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In mobile communication systems with multisensor antennas at base stations, downlink channel estimation plays a key role
because accurate channel estimates are needed for transmit beamforming. One efficient approach to this problem is channel
probing with feedback. In this method, the base station array transmits probing (training) signals. The channel is then estimated
from feedback reports provided by the users. This paper studies the performance of the channel probing method with feedback
using a multisensor base station antenna array and single-sensor users. The least squares (LS), linear minimum mean square
error (LMMSE), and a new scaled LS (SLS) approaches to the channel estimation are studied. Optimal choice of probing signals
is investigated for each of these techniques and their channel estimation performances are analyzed. In the case of multiple LS
channel estimates, the best linear unbiased estimation (BLUE) scheme for their linear combining is developed and studied.
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1. INTRODUCTION

In recent years, transmit beamforming has been a topic of
growing interest [1, 2, 3, 4, 5]. The aim of transmit beam-
forming is to send desired information signals from the base
station array to each user and, at the same time, to mini-
mize undesired crosstalks, that is, to satisfy a certain quality
of service constraint for each user. This task becomes very
complicated if the transmitter does not have precise knowl-
edge of the downlink channel information for each user.
Therefore, the beamforming performance severely depends
on the quality of channel estimates and an accurate down-
link channel estimation plays a key role in transmit beam-
forming [6, 7, 8, 9]. One of the most popular approaches to
downlink channel estimation is channel probing with user
feedback [1, 2]. This approach suggests to probe the down-
link channel by transmitting training signals from the base
station to each user and then to estimate the channel from
feedback reports provided by the users.

In this paper, we study the performance of channel prob-
ing with feedback in the case of a multisensor base sta-
tion antenna array and single-sensor users [2]. We develop
three channel estimators which offer different tradeoffs in

terms of performance and a priori required knowledge of
the channel statistical parameters. First of all, the traditional
least squares (LS) method is considered which does not re-
quire any knowledge of the channel parameters. Then, a re-
fined version of the LS estimator is proposed (which is re-
ferred to as the scaled LS (SLS) estimator). The SLS esti-
mator offers a substantially improved performance relative
to the LS method but requires that the trace of the channel
covariance matrix and the receiver noise powers be known
a priori. Finally, the linear minimum mean square error
(LMMSE) channel estimator is developed and studied. The
latter technique is able to outperform both the LS and SLS
estimators, but it requires the full a priori knowledge of
the channel covariance matrix and the receiver noise pow-
ers. For each of the aforementioned techniques, the opti-
mal choices of probing signal matrices for downlink chan-
nel measurement are studied and channel estimation errors
are analyzed. Moreover, in the case of multiple LS channel
estimates, an optimal scheme for their linear combining is
proposed using the so-called best linear unbiased estima-
tion (BLUE) approach. The effect of such a combining on
the performance of downlink channel estimation is investi-
gated.
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2. BACKGROUND

We assume a base station array of L sensors and arbitrary
geometry and consider the case of flat block fading1 [2]. In
this case, the signal received by the ith mobile user can be
expressed as follows:

ri(k) = s(k)wHhi + ni(k), (1)

where s(k) is the transmitted signal, w is the L× 1 downlink
weight vector, hi is the L × 1 vector which describes an un-
known complex vector channel from the array to the ith user,
ni(k) is the user zero-mean white noise, and (·)H stands for
the Hermitian transpose.

In order to measure the vector channel for each user, the
method of [2] suggests to use the so-called probing mode to
transmit N ≥ L training signals s(1), . . . , s(N) from the base
station antenna array using the beamforming weight vectors
w1, . . . ,wN , respectively. The received signals at the ith mo-
bile can be expressed as follows:

ri =WHhi + ni, (2)

where

W = [
s∗(1)w1, s∗(2)w2, . . . , s∗(N)wN

]
(3)

is the L × N probing matrix, ri = [ri(1), . . . , ri(N)]T , ni =
[ni(1), . . . ,ni(N)]T , and (·)∗ and (·)T stand for the complex
conjugate and the transpose, respectively.

Then, each receiver (mobile user) employs the informa-
tion mode to feed the data received in the probing mode
back to the base station where these data are used to estimate
the downlink vector channels. Alternatively (to decrease the
amount of feedback bits), channel estimation can be done
directly at each receiver. In the latter case, receivers feed the
corresponding channel estimates back to the base station.

3. LS CHANNEL ESTIMATION

Knowing ri, the downlink vector channel between the base
station and the ith user can be estimated using the least LS
approach as [2]

ĥi =W†ri, (4)

where W† = (WWH)−1W is the pseudoinverse of WH . As-
sume that the transmitted power in the probing mode is con-
strained as:

‖W‖2F = P, (5)

where P is a given power constant. We find W which min-
imizes the channel estimation error for the ith user subject
to the transmitted power constraint (5). This is equivalent to

1The flat fading assumption is valid for narrowband communication sys-
tems.

the optimization problem

min
W

E
{∥∥hi − ĥi

∥∥2} subject to ‖W‖2F = P, (6)

where E{·} is the statistical expectation. Using (2) and (4),
we have that hi − ĥi = W†ni and, hence, the objective func-
tion in (6) can be rewritten as

JLS = E
{∥∥hi − ĥi

∥∥2} = E
{∥∥W†ni

∥∥2}
= σ2i tr

{
W†W†H

}
= σ2i tr

{(
WWH

)−1}
,

(7)

where we use the fact that E{ninH
i } = σ2i I. Here, σ

2
i is the

noise power of the ith user, I is the identity matrix, and tr{·}
denotes the trace of a matrix.

Using (7), the optimization problem (6) can be equiva-
lently written in the following form:

min
W

tr
{(
WWH

)−1}
subject to tr

{
WWH

} = P. (8)

We obtain the solution to this problem using the Lagrange
multiplier method, that is, via minimizing the function

L(W, λ) = tr
{(
WWH

)−1}
+ λ

(
tr
{
WWH

}− P
)
, (9)

where λ is the Lagrange multiplier.
To compute ∂L(W, λ)/∂WH , the following lemma will be

useful.

Lemma 1. If a square matrix F is a function of another square
matrix G = A + BX + XHCX, then the following chain rule is
valid:

∂ tr{F}
∂X

= ∂ tr{G}
∂X

∂ tr{F}
∂G

, (10)

where A, B, and C are constant matrices and the dimensions of
all the matrices in (10) are assumed to match.

Proof. See Appendix A.

Furthermore, the following expressions for the matrix
derivatives of traces will be used [10]:

∂ tr{XXH}
∂XH

= XT , (11)

∂ tr{X−1}
∂X

= −X−2T . (12)

Inserting F = (WWH)−1, X = WH , and G = WWH into
(10), we have

∂ tr
{(
WWH

)−1}
∂WH

= ∂ tr
{
WWH

}
∂WH

∂ tr
{(
WWH

)−1}
∂WWH

. (13)
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Applying (11) and (12) to (13), we can transform the latter
equation as

∂ tr
{(
WWH

)−1}
∂WH

= −WT
(
WWH

)−2T
. (14)

Using (14) and applying (11) to compute ∂ tr{WWH}/∂WH

in the second term of (9), we have that

∂L(W, λ)
∂WH

=WT
(
λI− (

WWH
)−2T)

. (15)

Setting (15) to zero, we obtain that any probing matrix is the
optimal one if it satisfies the equation

(
WWH

)−2 = λI. (16)

SinceWWH is Hermitian and positive definite, we can write
its eigendecomposition as

WWH = QΓQH , (17)

where Γ is a diagonal matrix with positive eigenvalues on the
main diagonal. Using the positiveness of the eigenvalues of
WWH and taking into account that Q is a unitary matrix
(QHQ = QQH = I), we have from (16) that

QΓ−2QH = λI (18)

and, therefore,

Γ = 1√
λ
I. (19)

Inserting (19) into (17) and using the identity QQH = I, we
obtain thatW is an optimal probing matrix if

WWH = 1√
λ
I. (20)

Using the power constraint (5), we can rewrite (20) as

WWH = P

L
I. (21)

Therefore, any probing matrix with orthogonal rows of the
same norm

√
P/L is an optimal one. Note that the similar

fact has been earlier discovered from different points of view
in [11, 12]. With such optimal probing, the LS estimator re-
duces to the simple decorrelator-type estimator.

According to (21), there is an infinite number of choices
of the optimal probing matrix. It is also worth noting that
each optimal choice ofW is user independent. Therefore, any
probing matrix that satisfies (21) is optimal for all users.

It should be stressed that additional constraints on W
may be dictated by particular implementation issues. For ex-
ample, the peak transmitted power per antenna may be lim-
ited. In this case, we have to distribute the transmitted power
uniformly over the antennas and, therefore, the additional
constraint is that all the elements of the optimal probing ma-
trix should have the same magnitude. To satisfy this con-

straint, a properly normalized submatrix of the DFT matrix
can be used, that is,

W =
√

P

NL




1 1 1 · · · 1
1 WN W2

N · · · WN−1
N

1 W2
N W4

N · · · W2(N−1)
N

...
...

...
...

...

1 WL−1
N W2(L−1)

N · · · W (L−1)(N−1)
N



, (22)

whereWN = e j2π/N .
Using (21) along with (7), we obtain that the minimum

downlink channel mean-square estimation error becomes

min
W

JLS = σ2i L
2

P
. (23)

We stress that the error in (23) is proportional to the square
of the number of transmit antennas and this may lead to a
certain restriction of the dimension of the transmit array.
However, one can compensate for this effect by increasing
the total transmitted power in the probing mode.

Another interesting observation is that the error in (23)
is independent of the channel realization hi and the array ge-
ometry.

4. SCALED LS CHANNEL ESTIMATION

Obviously, the LS estimate (4) does not necessarily minimize
the channel estimation error because its objective is to min-
imize the signal estimation error rather than the channel es-
timation error. Therefore, it may be possible to use an addi-
tional scaling factor γ to further reduce this error. Using this
idea, applying (2) and (4), and dropping the user index i for
the sake of simplicity, we can write the channel estimation
error in the following form:

E
{∥∥h− γĥLS

∥∥2} = tr
{
E
{(
h− γĥLS

)(
h− γĥLS

)H}}
= (1− γ)2 tr

{
Rh
}
+ γ2σ2 tr

{(
WWH

)−1}

= (
JLS + tr

{
Rh
})(

γ − tr
{
Rh
}

JLS + tr
{
Rh
}
)2

+
JLS tr

{
Rh
}

JLS + tr
{
Rh
} ,

(24)

where ĥLS is the LS channel estimate of (4), Rh = E{hhH}
is the channel correlation matrix, and JLS is given by (7).
Clearly, (24) is minimized with

γ = tr
{
Rh
}

JLS + tr
{
Rh
} (25)

and the minimum of (24) with respect to γ is given by

JSLS = min
γ

E
{∥∥h− γĥLS

∥∥2}

= JLS tr
{
Rh
}

JLS + tr
{
Rh
} < JLS.

(26)
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Note that the optimal γ in (25) is a function of the trace of
the channel correlation matrix Rh and the noise variance σ2.
Therefore, these values have to be known (or preliminary es-
timated) when using the SLS approach. In practice, the esti-
mate of tr{Rh},

t̂r
{
Rh
} = ĥHLSĥLS, (27)

can be used in (25) in lieu of tr{Rh}. Assuming that the val-
ues of tr{Rh} and σ2 are given in advance, defining the SLS
channel estimate as

ĥSLS = γĥLS, (28)

and using (4) and (25), we have

ĥSLS = tr
{
Rh
}

σ2 tr
{(
WWH

)−1}
+ tr

{
Rh
}W†r. (29)

The optimal probing matrix for channel estimation us-
ing the SLS method can be found by means of solving the
following optimization problem:

min
W

JSLS subject to tr
{
WWH

} = P. (30)

Since tr{Rh} > 0, we see from (26) that JSLS is a monoton-
ically increasing function of JLS. Note that tr{Rh} is not a
function of W, and, therefore, JLS is the only term in (26)
which depends on W. This means that the optimization
problems (6) and (30) are equivalent. Therefore, the opti-
mal choice of probing matrix for the SLS channel estimation
technique is the same as for the LS approach.

5. LMMSE CHANNEL ESTIMATION

In this section, we consider the LMMSE estimator of hwhich
is given by [13]

ĥLMMSE = RhW
(
WHRhW + σ2I

)−1
r

= σ−2
(
R−1h + σ−2WWH

)−1
Wr.

(31)

The performance of this estimator is characterized by the er-
ror e = h − ĥLMMSE whose mean is zero, and the covariance
matrix is given by [13]

Re = E
{
eeH

} = (
R−1h + σ−2WWH

)−1
. (32)

The LMMSE estimation error is given by

JLMMSE = E
{∥∥h− ĥLMMSE

∥∥2} = tr
{
Re
}
. (33)

Tominimize (33) subject to the transmitted power constraint
tr{WWH} = P, we can use the Lagrange multiplier method.
The problem can be written as follows:

L = tr
{(
R−1h + σ−2WWH

)−1}
+ λ tr

{
WWH

}
. (34)

Using the chain rule (10), it can be readily shown that the
optimal probing must satisfy

WWH = σ2√
λ
I− σ2R−1h . (35)

Using the constraint tr{WWH} = P, (35) can be rewritten as
follows:

WWH = 1
L

(
P + σ2 tr

{
R−1h

})
I− σ2R−1h . (36)

Interestingly, in the high signal-to-noise ratio (SNR) case
(σ2 → 0), (36) transforms to (21). Therefore, in the high
SNR domain, the LS, SLS, and LMMSE approaches all have
the same condition on optimal probing matrices.

Using (36), we obtain that in the optimal probing case,

Re = σ2L

P + σ2 tr
{
R−1h

} I. (37)

Therefore,

min
W

JLMMSE = σ2L2

P + σ2 tr
{
R−1h

} . (38)

If the channel coefficients are all i.i.d. random variables,
we have Rh = ξ2I, where ξ2 can be viewed as the channel
attenuation parameter. In this case, (36) transforms to (21)
and, therefore, the optimal probing matrix for the LS estima-
tor is also optimal for the LMMSE estimator. Furthermore,
in such a situation, the minimum of the channel estimation
error is given by

min
W

JLMMSE = ξ2σ2L2

ξ2P + σ2L
. (39)

Interestingly, if Rh = ξ2I, then (26) and (39) are identical
which means that the performances of the SLS and LMMSE
estimators are similar in this case.

6. COMBINING OFMULTIPLE LS CHANNEL
ESTIMATES

In Sections 3, 4, and 5, the specific case of a single channel es-
timate has been considered. In this section, we extend the op-
timal probing approach to the case ofmultiple LS channel es-
timates. If there aremultiple probing periods available within
the channel coherency time, it may be inefficient from the
computational and buffering viewpoints to store and process
dynamically long amounts of data that are formed by accu-
mulation of multiple received data blocks corresponding to
different probing periods. A good alternative here is to obtain
a particular channel estimate for each probing period and
then to store these estimates dynamically rather than stor-
ing the data itself, and to compute the final channel estimate
based on a proper combination of such (previously obtained)
particular estimates.

Let us have K estimates ĥi,1, . . . , ĥi,K of the downlink
channel corresponding to the ith user. Let each estimate
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be computed using (4) based on some probing matrices
W1, . . . ,WK , respectively. The channel is assumed to be qua-
sistatic (fixed) at the interval of K probings, and Pk = ‖Wk‖2F
is the transmitted power during the kth probing.

We aim to improve the performance of downlink channel
estimation by combining the estimated values ĥi,k for k =
1, . . . ,K in a linear way as follows:

ĥi =
K∑
k=1

αi,kĥi,k, (40)

where αi,k are unknown weighting coefficients.
Let us obtain the optimal weighting coefficients bymeans

of minimizing the error in (40). Then, these coefficients can
be found by solving the following optimization problem:

min
αi,1,...,αi,K

E



∥∥∥∥∥hi −

K∑
k=1

αi,kĥi,k

∥∥∥∥∥
2

 subject to

K∑
k=1

αi,k = 1,

(41)

where the constraint in (41) guarantees the unbiasedness of
the final channel estimate. This problem corresponds to the
so-called BLUE estimator [13].

The solution to (41) is given by the following lemma.

Lemma 2. The optimal weights {αi,k}Kk=1 for the ith user are
given by

αi,k = 1

tr
{(
WkWH

k

)−1}∑K
n=1 1/ tr

{(
WnWH

n

)−1} . (42)

Proof. See Appendix B.

It is worth noting that the optimal weighting coefficients
αi,k are user independent (i.e., they are the same for each
user).

Choosing optimal orthogonal weighting matrices in each
probing, we have

tr
{(
WkWH

k

)−1} = L2

Pk
,

K∑
n=1

1

tr
{(
WnWH

n

)−1} = Ptot
L2

,
(43)

where

Ptot =
K∑
k=1

Pk (44)

is the total transmitted power during the K probings.
Inserting (43) into (42), we obtain that in the case of us-

ing optimal orthogonal weighting matrices, the expression
for optimal weighting coefficients can be simplified to

αi,k = Pk
Ptot

. (45)

In this case, the downlink channel estimation error is
given by

E
{∥∥hi − ĥi

∥∥2} = E



∥∥∥∥∥hi −

K∑
k=1

Pk
Ptot

ĥi,k

∥∥∥∥∥
2



= E



∥∥∥∥∥

K∑
k=1

Pk
Ptot

(
hi − ĥi,k

)∥∥∥∥∥
2



= L2

P2
tot
E



∥∥∥∥∥

K∑
k=1

Wkni,k

∥∥∥∥∥
2



= σ2i L
2

P2
tot

tr

{ K∑
k=1

WkWH
k

}
= σ2i L

2

Ptot
,

(46)

where ni,k is the zero-mean white noise vector of the ith user
in the kth probing. When deriving (46), we have used the
property E{ni,knH

i,l} = σ2i δk,lI, where δk,l is the Kronecker
delta.

We observe that, similar to (23), the error in (46) is in-
dependent of the channel realization and the array geome-
try. Comparing (46) with (23), we see that the optimal linear
combining of multiple estimates reduces the estimation er-
ror by a factor of Ptot/P. For example, if each probing has the
same power (Pk = P, K = 1, 2, . . . ,K), then Ptot = KP and
the estimation error is reduced by a factor of K .

7. NUMERICAL EXAMPLES

In our simulations, we compare the performance of the LS,
SLS, and LMMSE channel estimators in the cases of optimal
and nonoptimal choices of probing matrices. Throughout all
our simulation examples, we assume that N = L. The chan-
nel coefficients and the receiver noise are assumed to be cir-
cular complex Gaussian random variables with the unit vari-
ance.

We assume that the base station has a uniform linear ar-
ray and the downlink channel correlation matrix Rh has the
following structure:

[
Rh
]
n,m = r|n−m|, 0 ≤ r < 1, (47)

where n and m are the indices of the array sensors. This
model of the array covariance is frequently used in the lit-
erature; see [14, 15, 16] and references therein.

The elements of L× L probing matricesW in the case of
nonoptimal probing have been drawn independently from
a zero-mean complex Gaussian random generator in each
simulation run. However, to avoid possible computational
inaccuracy of the LS estimator, we have ignored all probing
matrices that have resulted in a condition number of WWH

greater than 104. Each simulated point is obtained by averag-
ing 5000 independent simulation runs.

In Figure 1, we display the mean of the norm squared of
the channel estimation error (MNSE) of the LS channel esti-
mator in the optimal and nonoptimal probing matrix cases.
In this figure, MNSEs are plotted versus the probing power
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L = 2, nonoptimum probing
L = 2, optimum probing
L = 4, nonoptimum probing
L = 4, optimum probing
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Figure 1: MNSEs versus P/σ2 for the LS estimator.

L = 2, nonoptimum probing
L = 2, optimum probing
L = 4, nonoptimum probing
L = 4, optimum probing
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Figure 2: MNSEs versus P/σ2 for the SLS estimator.

P/σ2. Note that the performance of the LS estimator is inde-
pendent of the parameter r. The parameter L is varied in this
figure.

In Figure 2, the performance of the SLS estimator is
tested under the similar conditions. Similar to the LS
method, the performance of the LS estimator is independent
of the parameter r.

Figures 3 and 4 display the performance of the LMMSE
estimator in the cases of r = 0 and r = 0.25, respectively.

L = 2, nonoptimum probing
L = 2, optimum probing
L = 4, nonoptimum probing
L = 4, optimum probing

2 4 6 8 10 12 14 16 18 20

P/σ2 (dB)

10−2

10−1

100

101

M
N
SE

Figure 3: MNSEs versus P/σ2 for the LMMSE estimator in the case
of uncorrelated channel coefficients (r = 0).

L = 2, nonoptimum probing
L = 2, optimum probing
L = 4, nonoptimum probing
L = 4, optimum probing

2 4 6 8 10 12 14 16 18 20

P/σ2 (dB)

10−2

10−1

100

101

M
N
SE

Figure 4: MNSEs versus P/σ2 for the LMMSE estimator in the case
of correlated channel coefficients (r = 0.25).

In both figures, the channel covariance matrix Rh is assumed
to be known exactly. Other conditions are similar to that of
Figures 1 and 2.

From Figures 1, 2, 3, and 4, it can be seen that the opti-
mal probing improves the quality of channel estimation sub-
stantially for all methods. Note that this improvement is es-
pecially pronounced for large values of P/σ2 if the SLS or
LMMSEmethod is used. Comparing Figures 3 and 4, we also
see that these figures give nearly the same results. This means
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L = 2, estimated tr{Rh}
L = 2, exact tr{Rh}
L = 4, estimated tr{Rh}
L = 4, exact tr{Rh}
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Figure 5: MNSEs versus P/σ2 for the SLS estimator.

thatmoderate correlation of the channel coefficients does not
affect the LMMSE approach.

As it has been mentioned before, the SLS channel estima-
tor requires the knowledge of tr{Rh}. However, note that the
LS estimator can be applied to estimate this parameter using
(27). In Figure 5, the MNSEs of the SLS estimator with opti-
mal probing are plotted versus P/σ2 in the cases when the ex-
act and estimated values of tr{Rh} are used. In the latter case,
the LS method is applied to obtain the estimate of tr{Rh}
which is then inserted into the SLS estimator. All other con-
ditions are similar to that of the previous figures.

In the LMMSEmethod, the full knowledge of the channel
correlation matrix Rh is required either at the base station or
at the mobile station to estimate the channel (depending on
where the channel estimation is done). Also, the base station
transmitter has to know this matrix in order to compute the
optimal probing matrix. However, one may use the following
rank-one estimate of this matrix:

R̂h = ĥLSĥHLS. (48)

In Figure 6, the performance of the LMMSE channel estima-
tor is tested versus P/σ2 in the cases when Rh is known ex-
actly and when its estimate (48) is used. In the latter case, the
optimal LS probing is used (note, however, that in the gen-
eral case, such a probing is nonoptimal for the LMMSE ap-
proach). The value of L is varied in this figure and r = 0.25 is
taken.

From Figures 5 and 6, we see that there are only small
performance losses caused by using the estimated values of
tr{Rh} and Rh in the SLS and LMMSE estimators, respec-
tively, in lieu of the exact values of tr{Rh} and Rh. Also, from
Figure 6, we see that the optimal LS probing becomes nearly

L = 2, estimated Rh

L = 2, exact Rh

L = 4, estimated Rh

L = 4, exact Rh

2 4 6 8 10 12 14 16 18 20

P/σ2 (dB)

10−2

10−1

100

101

M
N
SE

Figure 6: MNSE versus P/σ2 for the LMMSE estimator in the case
of correlated channel coefficients (r = 0.25).

L = 2, LS estimation (orthogonal probing)
L = 2, SLS estimation (orthogonal probing)
L = 2, LMMSE estimation (orthogonal probing)
L = 2, LMMSE estimation (optimum probing)
L = 4, LS estimation (orthogonal probing)
L = 4, SLS estimation (orthogonal probing)
L = 4, LMMSE estimation (orthogonal probing)
L = 4, LMMSE estimation (optimum probing)
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Figure 7: Comparison of the performances of the LS, SLS, and
LMMSE estimators versus P/σ2 in the case of correlated channel
coefficients (r = 0.25).

optimal for the LMMSE approach starting from moderate
values of SNR. This observation supports theoretical results
of Section 5.
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K = 2,W nonoptimum, α nonoptimum
K = 2,W nonoptimum, α optimum
K = 2,W optimum, α optimum
K = 4,W nonoptimum, α nonoptimum
K = 4,W nonoptimum, α optimum
K = 4,W optimum, α optimum
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Figure 8: MNSE versus P/σ2 for the case of multiple LS channel
estimates (the BLUE estimator).

Figure 7 compares the performances of the LS, SLS, and
LMMSE estimators versus P/σ2. In this figure, we assume
that r = 0.25, and two variants of the LMMSE estimator
are considered. Both these variants assume that the estima-
tor knows Rh exactly, but the first variant uses the optimal
probing signal that satisfies (36), while the second one em-
ploys the matrix which satisfies (21) and, therefore, is op-
timal only for LS and SLS estimators and/or for the un-
correlated channel case (r = 0). From this figure, we ob-
serve that the difference in performance between the first
and second variants of the LMMSE estimator is negligi-
ble at all the tested values of SNR. Therefore, the LS/SLS
probing appears to be suboptimal for the LMMSE estima-
tor.

In the last example, the case of multiple LS channel esti-
mates are assumed. In Figure 8, the parameter L = 4 is cho-
sen and the performance of the BLUE estimator is compared
for K = 2 and K = 4. Three cases are considered in this fig-
ure:

(i) both the probing matrices and the coefficients αi,k are
optimal;

(ii) the probing matrices are nonoptimal but the coeffi-
cients αi,k are optimal;

(iii) both the probing matrices and the coefficients αi,k are
nonoptimal.

In the third case, the coefficients αi,k = 1/K are assumed
for all i and k.

Figure 8 demonstrates substantial improvements which
can be achieved when the BLUE estimator is used in the case

of multiple channel estimates. This figure also shows that the
choice of optimal probing matrices and coefficients αi,k is
critical for the estimator performance as nonoptimal choices
of one or both of these parameters may cause a severe perfor-
mance degradation.

8. CONCLUSIONS

We have studied the performance of the channel probing
method with feedback using a multisensor base station an-
tenna array and single-sensor users. Three channel estima-
tors have been developed which offer different tradeoffs in
terms of performance and a priori required knowledge of the
channel statistical parameters. First of all, the traditional LS
method has been considered. The LS estimator does not re-
quire any knowledge of the channel parameters. Then, a new
(refined) version of the LS estimator has been proposed. This
refined technique is referred to as the SLS estimator. It has
been shown to offer a substantially improved channel esti-
mation performance relative to the LS method but requires
that the trace of the channel covariance matrix and the re-
ceiver noise powers be known a priori. Finally, the LMMSE
channel estimator is developed and studied. The latter tech-
nique has been shown to potentially outperform both the LS
and SLS estimators, but it requires the full a priori knowl-
edge of the channel covariance matrix and the receiver noise
powers.

For each of the above mentioned techniques, the opti-
mal choices of probing signal matrices for downlink channel
measurement have been studied and channel estimation er-
rors have been analyzed. In the case of multiple LS channel
estimates, the BLUE scheme for their linear combining has
been developed.

Simulation examples have demonstrated substantial per-
formance improvements that can be achieved using optimal
channel probing.

APPENDICES

A. PROOF OF LEMMA 1

First of all, we prove the chain rule for the particular case
when G = BX. Writing this equation elementwise, we have
gi,l =

∑
k bi,kxk,l and, therefore,

∂gi,l
∂xm,n

= δl,nbi,m, (A.1)

where the Wirtinger derivatives for complex variables are
used, δi,n is the Kronecker delta, and

bi,m = ∂ tr{G}
∂xm,i

. (A.2)

Since F is a function of G, then tr{F} can be a function of all
elements of G. Thus, applying the extended derivative chain
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rule ([17, page 99]) and (A.1)-(A.2), we have

[
∂ tr{F}
∂X

]
m,n
= ∂ tr{F}

∂xm,n
=
∑
i

∑
l

∂ tr{F}
∂gi,l

∂gi,l
∂xm,n

=
∑
i

∂ tr{F}
∂gi,n

bi,m =
∑
i

∂ tr{G}
∂xm,i

∂ tr{F}
∂gi,n

=
[
∂ tr{G}
∂X

∂ tr{F}
∂G

]
m,n

(A.3)

and the proof for the particular case G = BX is completed.
To extend the proof to the general case G = A + BX +

XHCX, we notice that this equation can be rewritten as G =
A+ (B+XHC)X and, therefore, the established result for the
particular case G = BX can be applied taking into account
that the matrix A is constant and that ∂ tr{B+XHC}/∂X = 0.
In other words, replacing thematrixB by thematrixB+XHC,
we straightforwardly extend our proof to the general case.

B. PROOF OF LEMMA 2

To solve (41), we insert (4) into the objective function of (41)
and, using (2), rewrite it as

E


tr



( K∑

m=1
αi,mW†

mni,m

)( K∑
n=1

αi,nW†
nni,n

)H





= tr



( K∑

m=1

K∑
n=1

αi,mα
∗
i,nW

†
mW

†H
n E

{
ni,mnH

i,n

})
= tr

{
σ2i

K∑
n=1

∣∣αi,n∣∣2(WnWH
n

)−1}
,

(B.1)

where ni,m is the noise vector of the ith user during the mth
probing interval and the property E{ni,mnH

i,n} = δmnI is used.
Tominimize (B.1) subject to the constraint

∑K
k=1 αi,k = 1,

we have to find the minimum of the Lagrangian

L(α, λ) = tr

{
σ2i

K∑
k=1

∣∣αi,k∣∣2(WkWH
k

)−1}− λ

( K∑
k=1

αi,k − 1

)
,

(B.2)

where the vector α captures all the coefficients αi,k.
The gradient of (B.2) is given by

∂L(α, λ)
∂αi,k

= 2σ2i αi,k tr
{(
WkWH

k

)−1}− λ. (B.3)

Setting it to zero, we have

αi,k = λ

2σ2i tr
{(
WkWH

k

)−1} . (B.4)

Noting that
∑K

k=1 αi,k = 1, we obtain (42).
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