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An improved antenna array (AA) has been introduced, in which reverse-link synchronous transmission technique (RLSTT) is
incorporated to effectively make better an estimation of covariance matrices at a beamformer-RAKE receiver. While RLSTT is
effective in the first finger at the RAKE receiver in order to reject multiple-access interference (MAI), the beamformer estimates
the desired user’s complex weights, enhancing its signal and reducing cochannel interference (CCI) from the other directions.
In this work, it is attempted to provide a comprehensive analysis of user capacity which reflects several important factors such
as the shape of multipath intensity profile (MIP), the number of antennas, and power control error (PCE). Theoretical analysis,
confirmed by the simulations, demonstrates that the orthogonality provided by employing RLSTT along with AA may make the
DS-CDMA system insensitive to the PCE even with fewer numbers of antennas.

Keywords and phrases: antenna arrays, reverse-link synchronous DS-CDMA, frequency-selective fading channel, power control
error.

1. INTRODUCTION

DS-CDMA systems exhibit a user capacity limit in the sense
that there exist a maximum number of users that can simul-
taneously communicate over multipath fading channels and
maintain a specified level of performance per user. This lim-
itation is caused by cochannel interference (CCI) which in-
cludes both multiple-access interference (MAI) between the

multiusers, and intersymbol interference (ISI) which arises
from the existence of different transmission paths. A promis-
ing approach to increase the system capacity is the use of spa-
tial processing with an antenna array (AA) at base station
(BS) [1, 2, 3, 4, 5, 6]. Generally, the AA system consists of
spatially distributed antennas and a beamformer which gen-
erates a weight vector to combine the array output. Several al-
gorithms have been proposed in the spatial signal processing
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to design the weights in the beamformer. For example, a new
space-time processing framework for the beamforming with
AA in DS-CDMA has been proposed in [2], where a code-
filtering approach was used in each receiving antenna in or-
der to estimate the optimum weights in the beamformer.

For a terrestrial mobile system, reverse-link synchronous
transmission technique (RLSTT) has been proposed to re-
duce interchannel interference over a reverse link [7]. In the
RLSTT, the synchronous transmission in the reverse link can
be achieved by adaptively controlling the transmission time
in each mobile station (MS). In a similar way to the closed-
loop power control technique, the BS computes the time dif-
ference between the reference time generated in the BS and
the arrival time of the dominant signal transmitted from each
MS, and then transmits timing control bits, which order MSs
to “advance” or “delay” their transmission times. The consid-
ered DS-CDMA system uses orthogonal reverse-link spread-
ing sequences and the timing control algorithm that allows
the main paths to be synchronized.

In this paper, an improved AA has been introduced, in
which RLSTT is incorporated to effectivelymake better an es-
timation of covariance matrices at a Beamformer-RAKE re-
ceiver.While RLSTT is effective in the first finger at the RAKE
receiver in order to reject MAI, the beamformer estimates the
desired user’s complex weights, enhancing its signal and re-
ducing CCI from the other directions. In this work, it is at-
tempted to provide a comprehensive analysis of user capac-
ity which reflects several important factors such as the shape
of multipath intensity profile (MIP), the number of anten-
nas, and power control error (PCE). Of particular interest
are the trade-offs encountered among parameters such as the
number of receiving antennas and PCE. The paper is orga-
nized as follows. In Section 2, channel and system models
are described. The AA system with RLSTT is introduced and
its theoretical analysis is derived to investigate the trade-offs
among the system parameters in Section 3. Section 4 shows
numerical results mainly focusing on the system capacity. Fi-
nally, a concluding remark is given in Section 5.

2. CHANNEL AND SYSTEMMODEL

We consider a BPSK-modulated DS-CDMA system over a
multipath fading channel. Assuming K active users (k =
1, 2, . . . ,K), the low-pass equivalent signal transmitted by
user k is presented as

s(k)(t) =
√
2Pkb(k)(t)g(k)(t)a(t) cos

[
ωct + φ(k)

]
, (1)

where a(t) is a pseudonoise (PN) randomization sequence
which is common to all the channels in a cell to maintain
the CDMA orthogonality, g(k)(t) is an orthogonal channel-
ization sequence, and b(k)(t) is user k’s data waveform. In
(1), Pk is the average transmitted power of the kth user, ωc

is the common carrier frequency, and φ(k) is the phase angle
of the kth modulator to be uniformly distributed in [0, 2π).
The orthogonal chip duration Tg and the PN chip interval
Tc is related to data bit interval T through processing gain
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Figure 1: Antenna array model geometry.

N = T/Tc. We assume, for simplicity, that Tg equals Tc. The
complex lowpass impulse response of the vector channel as-
sociated with the kth user may be written as [3]

hk(τ) =
L(k)−1∑
l=0

β(k)l exp
(
jϕ(k)

l

)
V
(
θ(k)l

)
δ
[
τ − τ(k)l

]
, (2)

where β(k)l is the Rayleigh fading strength, ϕ(k)
l is its phase

shift, and τ(k)l is the propagation delay. The kth user’s lth path
array response vector is expressed as

V
(
θ(k)l

)
=[

1 exp

(− j2πd cos θ(k)l

λ

)
· · · exp

(− j2(M−1)πd cos θ(k)l

λ

)]T

.

(3)

Throughout this paper, we consider that the array geometry,
which is the parameter of the antenna aperture gain, is a uni-
form linear array (ULA) of M identical sensors in Figure 1.
All signals from MS arrive at the BS AA with mean angle of

arrival (AOA) θ(k)l which is uniformly distributed in [0,π).
Assuming Rayleigh fading, the probability density function
(pdf) of signal strength associated with the kth user’s lth
propagation path, l = 0, 1, . . . ,L(k) − 1, is presented as

p
(
β(k)l

)
= 2β(k)l

Ω(k)
l

exp

−
(
β(k)l

)2
Ω(k)

l

, (4)

where Ω(k)
l is the second moment of β(k)l with

∑∞
l=0Ωl = 1,

and we assume it is related to the second moment of the ini-
tial path strength Ω(k)

0 for exponentially decaying MIP as

Ω(k)
l = Ω(k)

0 exp(−lδ), for 0 < l ≤ L(k) − 1, δ ≥ 0, (5)

where δ reflects the rate at which the decay of average path
strength as a function of path delay occurs. Note that a more
realistic profile model may be the exponential MIP.

The receiver is a coherent RAKE receiver with AA, where
the number of fingers Lr is a variable less than or equal to
L(k) which is the number of resolvable propagation paths as-
sociated with the kth user. Perfect estimates of the channel
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parameters are assumed. The complex received signal is ex-
pressed as

r(t) = √2P
K∑
k=1

√
λk

L(k)−1∑
l=0

β(k)l V
(
θ(k)l

)
b(k)

(
t − τ(k)l

)
× g(k)

(
t − τ(k)l

)
a
(
t − τ(k)l

)
cos

[
ωct + ψ(k)

l

]
+ n(t),

(6)

where P is the average received power and ψ(k)
l is the phase

of the lth path associated to the kth carrier. λk corresponds to
the PCE of the kth user which is a random variable due to im-
perfect power control [8]. We consider λk to be log-normally
distributed with standard deviation σλk dB. In other words,
λk = 10(x/10), where the variable x follows a normal distribu-
tion. n(t) is an M × 1 spatially and temporally white Gaus-
sian noise vector with a zero mean and covariance which is
given by E{n(t)nH(t)} = σ2nI, where I is the M × M iden-
tity matrix, σ2n is the antenna noise variance with η0/2, and
the superscriptH denotes the Hermitian-transpose operator.
When the received signal is matched to the reference user’s
code, the lth multipath matched filter output for the interest
user (k = 1) can be expressed as

y(1)l =
∫ τ(1)l +T

τ(1)l

r(t) · g(1)
(
t−τ(1)l

)
a
(
t−τ(1)l

)
cos

[
ωct + ψ(1)

l

]
dt

= S(1)l + I(1)l,mai + I(1)l,si + I(1)l,ni.
(7)

When a reference signal is not available, a common crite-
rion for optimizing the weight vectors and this criterion is to
maximize the signal-to-interference plus noise ratio (SINR).

In (7), u(1)l = I(1)l,si + I(1)l,mai + I(1)l,ni is a total interference plus
noise for the lth path of interest user. By solving the follow-
ing problem, we can obtain the optimal weights to maximize
the SINR [9]:

W(1)
l(opt) = max

W �=0
W(1)H

l RyyW
(1)
l

W(1)H

l RuuW
(1)
l

, (8)

where Ryy and Ruu are the second-order correlation matri-
ces of the received signal subspace and the interference plus
noise subspace, respectively. Here, Ruu can be estimated by
the code-filtering approach in [2], which is presented as

Ruu = N

N − 1

(
Rrr − 1

N
Ryy

)
, (9)

where Rrr means the covariance matrix of the received sig-
nal prior to RAKE. The solution corresponds to the largest
eigenvalue (λmax) of the generalized eigenvalue problem in
thematrix pair (Ryy ,Ruu). Therefore, we can obtain themax-

imum SINR when the weight vector W(1)
l(opt) equals the prin-

cipal eigenvector of the matrix pair, which is presented as

Ryy ·W(1)
l(opt) = λmax · Ruu ·W(1)

l(opt). (10)

From (7) and (8), the corresponding beamformer output for
the lth path of interest user is

ẑ(1)l =W(1)H

l · y(1)l

= Ŝ(1)l + Î(1)l,mai + Î(1)l,si + Î(1)l,ni,
(11)

where

Ŝ(1)l =
√
Pλ1/2β

(1)
l C(1,1)

ll b(1)0 T ,

Î(1)l,mai =
√
P/2

K∑
k=2

√
λk

L(k)−1∑
j=0

β(k)j C(l,k)
l j

×
{
b(k)−1RWk1

[
τ(k)l j

]
+ b(k)0 R̂Wk1

[
τ(k)l j

]}
cos

[
Ψ(k)

l j

]
,

Î(1)l,si =
√
Pλ1/2

L(1)−1∑
j=0
j �=l

β(1)j C(1,1)
l j

{
b(1)−1RW11

[
τ(1)l j

]

+ b(1)0 R̂W11

[
τ(1)l j

]}
cos

[
Ψ(1)

l j

]
,

Î(1)l,ni =
∫ τ(1)l +T

τ(1)l

W(1)H

l · n(t)g(1)
(
t − τ(1)l

)
× a

(
t − τ(1)l

)
cos

[
ωct + ψ(1)

l

]
dt,

(12)

with b(1)0 being the information bit to be detected, b(1)−1 the

preceding bit, τ(k)l j = τ(k)j − τ(1)l , and ψ(k)
l j = ψ(k)

j − ψ(1)
l .

W(1)
l = [w(1)

l,1 w
(1)
l,2 · · ·w(1)

l,M]
T is the M × 1 weight vector for

the lth path of the first user. C(1,k)
l j = W(1)H

l · V(θ(k)j ) rep-
resents the spatial correlation between the array response
vector of the kth user at the jth multipath and the weight
vector of the interest user at the lth path. RW and R̂W are
Walsh-PN continuous partial cross-correlation functions de-
fined by RWk1(τ) =

∫ τ
0 g

(k)(t − τ)a(t − τ) · g(1)(t)a(t)dt and
R̂Wk1(τ) =

∫ T
τ g(k)(t − τ)a(t − τ)g(1)(t)a(t)dt. From (11),

we can obtain the Rake receiver output from MRC combin-
ing ẑ(1) = ∑Lr

l=0 β
(1)
l · ẑ(1)l and see that the outputs of the lth

branch, l = 0, 1, . . . ,Lr − 1, consist of four terms. The first
term represents the desired signal component to be detected.
The second term represents the MAI from (K − 1) other si-
multaneous users in the system. The third term is the self-
interference (SI) for the reference user. Finally, the last term
is AWGN.

3. PERFORMANCE OF AAWITH RLSTT IN RAYLEIGH
FADING CHANNELWITH PCE

In our analysis, the evaluation is carried out for the case in
which the arrival time of paths is modeled as synchronous in
the first branch (i.e., for main paths) but as asynchronous in
the rest of the branches (i.e., for multipaths). With the well-
known Gaussian approximation, we model the MAI terms in
the first branch and the other branches as a Gaussian process
with variances equal to the MAI variances for l = 0 and for
l ≥ 1, respectively. Extending the derived results in [7], the
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variance of MAI for l = 0, conditioned on the values of β(1)l
and λk, is

σ2mai,0 =
EbT(2N − 3)
12N(N − 1)

{
β(1)0

}2 K∑
k=2

λk

L(k)−1∑
j=1

Ω(k)
j ζ (1,k)

2

0 j . (13)

Similarly, the variance of MAI for l ≥ 1 is

σ2mai,l =
EbT(N − 1)

6N2

{
β(1)l

}2 K∑
k=2

λk

L(k)−1∑
j=0

Ω(k)
j ζ (1,k)

2

l j , (14)

where Eb = PT is the signal energy per bit, and ζ (1,k)
2

l j =
E�{C(1,k)

l j }2� is the second-order characterization of the spa-
tial correlation between the array response vector of the kth
user at the jth multipath and the weight vector of interest
user at the lth path, of which more detailed derivation is de-
scribed in the appendix. The conditional variance of σ2si,l is
approximated by [10]:

σ2si,l ≈
Ebλ1T

4N

{
β(1)l

}2 L(1)−1∑
j=0
j �=l

Ω(1)
j ζ (1,1)

2

l j . (15)

The variance of the AWGN term, conditioned on the value of
β(1)l , is calculated as

σ2ni,l =
Tη0ζ

(1,1)2

ll

4M
·
{
β(1)l

}2
. (16)

Therefore, the output of the receiver is a Gaussian random
process with mean

Us =
√

Ebλ1T

2

Lr−1∑
l=0

{
β(1)l

}2
ζ (1,1)ll (17)

and the total variance equal to the sum of the variance of all
the interference and noise terms. From (13), (14), (15), and
(16), we have

σ2T = σ2mai,0 +
Lr−1∑
l=1

σ2mai,l +
Lr−1∑
l=0

(
σ2si,l + σ2ni,l

)
= EbTΩ0

×

(2N − 3)

{
q
(
Lr , δ

)− 1
}
λIζ

2
0 ·
{
β(1)0

}2
12N(N − 1)

+
(N − 1)q

(
Lr , δ

)
λIζ2 ·

∑Lr−1
l=1

{
β(1)l

}2
6N2

+
λ1
{
q
(
Lr , δ

)−1}(ζ20 ·{β(1)0

}2
+ζ2·∑Lr−1

l=1
{
β(1)l

}2)
4N

+
η0

(
ζ
′2
0 ·

{
β(1)0

}2
+ ζ

′2 ·∑Lr−1
l=1

{
β(1)l

}2)
4MEbΩ0

 .

(18)

At the output of the receiver, SNR may be written in a more
compact form as γs:

γs=
 (2N−3)

{
q
(
Lr , δ

)−1}λI
6N(N − 1)

·
ζ20 ·

{
β(1)0

}2
ζ ′0·
{
β(1)0

}2
+ ζ ′·∑Lr−1

l=1
{
β(1)l

}2
+
(N − 1)q

(
Lr , δ

)
λI

3N2
·

ζ2 ·∑Lr−1
l=1

{
β(1)l

}2
ζ ′0 ·

{
β(1)0

}2
+ζ ′ ·∑Lr−1

l=1
{
β(1)l

}2
+

{
q
(
Lr , δ

)− 1
}
λ1

2N
·
ζ20 ·

{
β(1)0

}2
+ ζ2 ·∑Lr−1

l=1
{
β(1)l

}2
ζ ′0 ·

{
β(1)0

}2
+ ζ ′ ·∑Lr−1

l=1
{
β(1)l

}2

+
η0

2MΩ0Eb
·
ζ
′2
0 ·

{
β(1)0

}2
+ ζ

′2 ·∑Lr−1
l=1

{
β(1)l

}2
ζ ′0 ·

{
β(1)0

}2
+ ζ ′ ·∑Lr−1

l=1
{
β(1)l

}2

−1

×
λ1

(
ζ ′0 ·

{
β(1)0

}2
+ ζ ′ ·∑Lr−1

l=1
{
β(1)l

}2)
Ω0

,

(19)

where q(Lr , δ) =
∑Lr−1

l=0 exp(−lδ) = 1 − exp(−Lrδ)/1 −
exp(−δ), λI =

∑K
k=2 λk, and Ω(k)

0 = Ω0. ζ
(k,m)2

l j = ζ20 when

k �= m or l �= j for l = 0, ζ (k,m)2

l j = ζ2 when k �= m or l �= j

for l > 0, ζ (k,m)2

l j = ζ
′2
0 when k = m and l = j for l = 0, and

ζ (k,m)2

l j = ζ
′2 when k = m and l = j for l > 0. In [11], the pdf

of λI =
∑K

k=2 λk for K − 1 users is an approximately lognor-
mal distribution, with the following logarithmic mean and
variance, which is presented as

p
(
λI
) = 1√

2πσλI λI
exp

[
−
(
ln λI −mλI

)2
2σ2λI

]
, (20)

where

σ2I = ln
(

1
K − 1

exp
(
σ2λI
)
+
K − 2
K − 1

)
,

mI = ln(K − 1) +m +
σ2λI
2

− 1
2
ln
(
K − 2
K − 1

+
1

K − 1
exp

(
σ2λI
))

.

(21)

This method is valid for a logarithmic standard deviation σλ
less than 4 dB. To evaluate the average bit error probability,
Pl
e(λ1, λI), conditioning on the values of λ1 and λI follows as

Pl
e

(
λ1, λI

)
=
∫∞
0

∫∞
0
Q
(√

γs
)Lr−1∑
k=1

πk
Ωk

exp
(−x/Ωk

)· 1
Ω0

exp
(−y/Ω0

)
dx dy,

(22)

where πk = ΠLr−1
i=1,i �=k(xk/(xk − xi)) = ΠLr−1

i=1,i �=k(Ωk/(Ωk −Ωi)),
Q(x) = (1/

√
2π)

∫∞
x exp(−u2/2)du. The average bit error
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Figure 2: Analytical results versus simulation results. (Number of users = 12, M = 4, Lr = L(k) = 2, PCE = 0 and 3 dB.) (a) δ = 1.0, (b)
δ = 0.2.

probability Pe is calculated as

Pe = 1√
π

∫∞
−∞

1√
π

∫∞
−∞

Pl
e

(
exp

(√
2σλ1z1 +mλ1

)
,

exp
(√

2σλI zI +mλI

))
× exp

[− z21
]
dz1 exp

[− z2I
]
dzI ,

(23)

where z1 = (ln λ1−mλ1 )/
√
2σλ1 and zI = (ln λI −mλI )/

√
2σλI .

This integration can be easily obtained by using the Hermite
polynomial approach, which requires only summation and
no integration [12]:

Pe = 1
π

h∑
l=1

wl

h∑
n=1

wnP
l
e

(
exp

(√
2σλ1xn +mλ1

)
,

exp
(√

2σλI xl +mλI

))
.

(24)

4. NUMERICAL RESULTS

In this section, we have investigated the user capacity of AA
system both with RLSTT and without RLSTT, considering
several important factors such as the shape of MIP, the num-
ber of antennas, and the PCE. In all evaluations, processing
gain is assumed to be 128, and the number of paths and taps

in RAKE is assumed to be the same for all users and denoted
by two. The decaying factor is considered as 1.0 or 0.2 for
the exponential MIP. The sensor spacing is half of the carrier
wavelength.

Figure 2 shows uncoded BER performance as a function
of Eb/N0, when the number of users is twelve and the number
of antennas is four in the exponential MIP. Two decay factors
are considered, and both perfect power control (PCE = 0 dB)
and imperfect power control (PCE = 3 dB) are assumed. The
results confirm that the analytical results are well matched
to the simulation results. It is noted that using RLSTT to-
gether with AA may enhance the performance, since RLSTT
tends to make better the estimation of covariance matrices
for beamformer-RAKE receiver.

The BER curves are plotted as functions of the number
of users in Figure 3 when Eb/N0 = 20 dB and power con-
trol is perfect. The number of antennas is chosen among
one, four, or eight. It is shown that AA with RLSTT demon-
strates significant performance gain when the number of
users increases, even though the performance improvement
decreases when the number of antenna increases. For exam-
ple, in the case of four antennas, while AA without RLSTT
supports 60 users, AA with RLSTT supports more than 96
users at a BER of 10−3, showing an enhancement of 50%.

Figure 4 shows the BER system performance as a func-
tion of the number of users, when M = 4, Eb/N0 = 20 dB,
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Figure 3: BER versus number of users in AA with RLSTT and AA without RLSTT (Eb/N0 = 20 dB, M = 1, 4, and 8, Lr = L(k) = 2,
PCE = 0 dB). (a) δ = 1.0, (b) δ = 0.2.
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Figure 4: BER versus number of users in AA with RLSTT and AA without RLSTT (Eb/N0 = 20 dB, M = 4, Lr = L(k) = 2, PCE =
0, 1, 2, 3, and 4 dB). (a) δ = 1.0, (b) δ = 0.2.

and power control is imperfect. The curves are parameter-
ized by different PCE values such as PCE = 0, 1, 2, 3, and
4[dB], and show that RLSTT makes DS-CDMA system with
AA insensitive to the PCE and thus increases the achievable
overall system capacity. At BER = 5× 10−4, AA with RLSTT

when PCE = 2 dB can support even greater number of users,
about 35% more than AA without RLSTT when power con-
trol is perfect (PCE = 0 dB), even though its capacity when
PCE = 2 dB is degraded about 28% in comparison to the
perfect power control.
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Figure 5: Number of users versus PCE in AA with RLSTT and AA without RLSTT (Eb/N0 = 20 dB,M = 4 and 8, Lr = L(k) = 2, BER = 10−4)
(a) δ = 1.0 (b) δ = 0.2.

In Figure 5, the maximum allowable number of users to
achieve BER of 10−4 is shown as a function of PCE when
the number of antenna elements is four or eight. The fig-
ure demonstrates while in eight-element AA without RLSTT
PCE is required to keep less than 1 dB in order to achieve the
user capacity of 50 users, AA with RLSTT may make loose
the requirement to 3 dB. The figure can also be used to find
the overall system capacity for a given PCE and the num-
ber of antenna elements. These results, however, do not take
into account effects such as coding and interleaving. Addi-
tionally, it is apparent that RLSTT has superior performance
and/or reduces the complexity of the system since AA with
RLSTT with fewer numbers of antennas can obtain better
performance than AA without RLSTT.

5. CONCLUSIONS

In this paper, we presented an improved AA, in which RLSTT
is incorporated to effectively make better an estimation of co-
variancematrices at a beamformer-RAKE receiver, and inves-
tigated the user capacity and the performance analysis which
reflects several important factors such as the shape of mul-
tipath intensity profile (MIP), the number of antennas, and
power control error (PCE). The results show that the orthog-
onality provided by employing RLSTT along with AA may
make the DS-CDMA system insensitive to the PCE even with
fewer numbers of antennas. Additionally, RLSTT has supe-
rior performance and/or reduces the complexity of the sys-
tem since AA with RLSTT with fewer numbers of antennas
can obtain better performance than AA without RLSTT. The
consideration of estimation technique such as diagonal load-
ing employed in the proposed system may be an interesting
issue for future study.

APPENDIX

SPATIAL CORRELATION STATISTICS

From (10), we can obtain the optimal beamformer weight
presented as

W(k)
l = ξ · R(k)−1

uu,l V
(
θ(k)l

)
; (A.1)

since ξ does not affect the SINR, we can set ξ = 1. When
the total number of paths is large, a large code length yields

R(k)
uu,l = σ (k)

2

s,l ·I [2]. However, it means that the total undesired
signal vector can be modeled as a spatially white Gaussian

random vector. Here, σ (k)
2

s,l is the total interference-plus-noise
power. From (7), the total interference-plus-noise for the lth
path of the kth user in the matched filter output is shown as

u(k)l = I(k)l,si + I(k)l,mai + I(k)l,ni. (A.2)

If we assume that the angles of arrival of the multipath com-
ponents are uniformly distributed over [0,π), the total inter-

ference vector I(k)l,si + I(k)l,mai will be spatially white [2, Chapter
6]. In this case, the variance of the undesired signal vector is
calculated as

E
⌊
u(k)l · u(k)Hl

⌋
= σ (k)

2

s,l · I

=
(
σ (k)

2

mai,l + σ (k)
2

si,l + σ (k)
2

ni,l

)
· I,

(A.3)

where σ (k)
2

mai,l and σ (k)
2

si,l are the noise variance of MAI and SI in
one-dimension antenna system. For the RLSTT model [7],
all active users are synchronous in the first branch. Therefore,
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we can obtain the different variance of the total interference-
plus-noise for l = 0 and for l ≥ 1, conditions on the value of
λk, respectively, expressed as follows:

σ (k)
2

s,0

(
λ1, λI

)
= EbTΩ0

(
(2N − 3)λI

{
q
(
Lr , δ

)− 1
}

12N(N − 1)

+
λ1
{
q
(
Lr , δ

)− 1
}

4N
+

η0
4EbΩ0

)
for l = 0,

σ (k)
2

s,l

(
λ1, λI

)
= EbTΩ0

(
(N − 1)λIq

(
Lr , δ

)
6N2

+
λ1
{
q
(
Lr , δ

)− 1
}

4N
+

η0
4EbΩ0

)
for l ≥ 1.

(A.4)

Using the Hermite polynomial approach, we can evaluate the
average total interference-plus-noise power per AA element.

With these assumptions, the optimal beamformer weight
of the kth user at the lth multipath can be shown to be

W(k)
l = σ (k)

−2
s,l ·V(θ(k)l ). Therefore, between the array response

vector of the mth user at the hth multipath and the weight
vector of the kth user’s lth path, the spatial correlation can be
expressed as

C(k,m)
lh =

VH
(
θ(k)l

)
V
(
θ(m)
h

)
σ (k)

2

s,l

= CR(k,m)
lh

σ (k)
2

s,l

, (A.5)

where

CR(k,m)
lh =

M−1∑
i=0

exp
(
jπ si cos

(
θ(k)l

))
exp

(
− jπ si cos

(
θ(m)
h

))
,

s = 2d
λ
.

(A.6)

The second-order characterization of the spatial correla-
tion is calculated as

ζ (k,m)2

lh = E
[{

C(k,m)
lh

}2] = E
[{

CR(k,m)
lh

}2]
σ (k)

4

s,l

, (A.7)

where{
CR(k,m)

lh

}2 = A
(
θ(k)l , θ(m)

h

)
=

M−1∑
i=0

(i + 1) exp
(
jπ si cos θ(k)l

)
exp

(
− jπ si cos θ(m)

h

)

+
2(M−1)∑
i=M

(2M − i− 1) exp
(
jπ si cos θ(k)l

)
× exp

(
− jπ si cos θ(m)

h

)
.

(A.8)

The mean angles of arrival θ(k)l and θ(m)
h have uniform distri-

bution in [0,π) independently. So,

E
[{

CR(k,m)
lh

}2]
=
∫ π

0

∫ π

0
A
(
θ(k)l , θ(m)

h

)
dθ(k)l dθ(m)

h

=



M−1∑
i=0

(i + 1)J0(π si)J0(−π si)

+
2(M−1)∑
i=M

(2M − i− 1)J0(π si)J0(−π si), k �= m or l �= h,

M2, k=m, l=h,
(A.9)

where J0(x) is the zero-order Bessel function of the first
kind.
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