(
Vi
) = 1−G2

m ·
∣∣g(Vi

) · n(Vi
)∣∣. (12)

To obtain the modified image gradient, we first presmooth
the image with a nonlinear morphological filter, called alter-
nating sequential filter (ASF) [25] and we extract the mor-
phological image gradient. The ASF used in our model is
based on morphological area opening (◦) and closing (•)
operations with structure elements of increasing scale. The
main advantage of such filters is that they preserve line-type
image structures, which is impossible to be achieved with,
for example, median filtering. Figure 3 illustrates the perfor-
mance of a frame’s presmoothing with the proposed ASF;
it can be clearly seen that noise is eliminated and the most
important edges are preserved. More details can be found
at [26]. Figure 4 illustrates the differences between the two
image data criteria |∇Gσ∗I(xi, yi)| and Gm, presented in
(11) and (12). It can be seen in Figures 4b and 4c that the
proposed procedure clearly suppresses noise and retains the
most important edges of the examined image, whereas Fig-
ures 4d and 4e illustrate the difference between image gradi-
ent and the proposed modified gradient, computed along a
randomly selected image line.

Figure 4 clearly shows the advantages of the proposed ex-
ternal energy term for edge-based methods in terms of noise
reduction and preservation of the most important edges.
Comparing this external energy with related work found in
the literature, except for the commonly used LoG-based def-
initions, a representative example is the respective term pro-
posed in [27]. In this work, a Gaussian filter is used to obtain
the image gradient, but an appropriate value of the Gaussian
variance is required, which is done manually. Figure 5 illus-
trates the difference between the proposed external energy
term and the one proposed in [27].
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(a) (b)

Figure 3: Frame presmoothing with the proposed ASF: (a)original frame and (b) filtered frame.
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Figure 4: Differences between the image data criteria using the image gradient and the proposed one. (a) Original image, (b) image gradient,
(c) modified image gradient, (d) image gradient computed along a randomly chosen row shown in (a), and (e) modified image gradient
computed along the same row.

3. THE PROPOSED TRACKING APPROACH

Object tracking actually concerns the separation of moving
objects from background [28], which is done so far in two
different ways: (a) the motion-based approaches that rely on
grouping motion information over time and (b) the model-
based approaches that impose high-level semantic represen-
tation and knowledge. In these approaches, either geomet-
rical properties or region-based features of the desired ob-

jects are extracted and utilized. Thus the methods proposed
in the literature can be categorized in edge-based methods
[14], which rely on the boundary information, and region-
based ones [29], utilizing the information provided by the
interior region of the tracked objects.

The main problems that tracking approaches are called
upon to cope with are nonrigid (deformable) objects, ob-
jects with complicated (not smooth) contours, object move-
ments that are not simple translations, and movement in
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(a) (b)

Figure 5: Qualitative comparison between (a) a representative example of external energy term using Gaussian filtering and (b) the proposed
external energy term.

natural sequences, where background is usually complicated
and the amount of noise or the external lighting changes are
not known. The latter has been a motivation for many re-
searchers, especially in the last years, to follow probabilis-
tic approaches, for example, [30]. In addition, a more diffi-
cult problem emerges in many sequences, the occlusion, that
is, when moving objects get occluded successively as time
passes. This requires some assumptions about the shape, re-
gion, or motion of the tracked object in order to estimate its
contour even in regions that are covered by other moving or
static objects. In the following, we describe the proposed ap-
proach, which aims to cope with the above mentioned prob-
lems.

The proposed method consists of two main steps: the ex-
traction of the “uncertainty regions” of each object in a se-
quence, and the estimation of the mobile object contours.
The term “uncertainty regions” is used to describe the re-
gions in a frame, where moving contours are possible to be
located, whereas the estimation of the contours consists of an
energy minimization procedure based on the proposed snake
energy terms, described in Section 2. More specifically, the
contour of a moving object is estimated first in a few succes-
sive frames of a sequence. This can be achieved with appro-
priate parameter initialization utilizing the proposed snake
model. Then, for the next frames, a force-based approach
is being followed to minimize the total snake energy inside
the respective uncertainty regions, which are extracted us-
ing the displacement history of each point of the contour.
The force-based approach is adopted as an alternative to di-
rect energy minimization, while some rules are introduced
to separate objects from background and to detect possible
occlusions.

3.1. Uncertainty region estimation

The minimization procedure of snake’s total energy is actu-
ally a problem of picking out the “correct” curve in the im-
age, that is, the curve which corresponds to the object of in-
terest among a set of candidate curves, given an initial esti-
mate of the object’s contour. In this section, we propose a
way to determine a region around the snake initialization,

for each frame of a video sequence, in which the correct
curve is located. This idea is not new, as stochastic models
have been lately proposed in the literature, mostly as shape
prior knowledge [8], to define possible positions of the curve
points around an initialization. In the same direction, we in-
troduce here the term “uncertainty region,” which denotes
that the minimization procedure (or the picking out of the
correct curve) takes place inside that region, constraining the
problem inside a narrow band around the snake initializa-
tion. Such regions are extracted by exploiting the motion his-
tory of the tracked contour (curve points’ displacements in
previous time instances), extracting statistical measurements
of the motion. The previously estimated contour is deformed
according to the previously calculated point displacements
(initialization for the next frame), and the standard devia-
tion of each point’s mean motion is calculated; the uncer-
tainty region around each point is then defined in terms of
its corresponding standard deviation. The next step is to find
the new position of each point of the curve, inside its corre-
sponding uncertainty region, which corresponds to the min-
imum of a criterion, which is defined by the snake’s energy
terms described in Section 2.

We define the contour of an object, located in the Ith
frame (I > 1), of a video sequence as a vector of complex
numbers, that is,

C(I) =
[
x(I)i + j · y(I)i | i = 1, . . . ,N

]
=
[
C(I)
(1), . . . ,C

(I)
(N)

]
,

(13)

where C(I)
(k) = x(I)k + j · y(I)k is the location of the kth point of

the contour. We define the instant motion of the kth point of
the object contour, computed in the Ith frame, as

m(I)
c,k =MF(I−1,I)(xk, yk), (14)

where MF(I−1,I)(xk, yk) is the motion vector of the pixel
(xk, yk) estimated with the use of a robust motion estimation
technique proposed by Black and Anandan [31], between the
successive frames I − 1 and I .
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Based on the definition of the instant motion, we calcu-
late the mean movement of the contour C up to frame I as

m̄(I)
c =

[
m̄(I)

c,1, . . . , m̄
(I)
c,N

]
, (15)

where

m̄(I)
c,k = m̄(I)

x,k + j · m̄(I)
y,k =

1
I − 1

I−1∑
i=1

m(i+1)
c,k (16)

is the corresponding mean movement of the kth point of the
contour.

Similarly, the standard deviation of contour’s mean
movement is defined as

s̄(I)c =
[
s̄(I)c,1, . . . , s̄

(I)
c,N

]
, (17)

where

s̄(I)c,k =
{

1
I − 1

I−1∑
i=1

(
m̄(I)

x,k −m(i+1)
x,k

)2}1/2

+ j ·
{

1
I − 1

I−1∑
i=1

(
m̄(I)

y,k −m(i+1)
y,k

)2}1/2
(18)

is the standard deviation of kth point’s mean movement.
In practice, (16) and (18) are computed based on the last

L frames so as to take into account only the recent history of
contour’s movement, that is,

m̄(I)
c,k =

1
L

I−1∑
i=I−L

m(i+1)
c,k , (19)

s̄(I)c,k =
{
1
L

I−1∑
i=I−L

(
m̄(I)

x,k −m(i+1)
x,k

)2}1/2

+ j ·
{
1
L

I−1∑
i=I−L

(
m̄(I)

y,k −m(i+1)
y,k

)2}1/2

.

(20)

The initial estimation of the object’s contour C(I+1)
init in the

frame I +1 is computed based on the contour’s current loca-
tion and

(a) its mean motion when no abrupt movements are ex-
pected to occur, that is,

C(I+1)
init = C(I) + m̄(I)

c , (21)

or

(b) its instant motion when no knowledge about the mo-
tion of the desired object is available, that is,

C(I+1)
init = C(I) +m(I+1)

c , (22)

where m(I+1)
c = [MF(I ,I+1)(xi, yi) | i = 1, . . . ,N] =

[m(I+1)
(c,1) , . . . ,m

(I+1)
(c,N) ].

The final solution, that is, the desired contour C(I+1) =
[C(I+1)

(k) | k = 1, . . . ,N], is obtained by solving the following

equations:

C(I+1) = argminV∈R
{
w1 · Eext(V)
+w2 ·

[
µ1 ·

(
D(I)

CU(V) +D(I)
DV (V)

)
+ µ2 · Emodel(V)

]}
,

(23)

D(I)
CU(V) =

N∑
k=1

{
CU

(
C(I)
(k)

)
− CU

(
Vk
)}2

, (24)

D(I)
DV (V) =

N∑
k=1

{
DV

(
C(I)
(k)

)
−DV

(
Vk
)}2

, (25)

where Eext(V) and Emodel(V) are given by (3) and (7), re-

spectively, CU(C(I)
(k)) and DV(C(I)

(k)) are the curvature and the
point density values of the contour C(I) at the kth point. Pa-
rameters w1 and w2 represent the weights with which the
energy-based terms of (23) participate in the minimization
procedure, whereas µ1 and µ2 control the model’s influence
on the final solution; more about these weights is discussed
in Section 3.3.

The set of all possible curves R, defining the uncertainty

region, emerges by oscillating the points of the curve C(I+1)
init

according to the standard deviation of their mean move-
ment, computed using (17) and (20). The Gaussian formu-
lation for the point oscillations is mainly adopted to show
that each point of the curve is likely to move in the same
way (amplitude and direction) that it has been moving un-
til the current frame. In this way, and for each contour point

Vk, an uncertainty region is defined. If C(I)
(k) is the location of

the kth point of the contour in frame I and this point was
static during the previous L frames, then s̄(I)c,k = 0 and its
uncertainty region shrinks to a single point whose location

coincides with C(I+1)
init,(k). If point k was moving with invari-

able velocity, then the standard deviation of its movement

is again s̄(I)c,k = 0 and the previous case holds regarding its
uncertainty region. On the other hand, if point k was oscil-
lating in the previous L frames, the standard deviation of its
movement is high and consequently its uncertainty region is
large. Figure 6 illustrates the proposed approach in steps, in
the case of face tracking. Figures 6a and 6b present two suc-
cessive frames of a face sequence and the respective contours.
Figure 6c presents the amplitude of the computed standard
deviation (in pixels) of the contour mean motion, and based
on this standard deviation, the uncertainty regions are then
extracted (Figure 6d).

3.2. Force-based approach

The minimization of (23) is a procedure of high complexity:
ifN is the number of points determining the examined curve
C andM is the number of all possible positions of each curve
point C(I+1)

init,k inside the extracted uncertainty region, assum-
ing that M is the same for all points, then the number of all
possible curves r ∈ R generated by points’ oscillations isMN .
In order to avoid that problem, we propose a force-based
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Figure 6: The proposed tracking approach in steps. (a), (b) Two successive frames of a face sequence and the respective contours. (c)
Amplitude of the standard deviation of the contour mean motion leading to (d) the uncertainty regions of the curve.

approach (instead of using a dynamic programming algo-
rithm) where the energy terms, participating in the snake
energy function, are transformed into forces applied in each
curve point so as to converge to the desired object bound-
aries.

We consider the curve V describing the object’s contour.
The object’s contour at frame I is given by C(I) and its ini-

tialization at frame I + 1 is given by C(I+1)
init . Also let t be the

set of the tangential unit vectors and n the set of the normal
vectors of curve V, given by (28):

t = [tk | k = 1, . . . ,N], (26)

n = [nk | k = 1, . . . ,N], (27)

tk =
∇V|k∥∥∇V|k∥∥ , nk =

∇t|k∥∥∇t|k∥∥ . (28)

We define the following forces acting at each contour
point Vk:

Fd

(
Vk
) = D(I)

DV

(
Vk
) · tk

=
[
DV

(
C(I)
(k)

)
−DV

(
Vk
)] · tk,

Fc

(
Vk
) = D(I)

CU

(
Vk
) · nk

=
[
CU

(
C(I)
(k)

)
− CU

(
Vk
)] · nk.

(29)

Fd = [Fd(Vk) | k = 1, . . . ,N] represents the stretching
component that forces points to come closer or draw away
from each other along the curve, and it is always tangential

to it. Thus, if the distance between two curve points C(I)
(k) and

C(I)
(k+1) is greater than the distance between Vk and Vk+1, then

Fd(Vk) · tk > 0 and Vk is forced to draw away from Vk+1;
otherwise, Fd(Vk) · tk < 0 and Vk is forced to come closer to
Vk+1.

Fc = [Fc(Vk) | k = 1, . . . ,N] represents the deforma-
tion of the curve along its normal direction. The property of
the curvature distribution to take low values, where the curve
is relatively smooth, and high values, where the curve has
strong variations, makes Fc force curve to the initial shape
(the one in the previous frame) and not to a smoother form.
Moreover, we exploit the curvature’s property to be positive
where the curve is convex and negative where the curve is
concave. Figure 7 illustrates the directions of Fc and Fd along
a curve.

These forces represent the internal snake forces that de-
form the curve V, initialized at C(I+1)

init , according to the shape
of the contour C(I) in the previous frame. The constraint of
such a deformation is actually the first term of (23), that is,
the external energy Eext, which is transformed into force as
described in the following.

We define gm,k(p), given by (30), to be the modified im-
age gradient function of all pixels p = xp + j · yp, that (a)
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Figure 7: Curvature-based and point density-based forces Fc and
Fd , respectively, along the initialization of a curve V in the frame
I + 1.

belongs to the uncertainty region U and (b) lies on the line
segment that is defined by the normal direction of the curve
V at point Vk,

gm,k(p) =
[
Gm(p) |

(
Vk − p

)T · nk = 1, p ∈ U
]
. (30)

The maximum of this function determines the most salient
edge pixel in the line segment defined above and thus defines
the direction of the external snake force:

pk = argmax
p

[
gm,k(p)

]
, (31)

sgnk =

+, if pk inside the area is defined by V,

−, otherwise,
(32)

where sgnk denotes the sign/direction of the external force to
be applied to Vk.

Then, the external snake force for each point Vk is given
by

Fe

(
Vk
) = sgnk ·eext

(
Vk
) · nk. (33)

From the definition of the external energy term (12), it can be
seen that it takes values close to zero in contour points corre-
sponding to regions with high image gradient (G2

m(Vk) � 1)
and values close to unity in regions with relatively constant
intensity (G2

m(Vk) � 0). Thus, the term Fe = [Fe(k) |
k = 1, . . . ,N] is proportional to Gm and forces the curve to
the salient edges inside the extracted uncertainty region. In
the definition of this force, we exploit the advantage of Gm

against |∇Gσ∗I| to preserve the most important edges, as
shown before, and thus the problem of the existence of many
local maxima in (31) is eliminated.

In the force-based approach, the examined curve V
marches towards the object’s boundaries in the next frame,
I + 1, according to the forces applied to it. Thus, the min-

imization of (23) can be approximated by using the inter-
nal and external snake forces defined above, in an iterative
manner similar to the steepest descent approach [32], as it
is summarized below. In particular, let V(ξ) be the estimated
contour in the ξ iteration, then the following equations hold:

V(0) = C(I+1)
init , (34)

V(ξ) = V(ξ−1) + ∆V(ξ), (35)

∆V(ξ) =
[{

V (ξ−1)
k

}T · F tot

(
V (ξ−1)
k

)
| k = 1, . . . ,N

]
, (36)

F tot

(
V (ξ−1)
k

)
= w1 · Fe

(
V (ξ−1)
k

)
+w2 ·

[
µ1 ·

{
Fc

(
V (ξ−1)
k

)
+ Fd

(
V (ξ−1)
k

)}
+ µ2 · Fmodel

(
V (ξ−1)
k

)]
,

(37)

where Fd(V
(ξ−1)
k ), Fc(V

(ξ−1)
k ), and Fe(V

(ξ−1)
k ) are estimated

according to (29) and (33), respectively, and Fmodel(V
(ξ−1)
k )

is the regularization force, according to the specific model
adopted, given by

Fmodel

(
V (ξ−1)
k

)
= λ ·

{
V (ξ−1)
k (s)−model

(
V (ξ−1)
k (s)

)}
.

(38)

It is clear from the above definition that Fmodel(Vk)

forces contour point V (ξ−1)
k towards the model point

model(V (ξ−1)
k (s)).

The final curve V corresponding to the contour C(I+1) is
obtained when one of the following criteria is satisfied.

(a) Fτ(V(ξ)) < a · Fτ(V(ξ+1)), where

Fτ
(
V(ξ)

)
=

N∑
k=1

∣∣∣F tot

(
V (ξ)
k

)∣∣∣. (39)

Parameter a is a positive constant in the range 0 <
a < 1. When a is selected to be close to 1, C(I+1) is
more likely to correspond to a local minimum solu-
tion; lower values of a increase the number of itera-
tions and, therefore, the execution time. The statistical
approach we follow to estimate the regions of uncer-
tainty allows for the use of a close to 1.

(b) The maximum number of iterations is reached. In this
case,

C(I+1) = V(ξ̃),

ξ̃ = argminξ
[
Fτ
(
V(ξ))]. (40)

It must be noted that the use of the proposed steepest
descent approach does not ensure that the final con-
tour corresponds to the solution of (23). However, un-
der the constraints we pose, even if C(I+1) corresponds
to a local minimum, it is close to the desired solution
(global minimum).
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Figure 8: Curvature and external energy terms: (a), (d), (g) different cases of curves and background complexity, (b), (e), (h) respective
external energies visualization, and (c), (f), (i) respective curvature distributions.

3.3. Weights estimation

In (23) and (37), four energy and force terms, respectively,
participate in the minimization procedure with different
weights w1, w2, µ1, and µ2. The choice of appropriate val-
ues for these weights is important for the method’s perfor-
mance. The values should be set depending on the amount of
the background complexity and the smoothness of the object
silhouette. For sequences with relatively smooth background
(without any significant edges close to object boundaries, or
edges far from object boundaries), the curve’s external en-
ergy/force term is used as a reliable criterion and thus w1 is
set to higher value. Moreover, if the contour of the tracked
object is complicated (not smooth) or noisy, the elasticity

and smoothness energy/force terms are not reliable and thus
w2 is set to lower values.

In order to automatically estimate the value of w2, it suf-
fices to count the curvature and point density distributions’
zero crossings, which can give us the contour’s local smooth-
ness/elasticity. To estimate the value of w1, it suffices to cal-
culate the mean values of the external energy at all pixels p
inside the extracted uncertainty region U (as verified by trial
and error). Thus, smooth background inside the uncertainty
region results in higher mean values and w1 is set to a higher
value, whereas low mean values correspond to cases of com-
plex/noisy uncertainty regions (great number of edge pixels)
and w1 is set to a lower value.

Figure 8 illustrates three different sequences capturing
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moving objects of different contour complexities. Figures 8a,
8d, and 8g represent the original images along with the mov-
ing object contours. At the first sequence, the background is
relatively smooth and the object (car) has an uncomplicated
contour. In the case of the aircraft, the background is also
smooth but the contour is quite complicated, whereas in the
third case, the walking man’s contour is simple but the back-
ground is very cluttered. The respective external energies vi-
sualization is illustrated in Figures 8b, 8e, and 8h where the
background complexity can be clearly seen; the modified im-
age gradient preserves the most salient edges and eliminates
noise. Finally, in Figures 8c, 8f, and 8i, the complexity of the
respective object contours is presented in terms of the cur-
vature. The first and the second subplots of each case illus-
trate the x and y coordinate distributions along the curves,
whereas the third subplot represents the curvature distribu-
tion. As can be seen, the complexity of the contours is de-
termined by the curvature variations, that is, the curvature’s
zero crossings: if Zc,car, Zc,aircraft, and Zc,man are the num-
bers of the respective zero crossings and Ncar, Naircraft, and
Nman are the number of points constituting the three con-
tours, then Zc,car/Ncar � 0.03, Zc,aircraft/Naircraft � 0.08, and
Zc,man/Nman � 0.05.

The parameters µ1 and µ2 related to the internal snake
force can be set according to the application under consider-
ation. If strict prior model knowledge is available (e.g., med-
ical applications), then the model can strongly influence the
solution. On the contrary, if there is no high certainty re-
garding the model prior, then the first term of the internal
force should affect the solution more. This competitive rela-
tion of the two internal force terms can be easily represented
by allowing one of them to change according to the other in
a functional manner (µ1 = f (µ2)).

3.4. Rule-driven approach for complex background
and partial occlusion cases

In order to separate background and object regions, espe-
cially when the background in not homogeneous (smooth),
as well as to cope with moving object’s partial occlusion
that may occur, we introduce more constraints that pk in
(31) must obey, so that its estimation will be reasonable.
The adopted motion estimation technique [31] ensures the
distinction between moving background and foreground
even in hard-to-detect cases (slightly different movements).
Therefore, without loss of generality, we suppose that the
background is static and possible occluding objects are also

static. Let m̄(I)
c,k be the mean estimated motion of the kth con-

tour point at frame I , estimated through (16) or by any mo-
tion estimation algorithm as shown in Figure 14, and let pl
and pm be the surrounding pixels of pk on the line segment,
along which the function gm,k(p) is computed. Then, pk must
fulfill the following two constraints/requirements:

(a) pk must divide that line segment in two parts: an im-
miscibly moving and an immiscibly static one, that is,

u
(
pl
) � m̄(I)

c,k , u
(
pm
) � 0; (41)

or

u
(
pl
) � 0, u

(
pm
) � m̄(I)

c,k ; (42)

(b) pk must be a moving point with velocity close to m̄(I)
c,k ,

that is,

u
(
pk
) � m̄(I)

c,k , (43)

where u(·) denotes the instant velocity.

Thus, taking the above constraints into consideration, we
overcome cases such as (a) when the maximum is found in
background: it is not amoving one and does not separate two
immiscible (according to the motion) parts of the function
gm, (b) when the maximum is found inside the moving ob-
ject region: although it is a moving one, it does not divide the
function gm in such two parts, (c) when occlusion occurs and
the maximum is on the occluding object boundary: the max-
imum is not moving although it makes the region gm separa-
tion, and (d) when occlusion occurs and the maximum is in
the occluding object region: neither the maximum is moving
nor it makes such a separation. In these cases, where these
two constraints are not reached, we ignore the external force
and evolve the curve according to its internal forces; in this
way, we can obtain contours similar to the ones in the past
frames. Figure 9 illustrates the detection of occlusion with
the use of the above-defined rules that the local maximum
pk (shown as minimum), corresponding to a curve point k,
must obey. It has to be mentioned that treating large occlu-
sions is limited by the capabilities of the estimated motion
field.

4. EXPERIMENTAL RESULTS

The performance of the proposed approach is tested over a
large number of natural sequences, where specific tracking
problems emerge. The results presented in this section con-
cern cases of different object shape complexities, different
motions, noisy video sequences, complicated backgrounds,
as well as partial occlusion. Finally, a specific application of
the proposed method is shown, where the desired objects are
human heads. It has to bementioned that the contour initial-
ization for the first frame in a sequence is donemanually. The
adopted time-window parameter L (number of past succes-
sive frames) is set to 5 for all the sequences under considera-
tion. Additionally, the motion at the very first frame of each
sequence is supposed to be zero.

Figure 10 illustrates the case of tracking an object with
complicated contour (low smoothness) moving in front of
a relatively smooth background. In such a case, weight w1

of (23) and (37) is significantly greater than w2 ([w1,w2] =
[10, 1]). In this case, the desired object (aircraft) is moving
towards the shooting camera and even if the object is rigid,
its projection on the image plane is deforming (its contour
expands) along the time.

In Figure 11, the case of car tracking in six successive
frames of a traffic sequence is presented. In this example, the
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Figure 9: Detection of occlusion using the two rules of (41), (42), and (43) for the local minimum pk of the function 1− gm,k(p).

(a) (b) (c)

Figure 10: Example of tracking an aircraft approaching the airport: the case of complicated tracked contour with smooth background.

(a) (b) (c)

(d) (e) (f)

Figure 11: A moving car tracking in six, (a), (b), (c), (d), (e), and (f), successive frames of a traffic sequence. The background is relatively
smooth close to car’s boundary, while the car’s contour is not very complicated.
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(a) (b) (c)

Figure 12: Object tracking in strong existence of clutter. For each of the transitions (a), (b) and (b), (c), the estimated weights are [w1,w2] =
[1, 10], since the background is not smooth enough.

(a) (b) (c)

(d) (e) (f)

Figure 13: Example of a man walking in a cluttered sequence. The main source of inaccuracies is the weak edges of the human body
(especially close to the head). We choose [w1,w2] = [1, 10] to reduce the effect of the background complexity.

desired object (car) is moving towards the camera and al-
though it is rigid, its projection on the image plane is slowly
deforming along time, as in the previous example. In this
case, the sequence is more cluttered, although the car silhou-
ette is smoother. The utilization of image presmoothing with
the ASF and the modified image gradient, used for the exter-
nal snake energy definition as described in Section 2, results
in the estimation of such accurate contours.

Figure 12 illustrates the method’s performance in a
strongly cluttered sequence, where the object is nonrigid and
its motion projection is both rotational and translational
rather than a simple translation or expansion/shrink. The
low accuracy of the method in this case is mainly due to the

large uncertainty regions extracted. On the other hand, the
object is well detected and localized in each frame of the se-
quence, due to the snake’s external energy definition through
the ASF prefiltering and the image modified gradient estima-
tion.

In Figure 13, the proposed approach is applied to a
strongly cluttered sequence, where the desired object is aman
walking in one direction. The contour of the moving human
body is strongly deforming along time, resulting in large un-
certainty regions, whereas the weights w1 and w2 are esti-
mated by values 1 and 10, respectively. The accuracy of the
method is based on the snake’s external energy definition and
the rule-driven approach described in Section 3.4.
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Figure 14: Occlusion case: motion vectors and obtained object contours utilizing the rule-driven tracking approach.
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(a2) (b2) (c2) (d2)

(a3) (b3) (c3) (d3)

(a4) (b4) (c4) (d4)

Figure 15: Ground truth masks for selected frames of four TV sequences.

Figure 14 illustrates a case of two moving objects, where,
as time goes by, the one is getting partially occluded by a
static obstacle, while the other is moving in the front of the
obstacle. In Figures 14a1, 14b1, 14c1, 14d1, 14e1, and 14f1,
the motion estimates are illustrated, showing that the noise
is effectively eliminated on the boundaries between the static
andmoving regions even when the occlusion occurs, whereas
the respective Figures 14a2, 14b2, 14c2, 14d2, 14e2, and 14f2
show that both objects’ contours are estimated with sufficient
accuracy, due to the additional constraints (see (41), (42) and
(43)) in which the maximum of (31) is imposed.

In order to demonstrate the efficiency of the proposed
approach, we also evaluate the results of our technique

applied to head (face) extraction. Obtaining quantitative re-
sults for such an application area is hard since no extensive
ground truth databases are available today. Therefore, in or-
der to quantitatively assess the improvement of our algo-
rithm, achieved by the addition of the geometrical model, we
generated ground truth masks for available sequences.

Figure 15 shows the ground truth masks for selected
frames. The presence of noise is strong since these sequences
are extracted from TV clips. Consequently, the developed
technique faces several difficulties not only due to occlu-
sion/clutter cases but also due to vaguely defined object bor-
ders (weak gradient). The ground truth database consists of
100 images. Figures 16 and 17 show specific applications of
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Figure 16: Face tracking results of the proposed rule-based method without applying the model-based term: the final results (contours) are
illustrated in bold curves, whereas the shape prior (ellipse), to be further applied (Figure 17), is shown in soft curves.

the trackingmethodwith andwithout the geometrical model
for head contour tracking. We present representative exam-
ple frames from the TV clip collection and comment on the
various difficulties introduced. Even though the head is a
rigid object, its contour is being deformed on the image plane
along the time, due to the projection of its motion. The head
contours produced by the rule-drivenmodel-based approach
(Figure 17) are obtained using an ellipsoid as shape prior.

In order to get a visual grip of the way that an ellipsoid
(Section 2.1.1) affects the contour deformation, we present
the results in two ways: we superimpose (a) the ellipse model
(soft) and the nonmodel-based contour (Figure 16), and (b)

the model-based (bold) and the nonmodel-based contour
on the original image (Figure 17). Obviously, as illustrated
in Figure 16, an ellipsoid may affect the contour evolvement
positively (Figures 16a1, 16b1, 16c1, and 16d1 case) since it
fits well with the actual head contour, or negatively, due to
strong fluctuations from the actual head shape (Figures 16a2,
16b2, 16c2, and 16d2 case—forehead area). We expect that
the competitive nature of the different forces in the total en-
ergy formula will produce an acceptable result in terms of
accuracy and total shape. Figure 17 shows the final results of
the proposed technique that meet our expectations. The ob-
tained contours are smooth and capture accurately the side
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Figure 17: Face tracking results of the proposed method after applying the model-based (shape prior) term: the final contours are illustrated
in bold curves, whereas the results obtained without the shape prior (Figure 16), are shown in soft curves.

regions of the head, as shown clearly in Figures 17a1, 17b1,
17c1, and 17d1; and 17a2, 17b2, 17c2, and 17d2. The ac-
tual head contour of Figures 17a4, 17b4, 17c4, and 17d4 case
is fairly different than the corresponding “perfect” ellipsoid
(Figures 17a4, 17b4, 17c4, and 17d4 case) since our ground
truth generation is merely based on skin presence. However,
the final model-based contour seems to bemuch closer to the
shape of a head and therefore it can be treated as a better way
to verify the presence of a human head in a sequence even
in the case of partial occlusion (due to hair in the considered
case).

Additionally, we provide a table with precision and re-
call measurements for the selected sequences in order to ver-
ify the improvement imposed by the model-based approach.
As mentioned before, we extracted the ground truth masks
based on skin activation. Consequently, we expect slightly
lower precision than recall values, since areas covered, for ex-
ample, by hair may be considered as “head,” but they are not
included in the ground truth masks. Table 1 compares the
recall/precision values for the 16 selected frames used in Fig-
ures 16 and 17 and gives the overall values for the 100 images
we tested.
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Table 1: Recall and precision values, comparing the ground truth results with the ones obtained using the proposed method with and
without the shape prior model.

Frame
Recall percentage Precision percentage Recall percentage Precision percentage

(no model) (no model) (model) (model)

a1 89.08 100.00 94.52 100.00

b1 87.01 100.00 100.00 97.44

c1 90.09 100.00 98.17 100.00

d1 90.09 100.00 98.17 100.00

a2 98.38 100.00 100.00 99.54

b2 98.63 100.00 95.14 100.00

c2 98.76 100.00 95.17 100.00

d2 100.00 96.68 100.00 99.52

a3 100.00 91.04 100.00 99.78

b3 100.00 94.18 95.55 100.00

c3 100.00 91.64 98.48 100.00

d3 100.00 91.26 99.62 100.00

a4 100.00 93.88 100.00 93.90

b4 100.00 97.29 100.00 91.60

c4 100.00 98.12 100.00 84.85

d4 100.00 97.09 100.00 97.83

Total 95.05 93.16 97.24 95.84

5. CONCLUSIONS AND FURTHERWORK

In this work, we have presented a probabilistic application
of snakes for object tracking in clutter, partial occlusion, and
complex backgrounds. Statistical measurements of the ob-
ject contour motion history are extracted to obtain uncer-
tainty regions, in which the estimated contours are to be lo-
calized. In this way, we constrain the solution in a narrow
band around the next frames snake initialization. Moreover,
utilizing various tools from image morphology, we eliminate
noise. This approach is extended to cope with complex back-
ground and partial occlusion, introducing rule-based knowl-
edge to separate objects from background and to detect oc-
clusion. Finally, for specific applications where the desired
object contours can be approximated by specific models, we
use a shape prior knowledge in addition to the rule-driven
approach so as to obtain more accurate contours. As indi-
cated before, in this work our goal is to illustrate the in-
creased robustness of the proposedmethod with the addition
of a model rather than incorporating a novel prior constraint
representation. Therefore, the future direction of our work
is a more sophisticated representation and use of general-
ized geometric-based models, which will permit the method
to deal even more efficiently with occlusions and perform
tracking under various conditions (e.g., static ormobile cam-
era). In this sense, a possible extension can be the incor-
poration of region-based tracking modules to the existing
framework that will increase robustness. Additionally, cov-
ering large occlusions cases would require extensions of the
method, for example, using higher-level representation of the
moving regions, which is a topic of future research. We are
currently examining such issues using “semantics” and onto-
logical knowledge techniques in the framework of [33].

REFERENCES

[1] M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: active con-
tour models,” International Journal of Computer Vision, vol. 1,
no. 4, pp. 321–331, 1988.

[2] S. R. Gunn andM. S. Nixon, “A robust snake implementation:
a dual active contour,” IEEE Trans. on Pattern Analysis and
Machine Intelligence, vol. 19, no. 1, pp. 63–68, 1997.

[3] L. D. Cohen and I. Cohen, “Finite-element methods for active
contour models and balloons for 2-d and 3-d images,” IEEE
Trans. on Pattern Analysis andMachine Intelligence, vol. 15, no.
11, pp. 1131–1147, 1993.

[4] L. D. Cohen, “On active contour models and balloons,” Com-
puter Vision, Graphics and Image Processing: Image Under-
standing, vol. 53, no. 2, pp. 211–218, 1991.

[5] A.-R. Mansouri, T. Chomaud, and J. Konrad, “A compara-
tive evaluation of algorithms for fast computation of level set
PDEs with applications to motion segmentation,” in Proc. of
International Conference on Image Processing (ICIP ’01), vol. 3,
pp. 636–639, Thessaloniki, Greece, October 2001.

[6] V. Caselles, R. Kimmel, G. Sapiro, and C. Sbert, “Minimal sur-
faces: a geometric three dimensional segmentation approach,”
Numerische Mathematik, vol. 77, no. 4, pp. 423–425, 1997.

[7] S. Osher and J. A. Sethian, “Fronts propagating with
curvature-dependent speed: algorithms based on Hamilton-
Jacobi formulations,” Journal of Computational Physics, vol.
79, no. 1, pp. 12–49, 1988.

[8] N. Paragios and R. Deriche, “Geodesic active contours and
level sets for the detection and tracking of moving objects,”
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 22, no. 3, pp. 266–280, 2000.

[9] N. Paragios and R. Deriche, “A PDE-based level set approach
for detection and tracking of moving objects,” in Proc. 6th
International Conference on Computer Vision (ICCV ’98), pp.
1139–1145, Bombay, India, January 1998.

[10] C. Vieren, F. Cabestaing, and J.-G. Postaire, “Catchingmoving
objects with snakes for motion tracking,” Pattern Recognition
Letters, vol. 16, no. 7, pp. 679–685, 1995.



Object Tracking in Clutter and Partial Occlusion 859

[11] M. Daoudi, F. Ghorbel, A. Mokadem, O. Avaro, and H. San-
son, “Shape distances for contour tracking and motion esti-
mation,” Pattern Recognition, vol. 32, no. 7, pp. 1297–1306,
1999.

[12] C. Xu and J. L. Prince, “Snakes, shapes, and gradient vector
flow,” IEEE Trans. Image Processing, vol. 7, no. 3, pp. 359–369,
1998.

[13] T. F. Cootes, C. J. Taylor, D. H. Cooper, and J. Graham, “Ac-
tive shape models—their training and application,” Computer
Vision and Image Understanding, vol. 61, no. 1, pp. 38–59,
1995.

[14] M. Israd and A. Blake, “Contour tracking by stochastic prop-
agation of conditional density,” in Proc. European Conf. on
Computer Vision (ECCV ’96), vol. 1, pp. 343–356, Cambridge,
UK, 1996.

[15] M. Israd and A. Blake, “ICONDENSATION: unifying low-
level and high-level tracking in a stochastic framework,” in
Proc. 5th European Conf. Computer Vision, vol. 1 of Lecture
Notes in Computer Science, pp. 893–908, 1998.

[16] S. Rousson and N. Paragios, “Shape priors for level set repre-
sentations,” in European Conference in Computer Vision, pp.
78–93, Copenhagen, Denmark, June 2002.

[17] P. Delagnes, J. Benois, and D. Barba, “Active contours ap-
proach to object tracking in image sequences with complex
background,” Pattern Recognition Letters, vol. 16, no. 2, pp.
171–178, 1995.

[18] H. H. S. Ip and D. Shen, “An affine-invariant active contour
model (AI-Snake) for model-based segmentation,” Image and
Vision Computing, vol. 16, no. 2, pp. 135–146, 1998.

[19] J. S. Park and J. H. Han, “Contour motion estimation from
image sequences using curvature information,” Pattern Recog-
nition Letters, vol. 31, no. 1, pp. 31–39, 1998.

[20] Y. Avrithis, Y. Xirouhakis, and S. Kollias, “Affine-invariant
curve normalization for object shape representation, classi-
fication and retrieval,” Machine Vision and Applications, vol.
13, no. 2, pp. 80–94, 2001.

[21] F. Mohanna and F. Mokhtarian, “Improved curvature esti-
mation for accurate localization of active contours,” in Proc.
International Conference on Image Processing (ICIP ’01), vol. 2,
pp. 781–784, Thessaloniki, Greece, October 2001.

[22] A. L. Yuille, P. W. Hallinan, and D. S. Cohen, “Feature ex-
traction from faces using deformable templates,” Interna-
tional Journal of Computer Vision, vol. 8, no. 2, pp. 133–144,
1992.

[23] L. H. Staib and J. S. Duncan, “Boundary finding with para-
metrically deformable models,” IEEE Trans. on Pattern Anal-
ysis and Machine Intelligence, vol. 14, no. 11, pp. 1061–1075,
1992.

[24] S. R. Gunn and M. S. Nixon, “A model based dual active con-
tour,” in Proc. British Machine Vision Conference, E. Hancock,
Ed., pp. 305–314, York, UK, 1994.

[25] P. Maragos, “Noise suppression,” in The Digital Signal Pro-
cessing Handbook, V. K.Madisetti and D. B.Williams, Eds., pp.
20–26, CRC Press, Boca Raton, Fla, USA, 1998.

[26] G. Tsechpenakis, N. Tsapatsoulis, and S. Kollias, “Snake mod-
ifications for object tracking in cluttered sequences: a prob-
abilistic approach,” submitted to Image Communication,
http://www.image.ntua.gr/∼gtsech/.

[27] C. L. Lam and S. Y. Yuen, “An unbiased active contour algo-
rithm for object tracking,” Pattern Recognition Letters, vol. 19,
no. 5-6, pp. 491–498, 1998.

[28] J. M. Odobez and P. Bouthemy, “Separation of moving re-
gions from background in an image sequence acquired with
a mobile camera,” in Video Data Compression for Multimedia
Computing, H. H. Li, S. Sun, and H. Derin, Eds., pp. 283–311,
Kluwer Academic Publishers, Boston, Mass, USA, 1997.

[29] F. G. Meyer and P. Bouthemy, “Region based tracking using
affine motion models in long image sequences,” Computer
Vision, Graphics and Image Processing: Image Understanding,
vol. 60, no. 2, pp. 119–140, 1994.

[30] N. Paragios and R. Deriche, “Geodesic active regions for mo-
tion estimation and tracking,” in Proc. 7th IEEE International
Conference in Computer Vision (ICCV ’99), Kerkyra, Greece,
September 1999.

[31] M. J. Black and P. Anandan, “The robust estimation of mul-
tiple motions: parametric and piecewise-smooth flow fields,”
Computer Vision and Image Understanding, vol. 63, no. 1, pp.
75–104, 1996.

[32] S. Haykin, “The steepest descent method,” in Neural Net-
works: A Comprehensive Foundation, pp. 124–126, Macmillan
College Publishing Company, New York, NY, USA, 1994.

[33] EU FP6Network of Excellence, “Knowledge web,” 2003–2007.

Gabriel Tsechpenakis was born in Athens,
in 1975. He graduated from the School
of Electrical and Computer Engineering,
National Technical University of Athens
(NTUA), in 1999, and obtained his Ph.D.
degree in 2003 from the same university.
His Ph.D. was carried out in the Image,
Video and Multimedia Systems Laboratory
of NTUA. His current research interests fo-
cus on the fields of computer vision, ma-
chine learning, and human computer interaction. He is a Member
of the Technical Chambers of Greece and the IEEE Signal Process-
ing Society. He is currently a Postdoctoral Associate at the Center
for Computational Biomedicine, Imaging and Modeling (CBIM)
in Rutgers, The State University of New Jersey.

Konstantinos Rapantzikos received the
Diploma and M.S. degree in electronics &
computer engineering from the Technical
University of Crete, Greece, in 2000 and
2002, respectively. He is currently working
towards the Ph.D. degree in electrical en-
gineering at the National Technical Univer-
sity of Athens, Greece. His thesis will be on
computational modeling of human vision.
His interests also include biomedical image
processing and motion estimation in compressed/uncompressed
video.

Nicolas Tsapatsoulis was born in Limassol,
Cyprus, in 1969. He graduated from the De-
partment of Electrical and Computer En-
gineering, National Technical University of
Athens in 1994 and received his Ph.D. de-
gree in 2000 from the same university. His
current research interests lie in the areas of
human computer interaction, machine vi-
sion, image and video processing, neural
networks, and biomedical engineering. He
is a Member of the Technical Chambers of Greece and Cyprus
and a Member of IEEE Signal Processing and Computer Societies.
Dr. Tsapatsoulis has published 13 papers in international journals
and more than 35 in proceedings of international conferences. He
served as Technical Program Cochair for the VLBV ’01 workshop.
He is a Reviewer of the IEEE Transactions on Neural Networks and
IEEE Transactions on Circuits and Systems for Video Technology
journals.

http://www.image.ntua.gr/~gtsech/


860 EURASIP Journal on Applied Signal Processing

Stefanos Kollias was born in Athens in
1956. He obtained his Diploma from the
National Technical University of Athens
(NTUA) in 1979, his M.S. in communi-
cation engineering in 1980 from the Uni-
versity of Manchester, Institute of Science
and Technology (UMIST), England, and his
Ph.D. degree in signal processing from the
Computer Science Division of NTUA. He is
with the Electrical Engineering Department
of NTUA since 1986, where he serves now as a Professor. Since 1990
he is the Director of the Image, Video andMultimedia Systems Lab-
oratory of NTUA. He has published more than 120 papers in the
above fields, 50 of which in international journals. He has been a
Member of the technical or advisory committee or invited speaker
in 40 international conferences. He is a Reviewer of 10 IEEE Trans-
actions and of 10 other journals. Ten graduate students have com-
pleted their doctorate under his supervision, while another ten are
currently performing their Ph.D. theses. He and his team have been
participating in 38 European and national projects.


	1. INTRODUCTION
	2. SNAKE MODEL
	2.1. Internal energy
	2.1.1. Priormodel constraints

	2.2. External energy

	3. THE PROPOSED TRACKING APPROACH
	3.1. Uncertainty region estimation
	3.2. Force-based approach
	3.3. Weights estimation
	3.4. Rule-driven approach for complex background and partial occlusion cases

	4. EXPERIMENTAL RESULTS
	5. CONCLUSIONS AND FURTHER WORK
	REFERENCES

