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Region Information-Based ROI Extraction
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Region of interest (ROI) plays an important role in medical image analysis. In this paper, a new approach to ROI extraction based
on the curve evolution is proposed. Different from the existent method, the proposed approach is efficient both in segmentation
results and computational cost. The deforming curve is modeled as a monotonically marching front under a positive speed field,
where a region speed function is derived by minimizing the new defined ROI energy, and integrated with the edge-based speed
function. The curve evolution model integrating the ROI information has a large propagation range and could even drive the
front in low-contrast and narrow thin areas. Moreover, a multi-initial fast marching algorithm, which permits the user to plant
several seed curves as the initial front and evolves them simultaneously, is developed to fast implement the numerical solution.
Selective planting seed curves could help the local growth and thus may further improve the segmentation results and reduce the
computational cost. Experiments by our approach are presented and compared with that of the other methods, which show that
the proposed approach could fast extract low-contrast and narrow thin ROI precisely.
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1. INTRODUCTION

Region of interest (ROI) plays an important role in medi-
cal image analysis. Quantitative analysis of the shape and the
properties of ROI could provide reliable data for diagnosing
disease and the follow-up treatment planning [1]. As a result,
to exploit accurate and fast ROI extraction method is in great
need.

In recent years, ROI extraction based on the curve evo-
lution approaches that deform an initial curve towards the
desired boundary have been extensively exploited. Snakes

or active contours first proposed by Kass et al. are energy-
minimizing curves that deform to fit the boundary of ROI
[2]. The snakes are guided by the internal forces coming from
the curve itself and external forces computed from the im-
age data. Snakes and their variations are widely used in im-
age segmentation. To overcome some drawbacks of classi-
cal snakes, region-based information are introduced to the
model. Chakraborty et al. proposed the model that inte-
grates the region-based segmentation and boundary find-
ing in a unified framework [3]. In this approach, bound-
ary is parameterized using Fourier descriptors which limit
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the shapes that they can describe. In addition, the distri-
bution of the shape parameters is assumed to be multivari-
ate Gaussian prior that may also present its limitations. The
segmentation is formulated as maximum a posteriori prob-
ability, involving a lot of parameters to be estimated that
bring great computational cost. Ivins and Zhu, respectively,
proposed the statistical snakes for region growing and ap-
plied these models to image/texture segmentation [4, 5].
However, due to its “Lagrangian” representation such that
the coordinate system moves with the deforming curve, the
parametrical snakes could not handle topological changes.
To handle the splitting or the merging of the curve, ex-
tra reparameterization procedures must be performed dur-
ing iteration, which brings expensive computational cost
[6].

A major breakthrough is made by introducing the level
set theory to curve propagation, resulting in a very elegant
tool. The level set method proposed by Osher and Sethian
offers a highly robust mathematic and numerical imple-
mentation on curve/surface evolution [7, 8]. Embedding
the moving front to be zero level set of a higher dimen-
sional function, topological changes can be handled natu-
rally by exploiting the zero level set at any time. The level
set method is introduced to image segmentation by Mal-
ladi et al. [9, 10, 11]. In this approach, selection of speed
function is crucial. On one hand, the speed function con-
trols the behavior of the front propagation; on the other
hand, the form of the speed function decides the compu-
tational complexity of the numerical implementation. As a
solution to the level set evolution equation, fast marching
method may be the first choice for its cheap computational
cost [10]. However, it could only be used for a monotoni-
cally marching front that requires the speed function to be
always positive or negative. Narrowband method and Her-
mes algorithm can cope with all sorts of the level set evo-
lution but their computational costs are still far more ex-
pensive than the fast marching method [12, 13]. Malladi et
al. in [9] proposed the image-based positive speed function
that could stop the front in the vicinity of the ROI bound-
ary, but this only edge-based curve evolution may mislead
the deformation at weak boundary, as the speed is too weak
to propagate the front there. To address this problem, many
improvements on designing the speed function are achieved
by introducing region information to guide the curve de-
forming. Yezzi et al. proposed a fully global approach to im-
age segmentation that is derived based on the determinis-
tic principle of maximally separating the values of certain
image statistics within a set of curves [14]. This is a pure
region-based approach, thus it is very robust. However, be-
cause the image statistics are variable with the deforming
curve, these statistics need to be estimated during the curve
evolution, whichmay bringmuch computational cost. More-
over, it needs n − 1 curves to segment n regions with each
curve corresponding to different curve evolution equation
and level set function, which also present complex compu-
tation. Similar to Yezzi et al.’s work, nonparametric statistical
method for image segmentation is proposed in [15], where
the curve evolution aims at maximizing the mutual infor-

mation within different curves. Another region-based curve
evolution method is based on the criterion that the interior
of the region has maximal similarity and different regions
have maximal discrepancy [16]. But continually estimating
variable statistics makes the computing expensive. Paragios
and Deriche proposed the geodesic active regions by adding
a region term onto the geodesic active contour model, which
combines the region-based segmentation with edge informa-
tion. The region term is derived as minimizing the negative
log-likelihood function of the image, which is obtained by
Markov random field (MRF) presegmentation [17]. Due to
its complex form in speed function, the corresponding level
set evolution equation is implemented by Hermes algorithm
[13], which is more computationally expensive than the Fast
Marching method.

Considering both the segmentation quality and the com-
putational cost, in this paper, we propose an efficient ap-
proach to ROI extraction. Different from the other ap-
proaches, neither statistics are needed to be computed con-
tinuously nor complex numerical implementation is in-
volved. The deforming curve is modeled as monotonically
marching front under a new positive speed field, where a
new region speed function is derived by minimizing the ROI
energy. Integrating with the region information, the modi-
fied speed function has large propagation range and could
even drive the front propagating in low-contrast and nar-
row thin areas. To further improve the segmentation re-
sults, multi-initial scheme is adopted [14] and the multi-
initial fast marching algorithm is developed, which permits
the user to plant several seed curves as the initial front and
evolves them simultaneously. All the seed curves are treated
as one complex front driven by the same evolution equa-
tion. Selective planting seed curves can avoid the monoton-
ically marching front leaking out of the weak boundary too
early to arrive at the desired boundary and it can also reduce
the computational cost. Our approach is similar to that of
Vilariño’s cellular neural networks (CNN) approach to im-
age segmentation [18, 19]. Both approaches evolve pixel by
pixel from their initial shapes and locations until delimit-
ing the objects of interest, and the curve evolution is guided
by local information from the image under consideration,
which can offer a high flexible and efficient parallel process-
ing.

The remainder of the paper is as follows: in Section 2,
fast marching method is briefly outlined; in Section 3, the
curve evolution model is proposed, where a new speed func-
tion is introduced by ROI energy minimizing; in Section 4,
multi-initial fast marching algorithm is described in detail; in
Section 5, experimental results are presented and compared
with those of the other methods; finally in Section 6, conclu-
sions are reported.

2. FASTMARCHINGMETHOD

Let C(p, 0) be a closed parameterized curve in Euclidean
plane R2. Let C(p, t) be the one-parameter family of curves

generated by moving C(p, 0) along its normal vector field �N
with speed F. The corresponding curve motion equation is
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given by

∂C

∂t
= F · �N ,

C(p, 0) = C0(p).
(1)

In particular, for the speed function F is being always
positive or negative, the front is marching monotonically.
One way to characterize the position of this moving front is
to compute the arrival time T(x, y) of the front as it crosses
each point (x, y). By embedding the moving front to the level

set of time function T(x, y), thus the normal vector �N could

be give by �N = ∇T/|∇T|, the fast marching equation is de-
rived as follows [8]:

T
(
C(p, t)

)
� t =⇒ ∇T • Ct = 1

=⇒ ∇T •
(
F · ∇T|∇T|

)
= 1

=⇒ F · |∇T| = 1.

(2)

The advantages of this equation representation are that it is
intrinsic and that it is topologically flexible since at any time
t, different topologies of C can be handled naturally by ex-
ploiting the level set {C(p, t)|T(C(p, t)) = t}.

3. REGION-BASED CURVE EVOLUTIONMODEL

3.1. ROI energy and region speed function

Assume that ROI is the region enclosed by the moving front
and is corresponding to the class O in the image I . Let
µo(I(x, y)) denote the membership of the pixel belonging to
the interesting object class O. Let

Po
(
I(x, y)

) =

1 if µo

(
I(x, y)

)
> 0.5,

−ε otherwise,
(3)

where ε → 0+ is a small positive constant. We define the ROI
energy as follows:

EROI = −
∫∫

ROI
PO
(
I(x, y)

)
dx dy. (4)

A direct explanation of (4) is that ROI should include as
much pixels as possible belonging to the class O.

Using the Green theorem and variational method, we
could derive the corresponding curve evolution equation as
follows:

∂C

∂t
= −PO(I) · �Nin = PO(I) · �N , (5)

where �N is the outward normal vector. The detailed deriva-
tions are given in the appendix.

From (5), we could conclude that if a pixel belongs to the

classO, this region force Po(I(x, y))· �N aims at expanding the
front curve to include this pixel; otherwise, it aims at shrink-
ing the front to exclude this pixel.

For many medical images, the gray values constitute an
adequate statistic to distinguish one region from another.
Therefore, histogram-based fuzzy cluster algorithm [20] is
performed for initial segmentation to provide region infor-
mation. Let U = [u(l, k)] (l = 0, . . . , 255; k = 1, . . . ,K),
where u(l, k) denotes the membership of the gray level l be-
longing to the kth class and K is the number of classes. Then
µo(I) = u(I(·, ·),O). The ROI class O could be simply deter-
mined by mouse-choosing several pixels in this region.

3.2. Modified speed function

Malladi in [9, 10] proposes an image-based speed function:

gI = e−α|∇Gσ∗I|, α > 0, (6)

that could stop the front in the vicinity of the ROI boundary.
However, this only edge-based speed is too weak to propa-
gate the front in low-contrast and narrow thin areas. To ad-
dress this problem, improvements have been exploited but
that may bring expensive computational cost [14, 15, 16, 17].
Considering both the segmentation quality and computa-
tional cost, we introduce the ROI information to the model
by integrating the new region speed function PO(I) with the
edge speed function gI . The modified speed function is given
by

Fmod i = wR · PO(I) +wE · gI . (7)

The corresponding curve evolution equation is

∂C

∂t
= Fmod i · �N = wR · PO(I) · �N +wE · gI · �N , (8)

where wR,wE ∈ (0, 1] are constants weighting the effects of
region-based speed term and edge-based speed term, respec-
tively.

If we choose ε = min{wE · gI /wR}, the modified speed
function Fmod i = wR · PO(I) + wE · gI is always positive. The
corresponding fast marching equation is given by

Fmod i · |∇T| = 1. (9)

The modified speed fuses both region and edge information
that has large propagation range. Even at weak boundaries, it
can provide proper speed to propagate the front.

4. MULTI-INITIAL FASTMARCHING ALGORITHM

Equation (8) can be implemented by the classical fast march-
ing algorithm proposed by Malladi and Sethian [11]. How-
ever, monotonically marching front may leak out of the weak
boundary too early to arrive at the desired ROI bound-
ary. To address this problem, we develop the multi-initial
fast marching algorithm that permits the user to plant seed
curves as the initial front and evolves them simultaneously,
which could perform the selective growth that may further
improve the segmentation results and reduce the computa-
tional cost.
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(1) Initialization
Plant several seed curves in the ROI region;
Let initial front be the set of the pixels on all the seed
curves;
Alive pixel.

The front pixels constitute the alive pixels. If we
want the front to propagate outward, also tag as
alive pixels in the interior of every seed curve;
Assign alive pixels with zero crossing time
Talive(i, j) = 0.

Trial pixel.
For each front pixel, the first-order neighborhood
pixels are examined. If they are not labeled as alive,
then, they become trial pixels with crossing time
Ttrial(i, j) = 1/Fmod i(i, j).

Faraway pixel.
All other pixels are initialized as faraway with a
crossing time Tfaraway(i, j) = ∞.

(2) Marching forward
(If not satisfying stop criterion)

Let A be the trial pixel with the smallest T
value.
Add the pixel A to alive set and remove it
from trial set.
Tag as trial all neighbors of A that are not
alive. If the neighbor is in faraway, remove,
and add to the trial with initial crossing time
T(i, j) = 1/Fmod i(i, j).
Recompute the value of T at all trial
neighbors of A according to (9).

End

Algorithm 1

The multi-initial fast marching algorithm is given in
Algorithm 1.

An efficient technique of fast locating the grid pixel with
smallest T values in the narrowband is to use a variation on
heapsort algorithm, resulting in only O(N logN) computa-
tional expense [10].

5. EXPERIMENT

To demonstrate the efficiency of our approach, the proposed
curve evolution equation (8) for ROI extraction by multi-
initial fast marching algorithm is compared with the other
methods.

Method 1. ROI extraction based on the only edge-based
curve evolution [9]:

∂C

∂t
= g · �N. (10)

Method 2. ROI extraction by geodesic active contours
equation [21]:

∂C

∂t
= g

(
c1 + c2κ

) · �N − (∇g • �N) · �N. (11)

Method 3. Geodesic active region equation proposed by
Paragios and Deriche [17]:

∂C

∂t
= (1− β) · [g(c1 + c2κ

) · �N − (∇g • �N) · �N]

+ β · logPB
(
I(x, y)

)
logPA

(
I(x, y)

) · �N.
(12)

Method 4. Fully global approach proposed by Yezzi et al.
[14]:

∂C

∂t
= (u− v) ·

(
I − u

Au
+
I − v

Av

)
· �N − c · κ · �N. (13)

g is a monotonically decreasing function such that g(r) → 0

as r → ∞ and g(0) = 1, and �N is outward normal vector
in (10) and (13) whereas inward normal vector in (11) and
(12). c1, c2, c, and β are constant. PA(I(x, y)) and PB(I(x, y))
are the joint probability of the image with respect to two class
hypothesis A and B, respectively. u and v are the average in-
tensity inside and outside the deforming curve. The common
choice of g is given by (6). The numerical implementation of
(8) and (10) is by our multi-initial fast marching algorithm.
Due to the complex speed function form, the corresponding
level set evolution equation of (11), (12), and (13) should be
implemented by Hermes algorithm or by a more expensive
narrowband method [12].

In the following experiments, we choose α = 0.2, c1 =
−1, c2 = 0.05, c = 0.05, and β = 0.7. The ratio of wR and
wE are recommended to be larger for low-contrast image or
images with many narrow thin branches as the region infor-
mation is more reliable than the edge information there. The
ROI class O, the class numbers K used in fuzzy cluster, and
the values of wE and wR for each case are given in Table 1.

Figures 1, 2, 3, and 4 are the comparison results. The
first column shows the initial seed curves, the second and the
third column show the randommiddle state of the marching
front, while the fourth column shows the final front state.
Group (a) provide the results for our approach and group
(b) show the results of Method 1, Method 2, Method 3, and
Method 4, respectively.

Figure 1 is a sarcoma pathological brain MR image,
where three tumors are to be extracted. In the initial state,
three seed curves are planted in the tumor areas, therefore,
tumors can be extracted at one time. It can be seen from
Figure 1b that because of the low-contrast and complex gra-
dient of the ROI, the only edge-based speed misleads the de-
forming behavior. However, the results of Figure 1a are very
promising, which show that the modified speed function in-
tegrating region information has large propagation range in
low-contrast area.

Figure 2 is a meningioma pathological brain MR image,
where the tumor area is the ROI. In this experiment, we
want to compare the effect of the proposed region speed term
with the advection speed term in geodesic active contours. In
Figure 2a, the tumor extraction by the proposed curve evolu-
tion performs better in that it could even extract the narrow
thin area on the top. Comparison of the results in Figure 2b
shows that the geodesic active contour fails in extracting thin
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Table 1: Parameters for each case.

Figure number 1 2 3 4 5 6 7 8 9

wR 1.0 0.9 1.0 0.9 Given 1.0 0.9 0.9 1.0

wE 0.2 0.1 0.2 0.2 Given 0.2 0.2 0.2 0.2

Interesting class Three Top Right DSA Vessel Vessel Vessel Vessel Bone

O Tumors Tumor Tumor Vessels Branches Branches Branches Branches

K 3 5 5 2 2 2 2 2 2

(a)

(b)

Figure 1: Sarcoma tumors extraction (a) by the proposed approach and (b) by Method 1.

area due to the low gradient information there. Experiments
show that, compared with the advection term, the region
force has larger attraction ability to guide the curve deform-
ing in thin areas.

Figure 3 is a metastatic bronchogenic carcinoma patho-
logical brain MR image, where the tumor on the right is the
ROI. The result of our approach is slightly different from
that of Paragios’s geodesic active region method. The pre-
segmentation map of Method 3 comes fromMRF-based seg-
mentation, and the region information used for curve evolu-
tion involves two terms: PA(I(x, y)) and PB(I(x, y)) that cor-
respond to the joint probability of the image with respect to
two-class hypothesis. However, our region information only
involves the ROI class O hypothesis. In addition, the compu-
tational cost of multi-initial fast marching algorithm used in
our approach is O(N logN), whereas the Hermes algorithm
used for Method 3 is much expensive.

Figure 4 is a DSA blood vessel. The result of our approach
is almost the same as that of Method 4. However, the numer-
ical implementation of Yezzi’s equation needs to use narrow-
band algorithm that is far more expensive than fast marching

algorithm. Moreover, the statistics of the average intensity u
and v are variable with the deforming curve, thus continu-
ously computing these statistics are needed during the curve
evolution which brings much computational costs.

Considering both the computing cost and the segmen-
tation results, our approach performs better than that of the
othermethods in that it runs faster and could locate the curve
in the desired boundary as well, which is suitable for real-
time medical image ROI extraction.

In our approach, choosing parameters of wR and wE is
important to guide the curve deforming. Figure 5 show the
impact of different combinations of wR and wE on the pul-
monary vessels extraction. The obtained image is prepro-
cessed by contrast enhancement, where vessels network is the
ROI. From the comparison of the four groups in Figure 5, we
can see that increasing the values for wR improves the image
segmentation results significantly. Experimental results show
that for low-contrast image or images withmany narrow thin
branches, larger wR could perform better as region informa-
tion will play prominent role in guiding the front propaga-
tion there.
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(a)

(b)

Figure 2: Meningioma tumor extraction (a) by the proposed approach and (b) by Method 2.

(a)

(b)

Figure 3: Carcinoma tumor extraction (a) by the proposed approach and (b) by Method 3.

In fast marching algorithm, because the front is mono-
tonically marching, front leaking from boundary too early is
a serious problem.Multi-initial planting seed curves can help
in selective growth of the front that may avoid the early leak-
ing problem. Seed curves are recommended to be planted in
some narrow thin vessels branches or low-contrast area, in-

ducing the front growth there. In addition, the interior of ev-
ery seed curve is Alive pixels, which need not be updated in
the marching processing, thus planting as much seed curves
may reduce the computational cost. Figure 6 shows the re-
sults by our multi-initial fast marching algorithm and the
classical fast marching algorithm without multi-initial. The
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(a)

(b)

Figure 4: DSA vessel extraction (a) by the proposed approach and (b) by Method 4.

comparison show that selective planting of seed curves can
do help in local growth of the front and also reduce the com-
putational cost to some extent.

To further demonstrate the reliability of the proposed ap-
proach, experiments on several medical images segmentation
are provided. Figures 7 and 8 are pulmonary vessels selected
from CT images. Observation shows that the front stops at
the desired vessel boundary encouragingly, and even some
small and thin vessel branches, which exhibit much vari-
ability, could be located precisely as well. Almost the whole
vessels network is extracted by our approach. Figure 9 is a
bone image. From the segmentation results, we could see thin
bones on the two sides that are precisely extracted by our ap-
proach.

6. CONCLUSIONS

In this paper, an efficient approach to ROI extraction based
on the curve evolution was proposed. Region information
was introduced to the model by minimizing the new defined
ROI energy. Integrating region speed function with the edge-
based speed term, themodified speed field has large propaga-
tion range even in low-contrast and narrow thin areas. More-
over, a multi-initial fast marching algorithm was developed,
where selective planting seed curves may avoid the monoton-
ically marching front leaking out of the weak boundary too
early and further reduce the computational cost. ROI extrac-
tion on several medical images by our approach was provided
and compared with that of the other methods. Experiments
show that considering both the computational cost and seg-
mentation results, the proposed curve evolution integrating
region information could perform faster and could precisely
locate the front at the desired boundary as well. Experimen-
tal results by our approach were very promising and it can be
applied to medical image segmentation.

Nevertheless, due to the strict requirement of speed func-
tion form in the fast marching method, the proposed ap-
proach was only based on local image information, which in-
volves a certain risk of being trapped in local minimum. Our
future direction is to study global and real-time algorithm on
clinical oriented medical image segmentation.

APPENDIX

Let

ER =
∫∫

R
f (x, y)dx dy. (A.1)

The goal is to find the boundary ∂R of a region R for a
given function f : R2 → R that yields an extremum of the ER;
let

Q = 1
2

∫ x

0
f (t, y)dt,

P = 1
2

∫ y

0
f (x, t)dt.

(A.2)

From Green theorem,

ER =
∫∫

R

(
∂Q

∂x
+
∂P

∂y

)
dx dy =

∫
∂R
(Qdy − Pdx)

=
∫
∂R

(
Q
dy

ds
− P

dx

ds

)
ds =

∫ L

0

(
Q
dy

ds
− P

dx

ds

)
ds

�
∫ L

0
F
[
s, x(s), y(s), x′(s), y′(s)

]
ds,

(A.3)

where s is the arc-length parameter and L is the length of ∂R.
From variational method, the corresponding Euler-lagrange
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Initial state 8280 iterations 10 440 iterations 12 180 iterations

(a)

Initial state 8280 iterations 10 440 iterations 11 100 iterations

(b)

Initial state 7560 iterations 10 080 iterations 11 580 iterations

(c)

Initial state 2520 iterations 7560 iterations 8760 iterations

(d)

Figure 5: Impact of different ratios of wR to wE on the pulmonary vessels extraction. (a) wR = 0.9, wE = 0.2; (b) wR = 0.6, wE = 0.4; (c)
wR = 0.2, wE = 1.0; (d) wR = 0, wE = 1.0.

equation is

Fx − d

ds
Fx′ = 0,

Fy − d

ds
Fy′ = 0,

(A.4)

which could yield the following equations:

y′(s)
∂Q

∂x
− x′(s)

∂P

∂x
+
dP

ds
= 0,

y′(s)
∂Q

∂y
− x′(s)

∂P

∂y
− dQ

ds
= 0,

(A.5)

where

dP

ds
= x′(s)

∂P

∂x
+ y′(s)

∂P

∂y
,

dQ

ds
= x′(s)

∂Q

∂x
+ y′(s)

∂Q

∂y
.

(A.6)

Substituting (A.6) to (A.5), we could get

y′(s) ·
(
∂Q

∂x
+
∂P

∂y

)
= 0,

−x′(s) ·
(
∂P

∂y
+
∂Q

∂x

)
= 0.

(A.7)

Therefore,

y′(s) · f (x, y) = 0,

−x′(s) · f (x, y) = 0.
(A.8)

Using the gradient descent method, we could get the curve
evolution equation:

∂x

∂t
= − f (x, y) · dy

ds
,

∂y

∂t
= f (x, y) · dx

ds
.

(A.9)
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Initial state 2160 iterations 7200 iterations 8940 iterations

(a)

Initial state 2160 iterations 4680 iterations 9480 iterations

(b)

Initial state 6120 iterations 10 080 iterations 10 860 iterations

(c)

Initial state 2340 iterations 9180 iterations 15 180 iterations

(d)

Figure 6: Demonstration of selective planting seed curves: (a) and (b) demonstration of selective planting seed curves on helping local
growth; (c) and (d) demonstration of selective planting seed curves on reducing computational cost.

Figure 7: Pulmonary vessels extraction by the proposed approach.
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Figure 8: Pulmonary vessels extraction by the proposed approach.

Figure 9: Medical bone image extraction by the proposed approach.

From differential geometry, we know that �α = (dx/ds,dy/ds)

is the unit tangent vector, so �N = (−dy/ds,dx/ds) is the unit
inward normal vector. Thus we obtain

∂C

∂t
= f (x, y) · �N. (A.10)
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