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Interpolation of video frames with the purpose of increasing the frame rate requires the estimation of motion in the image so
as to interpolate pixels along the path of the objects. In this paper, the specific challenges of low-rate video frame interpolation
are illustrated by choosing one well-performing algorithm for high-frame-rate interpolation (Castango 1996) and applying it to
low frame rates. The degradation of performance is illustrated by comparing the original algorithm, the algorithm adapted to low
frame rate, and simple averaging. To overcome the particular challenges of low-frame-rate interpolation, two algorithms based
on multiresolution motion estimation are developed and compared on objective and subjective basis and shown to provide an
elegant solution to the specific challenges of low-frame-rate video interpolation.
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1. INTRODUCTION

Low frame rates, for example 10 frames per second (fps), are
of interest in low-bit-rate video compression. Reducing the
frame rate to 5 fps and interpolating it back to 10 fps at the
receiver helps to reduce the transmission bit rate. In order
to achieve very low data rates for video communication such
as in plain old telephone service, it is necessary to skip im-
ages at the transmitter, which then have to be reconstructed
at the receiver end. The reconstruction of the images can be
achieved through frame interpolation. Interpolation of video
frames simply means inserting or adding new frames be-
tween the video frames. Given the previous and next frames,
the task is to insert a new frame between the two. In gen-
eral, frame interpolation can be performed as illustrated in
Figure 1.

Without motion estimation, video frames can be inter-
polated by averaging the previous and next frames or by re-
peating the previous frame. The performance of frame inter-
polation will improve if motion estimation is included in the
process. Motion estimation is used to estimate the motion

vectors between frames. Pixels are then interpolated along
the path of the motion vectors.

In recent years a number of frame interpolation algo-
rithms have been developed [1, 2, 3,4, 5, 6,7, 8,9, 10, 11, 12,
13, 14, 15, 16]. Most of them concentrate on high-frame-rate
video as shown in Table 1 [1, 2, 3,4,5,6,7,8,9,10,11, 12, 13]
and part of [16]. In such cases, motion estimation can be
achieved by simple block-matching technique. The differ-
ence between the algorithms lies mainly in block size, search
space, and search technique. Much less work has been done
on low frame rates ([14, 15] and part of [16]).

In [14], transmitted motion vectors and segmentation
information from an object-based video codec are used to
interpolate the skipped frames. In the algorithms presented
in this paper, the transmitted motion vectors are not used be-
cause for frame interpolation, true motion vector is needed
for every pixel [17]. The transmitted motion vectors are not
the true motion vectors and they are also produced for every
(16 X 16)- or (8 x 8)-pixel block as in the case of H.263 video
coding standard. Hence, only the previous and next frames
are utilized to perform the frame interpolation.
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FIGURE 1: Frame interpolation algorithm.

TaBLE 1: Frame rates for frame interpolation.

Frame interpolation algorithms Frame-rate conversion (fps)

(1] 50 to 75

[2,3] 24/30 to 60

4, 5] 10 to 30

(6,7,8,9] 15 to 30

[10] 10 to 30 and 15 to 30

(11, 12] 50 to 100

[13] 12.5 to 25

(14] 7.5 to 30

(15] 3.75t0 15

16] 10 to 30, 6 to 30, 12.5 to
50, and 8.3 to 50

A frame interpolation scheme for talking head sequence
was proposed in [15]. The foreground and background of
previous and next frames are segmented. The foreground
area is interpolated using active mesh frame interpolation
and the background area is interpolated using averaging.
Other areas are interpolated using covered and uncovered
technique. Detection and rendition of lip movement is uti-
lized to provide synchronization of lip motion and voice of a
person. A good result is produced for simple talking head se-
quences. Problems may arise if sequences other than talking
head are used. The use of multiresolution motion estimation
(MRME) for low-rate frame interpolation was investigated
in [16, 17]. However, it did not consider the problems that
arise in the multiresolution pyramid method due to its rigid
structure [18].

In this paper, the basic concept of motion estimation
in frame interpolation is described first. A brief review of
multiresolution algorithms is presented next, followed by the
frame interpolation challenges in low-rate video frames. The
algorithms used for frame interpolation are then explained,
including the two algorithms based on multiresolution. One
of the multiresolution algorithms managed to overcome the
rigid pyramid-like structure problem. Results for 5 to 10 fps
frame interpolation, discussions, and conclusions are given
at the end of the paper.

2. MOTION ESTIMATION

Motion estimation is a process of determining the movement
of objects within a sequence of image frames. Block match-

ing is a widely used technique for translation movement es-
timation. In this method, a block of pixels from frame n — 1
(previous frame) is matched to a displaced block of pixels in
the search area in frame #n + 1 (next frame). The block that
gives minimum matching error will be assigned a displace-
ment value called motion vector.

The minimum matching error can be calculated using
criteria like mean square error (MSE) and mean absolute dif-
ference (MAD) as follows:

MSE
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where f(x —dx, y —dy,t,—1) is the pixel value at coordinates
(x—dx, y—dy)inthe (n—1)th frame, f(x+dx, y+dy, tp1)
is the pixel value at coordinates (x + dx, y + dy) in the (n +
1)th frame, B, is the vertical size of the pixels block, and B,
is the horizontal size of the pixels block. For both MSE and
MAD, ldx| < (Sx — 1)/2, |dy| < (S, — 1)/2, where S, is the
vertical size of the search area and S, is the horizontal size of
the search area.

MAD is the most commonly used criterion [19] and has
lower complexity compared to MSE [20]. Hence, MAD is
used for the block-matching algorithms in this paper.

The motion vector or the displacement (dx,dy) that
gives minimum MAD is then obtained as follows:

(dxm,dym) = argmin (MAD(dx,dy)). (2)
|dx|<Sy
ldyl|<S,

The selected motion vector (dx;,, dyy,) is then used to inter-
polate the missing pixel in frame # (frame to be interpolated)
as follows:

f(x’}”tn)
_ f(x = dxm, y — dym, tao1) + f(x+dXpm, ¥ + AV tus1)
5 .
(3)

3. MULTIRESOLUTION MOTION ESTIMATION

The multiresolution approach in motion estimation tech-
niques is meant to benefit from the divide-and-conquer
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capabilities of multiresolution pyramid structures in order
to beat the combinatorial explosion problem (see Section 4)
of block-matching techniques at a single level of resolu-
tion. Global (and large) motion is first estimated at a coarse
level of resolution with reduced sampling rate as allowed
by the Nyquist criterion. The results of the coarse-level es-
timates are then propagated to successively higher resolu-
tion levels (higher sampling rates) by taking the motion
evaluated at the coarse level as an initial estimate for the
motion at the next level. This is done iteratively until the
full-resolution level is reached. Not only does the MRME
approach reduce the computational time in comparison
with the single-resolution block-matching methods, but it
also achieves better picture quality. Many variations of the
MRME are available in the literature and are henceforth
discussed according to a general classification into six cate-
gories.

(1) MRME in wavelet video encoder. Researchers in [21]
have initiated an approach of video coding based on
MRME at the encoder side. Their method uses the
wavelet transform to decompose a video frame into a
set of subframes with different resolutions. MRME is
utilized to estimate motion at different resolutions of
video frame.

(i) MRME in subband video coding. In [22], the frames of
the input video are split into seven spatial subbands.
Hierarchical motion estimation is used to generate
motion vectors for each subband. The initial motion
vectors are estimated only in band 1, and are scaled to
generate motion vectors for other subbands.

(iii) Top-down approach of MRME. The application of top-
down MRME for motion and disparity estimation was
evaluated in [23]. The motion is estimated at a coarse
resolution and is refined at higher resolution level(s).
It is better compared to the full search method.

(iv) Bottom-up approach of MRME. Several researchers in-
vestigated the possibilities of the bottom-up approach.
In [24], for example, the motion information ex-
tracted at high resolution was preserved, and the in-
formation at low resolutions was used only selectively
to improve the motion estimates.

(v) Multigrid structure in MRME. In [25], the multilevel
structure is built on a set of grids with different sizes
(multigrid structure). So, it is not a multiresolution
approach in the classical sense.

(vi) Threshold in MRME. In [26], a thresholding technique
is applied in a two-level pyramid to reduce the com-
putation time by preventing blocks whose estimated
motion vectors give satisfactory motion compensation
from further processing.

From the papers mentioned, it can be concluded that the
variants of the fundamental MRME technique differ in terms
of the representation of the multiresolution images, the levels
of the pyramid, the block size and search space at each level,
the motion estimation technique at each level, and general
data flow (coarse-to-fine or fine-to-coarse).

4. CHALLENGES IN LOW-RATE VIDEO
FRAME INTERPOLATION

To illustrate the challenges of interpolation at low-rate video
frames, we took a successful algorithm [1] for high frame rate
and applied it to low frame rate with and without adapting
the parameters. Then, a new contribution is presented.

When the frame rate is reduced by a factor of N, the
search space has to be increased. This means S, X N and
S, X N. However, this also increases the risk for false matches
between unrelated regions in the search space. Therefore the
block size has to be increased by N. This means B, X N and
B, x N. With these adjustments, the complexity increases by
N*. This large amount of computation has to be performed
in the available time, which has increased by N. The increase
of complexity by N* because of the speed reduction by N is
known as the combinatorial explosion problem.

For example, in 50 to 100 fps interpolation, the algorithm
has 20 milliseconds to interpolate between frames. For 5 to
10 fps interpolation, the time available to interpolate between
frames is 200 milliseconds. It seems ten times easier than
50 to 100 fps because more time is available. However, using
the same video sequence, the movement in 5 fps is ten times
larger than the movement in 50 fps. Therefore, the search
space and block size have to be increased ten times (S, X 10,
S, %10, B, x10, B, x10). So, 10 000 times more computations
are needed in ten times longer time interval.

5. OVERVIEW OF ALGORITHMS USED

Several algorithms to interpolate the low-rate video frames
are evaluated. These algorithms are Averaging, Castagno [1],
and Adapted Castagno. An approach of MRME is developed
and extended (EMRME) to overcome observed artifacts.

5.1. Averaging algorithm

The simplest method to do frame interpolation is by averag-
ing. The previous frame and next frame are averaged at every
pixel location in the image according to

Fu1(%,9) + Fun(x, y)
2 b

Fu(x,y) = (4)

where (x, y) is the pixel position, F,(x, y) is the pixel value at
coordinates (x, y) in the frame to be interpolated, F,,—;(x, y)
is the pixel value at coordinates (x, y) in the previous frame,
and F,y;(x, y) is the pixel value at coordinates (x, y) in the
next frame.

5.2. Castagno algorithm

The block-matching approach of [1] was designed to inter-
polate frame rate from 50 to 75 fps. It uses block size of 3 X 5
and the search space is limited to 5 X 9 ((—2,...,+2) verti-
callyand (—4,...,+4) horizontally) for the first pixel of every
row. For other pixels, the motion vector is found by searching
around a 3 X 3 neighborhood of the previous pixel’s motion
vector. Hence, a total of nine motion vectors are evaluated



Low-Rate Multiresolution Motion Estimation

1711

using weighted MAD. The MAD is weighted according to
MADyeighted = MAD X (1 + K x (dx*,dy?)),  (5)

where K is the elastic constant and the range is suggested to
be within 0.05 to 0.02. This formula is discussed in [1]. Ba-
sically, it allows the motion vector to move to extreme posi-
tions only when it is necessary, and tries to bring it back to a
more neutral configuration as often as possible. The motion
vector that gives minimum weighted MAD is chosen to be
the motion vector for the current pixel. This is repeated for
every pixel. When all the pixels’ motion vectors have been es-
timated, a motion vector field is produced, which is postpro-
cessed using 3 X 3 median filter to remove inconsistent mo-
tion vectors. Interpolation is performed based on these mo-
tion vectors using the averaging formulas presented in [1],
which is slightly different from (3).

5.3. Adapted Castagno algorithm

To adapt the method of [1] to lower frame rates, the follow-
ing modifications were introduced: (1) instead of evaluating
only nine motion vectors, all of the motion vectors in the
search range are evaluated for all pixels; (2) the block and
the search range are adapted to a low frame rate of 5 fps,
which is ten times lower than the frame rate of Castagno.
The search space is increased to (—25,...,425) vertically
and (—45,...,+45) horizontally, about ten times the original
search space of Castagno. The block size to do block match-
ing is set to 9 X 15 pixels, three times the original block size
of Castagno, which should be ten times according to the ex-
planation before.

However, it was found that increasing the block size fur-
ther than this did not improve the results and it is reason-
able for the size of the search space. This setting is achieved
by calculating the fastest motion between previous and next
frames of a sequence (e.g., Susie sequence). Clearly, the com-
putational complexity for this method is higher than before
as more motion vectors need to be evaluated (4641 motion
vectors for every pixel). In this method, weighting is not im-
plemented. Weighting of the MAD makes the algorithm favor
vectors that are closer to (0, 0). Hence, it will not choose the
large motion vector. Favoring motion vector (0,0) makes the
performance of the algorithm almost similar to Averaging al-
gorithm during the frames with fast motion.

5.4. Multiresolution motion estimation
(MRME) algorithm

In the MRME algorithm that we propose, the image is filtered
using a 7th-order lowpass filter and subsampled to produce
successively reduced-resolution versions. Using QCIF images
(176 x 144 pixels), five levels of resolution are considered,
the lowest one having 11 X 9 pixels. For input images with
different size, the number of levels in the pyramid may be
different. Motion is estimated at the coarsest resolution first
to find the global motion. Block size is 9 X 9 and full search
is used. To improve the consistency of the motion field, it is
postprocessed with a 3 X 3 median filter. This motion field

is then used as an initial estimate in the next finer resolution.
The search space for each pixel is set to 3x 3 around the initial
estimate.

The block size is maintained at 9 X 9 at each level. The
estimate produced at each level is again submitted toa 3 x 3
median filter before passing on to the next level. In this way,
the motion vectors are refined through the pyramid levels
until the highest resolution at the lowest level. The motion
vectors at the finest level are then used to interpolate the lu-
minance levels according to the formulas used in [1].

An advantage of the MRME algorithm is that motion de-
tection at high resolution allows for detection of large motion
with small search space on low-resolution images, requiring
only a small block size. In the high-resolution image, a small
search space is also used around the previous estimate, hence
also requiring only a small block size.

5.5. Extended multiresolution motion estimation
(EMRME) algorithm

EMRME and MRME algorithms formulation

Problems arise in the multiresolution pyramid algorithm due
to its rigid structure, as has been documented in [18]. The
same problems arise in MRME, and can be alleviated by
making the search space extended and adaptive. An exam-
ple is given in Figure 2, which illustrates an object sliding
from left to right. Previous and next frames are visualized in a
particular region of interest. To visualize the pyramid better,
only two levels have been represented.

We assume that on the higher level (level k + 1), the
movement is already estimated and median filtered as dx(k +
L,x,y), dy(k + 1,x, y). At level k, the initial estimate for the
motion vector is twice the motion vector and level k + 1 :
dxo(k,x, y) = 2xdx(k+1,x, y) and dyo(k,x, y) = 2xdy(k+
Lx, y).

For MRME, the search range is 3 X 3 around the initial
estimate: dxo(k,x, y) — 1 < dx(k,x, y) < dxo(k,x, y) + 1 and
dyo(k,x,y)—1 < dy(k,x,y) < dyy(k,x, y)+ 1. For EMRME,
the search range is made adaptive based on the previously
used 3 X 3 space and extended to encompass the initial mo-
tion estimates of the four neighboring pixels as follows:

5.5.1.

min (dxo(k,x, y) — 1,dxo(k, i, j))
< dx(k,x, y) < max (dxo(k,x, y) + 1,dxo(k, 1, j)),
min (dyo(k,x, y) — L dyo(k, i, j))
<dy(k,x,y) < max (dyo(k,x, y) + 1, dyo(k, i, j)),
(6)

wherex— 1 <i<x+landy-1<j<y+1

5.5.2. EMRME and MRME example

In the example shown in Figure 2, the movement is already
estimated and median filtered on the higher level (level k+1).
The dark pixel is estimated to move by 2 units in horizon-
tal direction, so the movement vector is (2,0). Other pixels
have (0,0) motion vectors except the two pixels marked with
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FiGure 2: EMRME illustration.

(2,2), which are covered and uncovered pixels. The lower level
(level k) has twice the number of pixels of the higher level.
One pixel at level k + 1 corresponds to four pixels at level k.
So, the initial motion vectors at level k are equal to the mo-
tion vectors of level k + 1 multiplied by two.

Motion estimation is performed based on the initial es-
timate. Motion vectors shown in Figure 2 for level k are the
resulting motion vectors after the motion estimation on the
initial estimate. For four black pixels in the middle, the ini-
tial estimate is (4,0). In case of MRME, the search range is
3 X 3 around this initial estimate on a motion search space
(-1 =dx < 1,-1 < dy < 1). So, for example, the mo-
tion vector candidates for pixel R are (3, —1), (4, —1), (5, —1);
(3,0), (4,0), (5,0); (3,1), (4,1), (5,1). Motion vector (4,0)
will be chosen as its match.

5.5.3. Problemin MRME

The problem occurs for pixel P, who has initial motion vector
of (0,0). The correct motion vector for pixel P is (4,0). The
motion vector search spaceis (-1 <dx <1,-1<dy < 1),
hence, the motion vector candidates are (—1,—1), (—1,0),
(-1,1); (0,-1), (0,0), (0,1); (1,-1), (1,0), (1, 1). It is clear
that this search range is insufficient to match the correct pixel
in the next frame. The solution to this problem that has been
developed in this work is based on an adaptive search space,
based on the previously used 3 X 3 space, but extended to en-
compass the initial motion estimates of the four neighboring
pixels.

The initial estimate of the motion vector (c,d), for exam-
ple, has been influenced by its three neighbors who make up

the pixel on the next higher level. Other examples are motion
vectors (a,b) and (e,f). The rigidity of the pyramid structure
did not allow for a border between white and black pixels to
be located at any other place but at the limits between the
next higher pixels. The problem occurs because the move-
ment of pixel P is larger than the 3x 3 search space. This mea-
surement was well detected at lower resolution levels. How-
ever at this low resolution the border could not be accurately
located because it is misaligned with the pyramid grid by one
pixel. The original 3 X 3 search space of pixel P made it im-
possible to match it with its corresponding pixel in the next
frame.

5.5.4. Solution by EMRME

However, now we extend the search space of pixel P to en-
sure that the initial estimates of the four neighboring pixels
are included. In the illustration shown in Figure 2, the search
space for pixel P is extended to make it a rectangle that en-
compasses the initial estimate of the motion vector for neigh-
boring pixels, including pixel R. So, the search space for pixel
P is extended from (-1 < dx < +1, -1 < dy < +1) to
(-1 <dx < +5, -1 < dy < +2). Hence, the correct motion
vector for pixel P, (4,0), is included in this new search space.
With this extended search space, it is indeed possible to find a
motion vector that matches the pixel P with its match in the
next frame. The motion vectors at the finest level are then
used to interpolate the luminance levels according to the for-
mulas used in [1].

There could be a hole in the interpolated frame when
the motion vectors between the two decoded frames do not
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FIGUrE 3: Simulation setup.

pass a pixel in the interpolated frame, that is, when the mo-
tion vectors with one or both odd components (e.g., (3,0)
and (3,1)) have been estimated. Performing a spatial inter-
polation by a factor of two, vertically and horizontally, of
the two input frames is a possible solution. The interpola-
tion formulas in [1] solve this problem by using only origi-
nal pixels in the motion estimation procedure and the spa-
tially interpolated pixels are only used in the actual interpo-
lation.

As a summary, for both MRME and EMRME algorithms,
the search space for each pixel is initially set to 3 X 3, but
for EMRME it is then extended to encompass the initial esti-
mates of its neighbors. In this way, pixels that are located just
at a (rigid) boundary of the pyramid structure do not get
isolated in their movement from the pixels that are just on
the other side of the boundary, and the rigidity of the pyra-
mid structure is overcome.

6. RESULTS AND DISCUSSIONS

The results for the algorithms are compared objectively and
subjectively using a simulation setup as shown in Figure 3.

The original image sequences at 30 fps is compressed us-
ing H.263+ to 10fps. The quantization parameter in the
H.263+ encoder is fixed to default value of 13 and variable
bit rate is used. Downsampling is performed on the 10 fps to
get the 5 fps image sequence. The 5 fps is then interpolated to
10 fps using the algorithms discussed. The interpolated 10 fps
is finally compared with the originally compressed 10 fps in
terms of peak signal to noise ratio (PSNR) and subjective pic-
ture quality. The PSNR for comparison is calculated as fol-
lows:

PSNR
2552

(UNN,) SN0 3570 [forg (6 9) = fino )]
(7)

= 10log,,

where forg(x, ) is the pixel value of the original decoded
frame at position (x, ¥), finc(x, ¥) is the pixel value of the in-
terpolated frame at position (x, y), Ny is the vertical size of
frame, and N, is the horizontal size of frame. Simulations are
performed on a large number of image sequences that have
different sizes. The sizes are 176 x 144 (QCIF), 352 x 240
(SIF), and 352 x 288 (CIF). In Figure 3, frame interpolation
is performed after the H.263+ decoder with the aim to re-
duce jerkiness of the motion in the decoded 5 fps image se-

quence by interpolating it to 10 fps. Experiments on frame
interpolation using uncompressed image sequence have also
been done and are reported in [27]. Simulation set up in
Figure 3 is reasonable because the main objective is to sim-
ulate the decoded 5 fps image sequence and interpolate it to
10 fps.

6.1. Typical results

Figures 4 and 5 show the typical results of interpolation from
5 to 10 fps for QCIF (Claire, Carphone, and Coastguard),
SIF (Flower Garden and Football), and CIF (Mobile & Cal-
endar) compressed image sequences. The original image se-
quences can be downloaded from (http://ise.stanford.edu/
video.html) and (http://www.cipr.rpi.edu). Claire is a slow-
moving sequence. Carphone, Coastguard, and Mobile & Cal-
endar are fast-moving sequences. Flower Garden and Foot-
ball are very fast-moving sequences.

Averaging produced overlapped images since it did not
take into account the motion between frames. The over-
lapped image is more obvious in very fast-moving sequences
like Flower Garden and Football. Castagno algorithm per-
forms better than Averaging in Claire and Carphone. How-
ever, since the block size and search space are too small in
Castagno, it fails to interpolate those fast- and very-fast-
moving sequences correctly. It is also due to the weighting
of MAD in Castagno and hence the algorithm favors (0, 0)
motion vectors, which produced the same results as Averag-
ing algorithm (see Section 5.3). Although the weighted MAD
in Castagno algorithm provides a solution for two overlap-
ping objects between previous and next frames, it does not
perform well at low-frame-rate interpolation and in cam-
era tilting such as in the Coastguard sequence. At one stage
in the simulation, the weighted MAD was incorporated in
our EMRME algorithm, but it did not improve the algo-
rithm since it favors (0,0) motion vectors. However, fur-
ther simulation studies are needed to confirm this observa-
tion.

Adapted Castagno gives sharper images compared to Av-
eraging and Castagno, but there are lots of artifacts due to
false matches. The problem of false matches is illustrated for
the one-dimensional case in Figure 6. In the image, a gray
object is moving from top to bottom. The previous, current
(to be interpolated), and next frames are shown. The central
pixel in the frame is to be interpolated. It is expected to be
interpolated along the dashed movement vector, resulting in
a gray pixel value. However, a false match is found with the
background, with a movement vector illustrated by the full


http://ise.stanford.edu/video.html
http://ise.stanford.edu/video.html
http://www.cipr.rpi.edu

1714 EURASIP Journal on Applied Signal Processing

Original
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F1GURE 4: Typical results for interpolation on QCIF image sequences. (a) Claire. (b) Carphone. (c) Coastguard.
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FiGure 5: Typical results for interpolation on SIF and CIF image sequences. (a) Flower Garden. (b) Football. (c) Mobile & Calender.

arrow, resulting in a white pixel value. This kind of situation Most of the artifacts due to false matches are removed
typically occurs with large movements as in the Flower Gar-  using MRME and EMRME algorithms. Compared to other
den image sequence. It occurs because of the very large block algorithms, MRME and EMRME perform the best, giving
size and search area in Adapted Castagno algorithm, which  clearer and sharper images. Both remove the averaging and
in turn largely increases the computational time of the algo-  false match artifacts in the interpolated images. At fast-
rithm. (Coastguard and Mobile & Calendar) and very-fast-moving
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sequences (Flower Garden and Football), EMRME performs
better than MRME due to its search space extension and
adaptation.

6.2. Quantitative comparison

The objective evaluation (PSNR) of the image sequences in-
terpolated using various interpolation algorithms is shown in
Table 2. The best algorithm for each sequence is highlighted
in gray in the table and has highest PSNR. For example, for
Miss America, EMRME is the best because it has the highest
PSNR.

The objective evaluation (PSNR, Table 2) reveals that the
EMRME is the best in most cases. Only in a few cases is
MRME slightly better. For the Container sequence, Aver-
aging is better—which can be explained by the very slow
motion in that particular sequence. For Table Tennis se-
quence, where the scene has a camera zooming out action,
Castagno is slightly better. This probably shows the positive
effects of the weighting procedure in Castagno, however it
is only for one sequence. Further studies for EMRME are
needed to tackle the problem in camera zooming out im-
age sequence. For the Stefan sequence, Adapted Castagno is
slightly better. These results are to be expected, since the algo-
rithms were gradually improved, from Castagno to Adapted
Castagno to MRME to EMRME, using the PSNR as measur-
ing stick for improvement. The (nice) surprise comes from
the fact that the algorithm development was done with one
single sequence (Susie), but the results are consistent when
using other sequences, and even other formats (SIF and
CIF).

6.3. Qualitative comparison

According to [28], at least 15 observers are needed for sub-
jective evaluation of video quality. Therefore, a total of 15
respondents were used for the subjective evaluation of the in-
terpolation. Nineteen image sequences were interpolated us-
ing each of the algorithms. The results of the evaluation are
shown in Table 3. The algorithms are Averaging, Castagno,
Adapted Castagno, MRME, and EMRME.

The interpolated sequences were displayed randomly on
computer monitor and respondents were asked to rate the
image sequences compared to the original image sequence.
The rate is between 0 and 5, with 0 being the worst and 5
about the same as original. The respondents did not know
which interpolated sequences corresponded to which algo-
rithm. The original sequence was displayed on the top left
corner of the monitor for comparison. The procedure was
repeated for each of the image sequences.

The algorithms preferred by the respondents are high-
lighted in gray in Table 3. For example, for Miss America,
EMRME is preferred over the others because the subjec-
tive evaluation rate is the highest. This subjective evaluation
(Table 3) is more mitigated, although the average is still in
favor of the EMRME algorithm. It is to be noted that the
Adapted Castagno never comes out as the best algorithm. Av-
eraging and Castagno are preferred in four cases (out of 19),
while all the other cases carry MRME or EMRME as pref-
erences. When MRME is preferred, the difference is usually
marginal, while when EMRME is preferred, the difference is
usually more significant.

The subjective evaluation is less overwhelmingly in fa-
vor of EMRME, probably because of the artifacts. PSNR is
a kind of “average” error, which does not care about lo-
cal big errors, as long as the global impression is good,
while subjective evaluation is very much affected by local
big errors like artifacts. This is illustrated in Figure 7, which
shows two corrupted versions of an image of the Susie se-
quence. In Figure 7a, the error is limited to six pixels which
were put to zero, while in Figure 7b the error introduced
is a Gaussian error over the whole image with average zero
and variance 0.0002. The PSNR is 39.54 and 36.94, respec-
tively. Hence, the PSNR is clearly in favor of the first im-
age, while the subjective evaluation is clearly in favor of
the second one. The artifacts introduced in the Adapted
Castagno, MRME, and EMRME, are of a nature like the error
in Figure 7a, while the blur introduced by the Averaging and
Castagno algorithms are more of the nature of the error in
Figure 7b.

The global preference, even in the subjective evaluation,
is still in favor of the EMRME algorithm, which shows that
the improvement introduced, compared to the other algo-
rithms, more than offsets the disturbing artifacts.

6.4. Comparison of computational load
of the studied algorithms

The computational load for the EMRME algorithm is much
less than for the Adapted Castagno algorithm. Computa-
tional load is of the order of Ny X N, X By X By, X §; X S,
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TaBLE 2: Objective evaluation.
Algorithms
Sequences
Averaging Castagno Adapted Castagno MRME EMRME

(1) Miss America® 36.09 38.48 28.50 39.19 39.26
(2) Claire? 37.39 38.10 23.00 38.39 38.42
(3) Grandma?® 40.02 40.75 37.51 41.10 41.10
(4) Akiyo® 38.82 39.32 37.63 40.04 40.01
(5) Container? 40.18 39.42 33.05 39.31 39.40
(6) Susie® 27.99 28.47 27.18 29.35 29.89
(7) Carphone? 29.67 30.08 22.74 30.45 30.51
(8) Foreman?® 25.01 26.09 22.38 26.43 27.27
(9) Salesman? 35.00 35.17 30.38 35.53 35.50
(10) Trevor? 27.11 27.29 23.27 27.00 27.42
(11) Coastguard® 24.51 25.01 23.13 24.60 26.37
(12) News? 29.26 29.97 22.88 30.55 30.62
(13) Mother & Daughter® 32.43 32.56 29.80 32.61 32.62
(14) Hall-objects® 32.49 32.93 27.18 32.55 34.00
(15) Silent? 30.31 30.37 27.83 30.52 30.52
(16) Flower Garden® 13.72 13.91 16.75 15.76 18.10
(17) Table Tennis® 21.56 21.66 21.22 21.33 21.60
(18) Football® 17.52 17.63 17.23 17.65 18.02
(19) Stefan® 18.21 18.29 19.29 17.71 19.08
Average 16.87 17.01 18.28 17.69 18.99

AQCIF (176 x 144)
bSIF (352 x 240)
¢CIF (352 x 288)

where (N, N,) is the image dimension, (By, B,) is the block
size, and (S, S) is the search space. In the case of MRME, the
image dimension to be taken into account is the sum of the
image dimension at each level, namely, (144 X 176) + (72 X
88) + (36 x 44) + (18 x 22) + (9 x 11), with B, = B, = 9
and S, = S, = 3. The resulting estimate of calculations to
interpolate one image is 58 164 480 operations for Castagno,
15 878 903 040 for Adapted Castagno (273 times more than
Castagno!), and 24 610 311 for MRME (42% of Castagno).
For EMRME, the search space is not fixed and is possi-
bly larger than for MRME, so while the number of opera-
tions will be larger than for MRME, no upper limit can be
given.

Computational load of Castagno, Adapted Castagno, and
EMRME is shown in Table 4. The ratios are 1000 : 1and 3 : 1
for Adapted Castagno and EMRME compared to Castagno,
respectively. Although EMRME is slower possibly due to the
fact that the lower-resolution images have to be calculated
before starting the motion estimation, it is to be remem-
bered that Castagno was designed for 50 to 75fps (hence
40 millisecond time to do the calculation). EMRME was de-
signed for 5 to 10fps (hence 200 millisecond time to do
the calculation), hence EMRME is still doing better than
Castagno. In this computational load comparison, Castagno

algorithm is chosen as the performance metric because the
frame interpolation using EMRME is developed based on
Castagno algorithm that works well at high-frame-rate in-
terpolation, but not at low-frame-rate interpolation. Per-
formance difference with other real-time frame interpola-
tion schemes, such as [5], can be investigated provided that
the EMRME algorithm is optimized for real-time applica-
tion.

7. CONCLUSIONS

Interpolation at low frame rate is a great challenge. Most
existing algorithms interpolate at high frame rate (e.g.,
Castagno). The algorithms have to be adapted to assess fast
motion (resulting in large frame-to-frame displacement) oc-
curring at low frame rate. Classical block matching intro-
duces combinatorial problems. Small block size and small
search area cannot detect fast motion (e.g., Castagno). On
the other hand, large block size and large search area pro-
duce mismatches, which lead to artifacts and speed reduction
(Adapted Castagno).

The MRME algorithm is proposed and implemented. It
estimates the movement first at lower resolution (smaller
search space), and then successively increases the resolution
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TaBLE 3: Subjective evaluation.

Algorithms
Sequences
Averaging Castagno Applied Castagno MRME EMRME

(1) Miss America® 2.67 2.60 0.73 3.20 327
(2) Claire® 1.87 1.87 0.73 2,07 2.00
(3) Grandma® 253 2.07 0.87 2.27 2.40
(4) Akiyo?® 1.93 2.00 1.40 227 2.20
(5) Container® 293 293 0.87 2.47 2.67
(6) Susie® 1.80 2.00 1.13 2,67 2.33
(7) Carphone? 1.80 1.73 0.67 2.20 227
(8) Foreman® 1.60 1.60 0.73 1.67 2,07
(9) Salesman® 2,07 2.00 0.60 1.80 1.80
(10) Trevor* 1.60 1.53 0.40 193 193
(11) Coastguard? 2.67 2.60 0.87 1.87 2.53
(12) News® 2.20 280 1.00 280 2.40
(13) Mother & Daughter® 0.93 107 0.87 0.60 107
(14) Hall-objects® 2.40 2.33 0.47 227 2,67
(15) Silent® 1.80 2.00 1.13 267 2.33
(16) Flower Garden® 2.60 2.87 1.67 2.33 373
(17) Table Tennis® 1.53 193 1.27 1.60 1.47
(18) Football® 2.60 2.20 1.07 2.73 BEE
(19) Stefan® 1.07 1.47 0.73 1.67 233
Average 1.95 2.12 118 2.08 267

AQCIF(176 x 144)
bSIF(352 x 240)
¢CIF(352 x 288)

(a)

FIGURE 7: Susie image with (a) strong local error and (b) small global error.

and performs search only in a subset of the search space
around the search solution from the previous hierarchi-
cal level. It manages to reduce artifacts and long com-
putation time introduced by the Adapted Castagno algo-
rithm.

An improved version of MRME algorithm, called the
EMRME algorithm, is also proposed. The EMRME al-

gorithm reduces artifacts further because of its extended
and adaptive search space, which is obtained by stretch-
ing the search space to include the search space of the
current, previous, next, top, and bottom pixels. The EM-
RME algorithm is superior to Averaging, Castagno, Adapted
Castagno, and MRME algorithms, both subjectively and ob-
jectively.
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TaBLE 4: Computational load comparison for Pentium Pro I 350 MHz, 256 MB RAM.
Castagno Adapted Castagno EMRME
To interpolate 1 image of 176 X 144 24s 40 min 7.2s
To interpolate 25 images of 176 x 144 1 min 12h 3 min
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