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This paper performs a comprehensive performance analysis of a family of non-data-aided feedforward carrier frequency offset
estimators for QAM signals transmitted through AWGN channels in the presence of unknown timing error. The proposed carrier
frequency offset estimators are asymptotically (large sample) nonlinear least-squares estimators obtained by exploiting the fourth-
order conjugate cyclostationary statistics of the received signal and exhibit fast convergence rates (asymptotic variances on the
order ofO(N−3), where N stands for the number of samples). The exact asymptotic performance of these estimators is established
and analyzed as a function of the received signal sampling frequency, signal-to-noise ratio, timing delay, and number of symbols.
It is shown that in the presence of intersymbol interference effects, the performance of the frequency offset estimators can be
improved significantly by oversampling (or fractionally sampling) the received signal. Finally, simulation results are presented to
corroborate the theoretical performance analysis, and comparisons with the modified Cramér-Rao bound illustrate the superior
performance of the proposed nonlinear least-squares carrier frequency offset estimators.
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1. INTRODUCTION

In mobile wireless communication channels, loss of syn-
chronization may occur due to carrier frequency offset (FO)
and/or Doppler effects. Non-data-aided (or blind) feedfor-
ward carrier FO estimation schemes present high potential
for synchronization of burst-mode transmissions and spec-
trally efficient modulations because they do not require long
acquisition intervals and bandwidth consuming training se-
quences. For these reasons, non-data-aided carrier compen-
sation schemes have found applications in synchronization
of broadcast networks and can be used in many practical
receivers where a coarse carrier FO correction is applied in
front of the matched filter.

Non-data-aided feedforward carrier FO estimators have
been proposed and analyzed in various contexts by many

researchers [1, 2, 3, 4, 5, 6, 7, 8]. The common feature of
these algorithms relies on the cyclostationary (CS) statistics
of the received waveform that have been extensively exploited
in communication systems to perform tasks of synchroniza-
tion, blind channel identification, and equalization (see, e.g.,
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), and are induced either
by oversampling of the received analog waveform [5, 7, 8],
or by filtering the received discrete-time sequence through a
nonlinear filter [1, 3]. This latter category of estimators ex-
ploits the second and/or the higher-order CS statistics of the
received sequence, exhibits high convergence rates (asymp-
totic variance on the order ofO(N−3), whereN stands for the
number of samples), and the estimators can be interpreted as
nonlinear least-squares (NLS) estimators.

This paper proposes to study the exact asymptotic
(large sample) performance of a family of NLS carrier FO
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estimators for QAM transmissions in the presence of chan-
nel intersymbol interference (ISI) effects and to suggest new
algorithms with improved performance. The exact asymp-
totic variance of this family of estimators is established in
closed-form expression and it is shown that these estimators
exhibit high convergence rates close to the modified Cramér-
Rao bound (CRB).

The rest of this paper is organized as follows. In Section 2,
the discrete-time channel model is established and the nec-
essary modeling assumptions are invoked. Section 3 de-
scribes a class of non-data-aided feedforward carrier FO
estimators, and Section 4 briefly illustrates the equivalence
between these FO estimators and the NLS spectrum es-
timators. Based on this equivalence, the asymptotic per-
formance analysis of the proposed FO estimators is estab-
lished in closed-form expression. In Section 5, simulation
results are conducted to confirm our theoretical analysis.
Finally, in Section 6, conclusions and possible extensions
of the proposed work are discussed. Detailed mathemati-
cal derivations for the performance analysis of the proposed
FO estimators are reported in appendices http://ee.tamu.
edu/∼serpedin.

2. MODELING ASSUMPTIONS

Supposing that a QAM signal is transmitted through an
AWGN channel, the complex envelope of the received signal
is affected by the carrier FO and/or Doppler shift Fe and is
expressed as1 (see [7] and [13, Chapter 14])

rc(t) = e j(2πFet+θ)
∑
l

w(l)h(tr)c (t − lT − εT) + vc(t), (1)

where w(l)’s are the transmitted complex information sym-

bols, h(tr)c (t) denotes the transmitter’s signaling pulse, vc(t)
is the complex-valued additive noise assumed independently
distributed with respect to the input symbol sequence w(n),
T is the symbol period, and ε is an unknown normalized
timing error introduced by the channel. Since the unknown
carrier phase offset θ does not play any role in the ensuing
derivations, it will be omitted (θ = 0). After matched filter-
ing with h(rec)c (t), the resulting signal is (over-)sampled at a
period Ts := T/P, where the oversampling factor P ≥ 1 is an
integer. It is well known thatmore general antialiasing receive
filters are possible, but the analysis does not support any sig-
nificant change. Under the common assumption that the FO
achieves small values (FeT < 0.1), the following equivalent
discrete-time model can be deduced:

x(n) = e j2π fen
∑
l

w(l)h(n− lP) + v(n), (2)

1The subscript c is used to denote a continuous-time signal.

where fe := FeTs, x(n) := (rc(t) ∗ h(rec)c (t))|t=nTs (∗ denotes

convolution), v(n) := (vc(t) ∗ h(rec)c (t))|t=nTs , and h(n) :=
(h(tr)c (t)∗ h(rec)c (t))|t=nTs−εT . For large FO (FeT ≥ 0.1), a very
similar model to (2) results. Indeed, from (1), the receiver
output after sampling can be expressed as

x(n) := (
rc(t)∗ h(rec)c (t)

)|t=nTs

=
∑
l

w(l)
∫
h(rec)c (τ)h(tr)c

(
nTs − τ − lT − εT)

× e j2πFe(nTs−τ)dτ + v
(
nTs

)
=e j2πFenTs

∑
l

w(l)
∫
h(rec)c (τ)h(tr)c

(
nTs−τ−lT−εT

)
× e− j2πFeτdτ + v

(
nTs

)
= e j2π fen

∑
l

w(l)h′(n− lP) + v(n),

(3)

where h′(n) := h′c(t)|t=nTs−εT and h′c(t) = h(tr)c (t) ∗
h(rec)c (t) exp(− j2πFet). Substituting h(n) with h′(n), we ob-
serve the equivalence between the two models (2) and (3),
corresponding to small and large carrier FOs, respectively.
Because estimation of large and small FOs can be achieved
using the same estimation framework, we restrict our anal-
ysis in what follows to the problem of estimating small car-
rier FOs assuming the channel model (2). Moreover, since
no knowledge of the timing delay is assumed, the proposed
FO estimators will apply also to general frequency-selective
channels.

In order to derive the asymptotic performance of the FO
estimators without any loss of generality, the following as-
sumptions are imposed.

(AS1) w(n) is a zero-mean independently and identically dis-
tributed (i.i.d.) sequence with values drawn from a
QAM constellation with unit variance, that is, σ22w :=
E{|w(n)|2} = 1.

(AS2) vc(t) is white circularly distributed Gaussian noise with
zero mean and variance σ22v.

(AS3) v(n) satisfies the so-called mixing condition [14, pages
8, 25–27], which states that the kth-order cumulant2 of
v(n) at lag τ := (τ1, τ2, . . . , τk−1), denoted by ckv(τ) :=
cum{v(n), v(n + τ1), . . . , v(n + τk−1)}, is absolutely
summable:

∑
τ |ckv(τ)| <∞, for all k. The mixing con-

dition is a reasonable assumption in practice since it is
satisfied by all signals with finite memory. Assumption
(AS3) will prove useful in facilitating calculation of
the asymptotic performance of the proposed estima-
tors. Also, the following definition of cumulant will be
used extensively: if x1, . . . , xp are p random variables,

2For a detailed presentation of the concept of cumulant, please refer to
[14, pages 19–21] and [15].
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the pth-order joint cumulant of x1, . . . , xp is defined as

cum
(
x1, . . . , xp

)
:=

∑
(−1)k−1(k − 1)!

E ∏
j∈µ1

xj

 · · ·
E ∏

j∈µk
xj

, (4)

where the summation operator assumes all the partitions
(µ1, . . . ,µk), k = 1, . . . , p, of (1, . . . , p).

3. CARRIER FREQUENCY OFFSET ESTIMATORS

Estimating fe from x(n) in (2) amounts to retrieving
a complex exponential embedded in multiplicative noise∑

l w(l)h(n−lP) and additive noise v(n). The underlying idea
for estimating the FO is to interpret the higher-order statis-
tics of the received signal as a sum of several constant ampli-
tude harmonics embedded in (CS) noise, and to extract the
FO from the frequencies of these spectral lines. We will solve
this spectral estimation problem by interpreting it from a CS-
statistics viewpoint. Due to their π/2-rotationally invariant
symmetry properties, all QAM constellations satisfy the mo-
ment conditions E{w2(n)} = E{w3(n)} = 0, E{w4(n)} �= 0.
This property will be exploited next to design FO estima-
tors based on the fourth-order CS-statistics of the received
sequence.

Define the fourth-order conjugate time-varying correla-
tions (for QAM constellations, the fourth-order cumulants
and moments coincide) of the received sequence x(n) via
c̃4x(n; 0) := E{x4(n)}, with 0 := [0 0 0]. For P = 1, it turns
out that

c̃4x(n; 0) = κ̃4e
j2π4 fen

∑
l

h4(l), (5)

with κ̃4 := cum{w(n),w(n),w(n),w(n)} = E{w4(n)}. Simi-
larly, for P > 1, it follows that

c̃4x(n; 0) = κ̃4e
j2π4 fen

∑
l

h4(n− lP). (6)

Being almost periodic with respect to n, the generalized
Fourier Series (FS) coefficient of c̃4x(n; 0), termed the con-
jugate cyclic correlation, can be expressed for P = 1 as (cf.
[16])

C̃4x(α; 0) := lim
N→∞

1
N

N−1∑
n=0

c̃4x(n; 0)e− j2παn

= C̃4x
(
α0; 0

)
δ
(
α− α0

)
,

(7)

where C̃4x(α0; 0) = κ̃4
∑

l h
4(l) and α0 := 4 fe. When P > 1, it

follows that

C̃4x(α; 0) =
P−1∑
k=0

C̃4x

(
α0 +

k

P
; 0

)
δ
(
α−

(
α0 +

k

P

))
, (8)

where C̃4x(α0 + k/P; 0) = (κ̃4/P)
∑

n h
4(n) exp(− j2πkn/P).

Thus, C̃4x(α; 0) consists of a single spectral line located
at 4 fe when P = 1, and P spectral lines located at the cyclic
frequencies 4 fe + k/P, k = 0, 1, . . . ,P − 1, when P > 1. An
estimator of fe can be obtained by determining the location
of the spectral line present in C̃4x(α; 0) (see (7)):

fe = 1
4

(
arg max

α̇∈(−0.5,0.5)
∣∣C̃4x(α̇; 0)

∣∣2
)
, (9)

where the variable with a dot denotes a trial value. In prac-
tice, a computationally efficient FFT-based implementation
of (9) can be obtained by adopting an asymptotically con-
sistent sample estimator for the conjugate cyclic correlation
C̃4x(α; 0), which takes the following form:

̂̃C4x(α; 0) := 1
N

N−1∑
n=0

x4(n)e− j2παn. (10)

Plugging (10) back into (9), we obtain the estimator

f̂e = 1
4

(
arg max

α̇∈(−0.5,0.5)

∣∣∣̂̃C4x(α̇; 0)
∣∣∣2

)

= 1
4

 arg max
α̇∈(−0.5,0.5)

∣∣∣∣∣ 1
N

N−1∑
n=0

x4(n)e− j2πα̇n

∣∣∣∣∣
2
. (11)

In the case when P > 1, it is possible to design an FO esti-
mator that extracts fe solely from knowledge of the location
information of the spectral line of largest magnitude (k = 0).
However, this approach leads again to the estimator (11). A
different alternative is to extract the FO by exploiting jointly
the location information of all the P spectral lines. In this
case, the FFT-based FO estimator is obtained as follows:

α̂N := 4 f̂e = arg max
|α̇|<1/(2P)

JN (α̇),

JN (α̇) :=
P−1∑
k=0

∣∣∣∣̂̃C4x

(
α̇ +

k

P
; 0

)∣∣∣∣2

=
P−1∑
k=0

∣∣∣∣∣ 1
N

N−1∑
n=0

x4(n)e− j2π(α̇+k/P)n

∣∣∣∣∣
2

.

(12)

Note that the condition |FeT| ≤ 1/8 is required in (11) and
(12) in order to ensure identifiability of FeT .

In the next section, we will establish, in a unified man-
ner, the asymptotic performance of the proposed frequency
estimators (11) and (12), and show the interrelation between
the present class of cyclic estimators and the family of NLS
estimators.

4. ASYMPTOTIC PERFORMANCE ANALYSIS

In order to show the equivalence between the present car-
rier FO estimation problem and the problem of estimat-
ing the frequencies of a number of harmonics embedded in
noise, it is helpful to observe that the conjugate time-varying
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correlation c̃4x(n; 0) can be expressed as

c̃4x(n; 0) =
P−1∑
k=0

C̃4x

(
α0 +

k

P
; 0

)
e j2π(α0+k/P)n

=
P−1∑
k=0

λke
j(ωkn+φk),

(13)

where λk exp( jφk) := C̃4x(α0 + k/P; 0) and ωk := (2πk/P) +
2πα0.

Defining the zero-mean stochastic process e(n) as

e(n) := x4(n)− E
{
x4(n)

}
= x4(n)−

P−1∑
k=0

C̃4x

(
α0 +

k

P
; 0

)
e j2π(k/P+α0)n,

(14)

it follows that

x4(n) =
P−1∑
k=0

C̃4x

(
α0 +

k

P
; 0

)
e j2π(k/P+α0)n + e(n)

=
P−1∑
k=0

λke
j(ωkn+φk) + e(n).

(15)

Thus, x4(n) can be interpreted as the sum of P constant am-
plitude harmonics corrupted by the CS noise e(n) [3].

Consider the NLS estimator

θ̂ := argmin
θ̇

J(θ̇), (16)

J(θ̇) := 1
2N

N−1∑
n=0

∣∣∣∣∣x4(n)−
P−1∑
k=0

λ̇ke
jφ̇k e j2π(α̇+k/P)n

∣∣∣∣∣
2

, (17)

with the vector θ̇ := [λ̇0 · · · λ̇P−1 φ̇0 · · · φ̇P−1 α̇]T, su-
perscript T standing for transposition. It can be shown that
the FFT-based estimator (12) is asymptotically equivalent to
the NLS estimator (16) (see, e.g., [3, 9]). Hence, the pro-
posed cyclic FO estimator can be viewed as the NLS esti-
mator and the estimate α̂N is asymptotically unbiased and
consistent [17, 18]. In order to compute the asymptotic
performance of estimator (12), it suffices to establish the
asymptotic performance of NLS estimator (16). The fol-
lowing result, whose proof is deferred to Appendix 1 at
http://ee.tamu.edu/∼serpedin for space limitation reasons,
holds.3

Theorem 1. The asymptotic variance of the estimate α̂N is
given by

γ := lim
N→∞

N3 E
{(
α̂N − α0

)2} = 3
∑P−1

l1,l2=0 R
H
l1
Gl1,l2Rl2

π2
(∑P−1

l=0 RH
l Rl

)2 , (18)

3The superscripts ∗ and H stand for conjugation and conjugate trans-
position, respectively.

with

Rl :=


C̃4x

(
α0 +

l

P
; 0

)
C̃∗4x

(
α0 +

l

P
; 0

)
 ,

Gl1,l2

:=


S2e

(
l1 − l2
P

;α0 +
l1
P

)
−S̃2e

(
2α0+

l1+l2
P

;α0+
l1
P

)
−S̃∗2e

(
2α0+

l1+l2
P

;α0+
l1
P

)
S∗2e

(
l1 − l2
P

;α0 +
l1
P

)
 ,

(19)

and S2e(α; f ) and S̃2e(α; f ) stand for the unconjugate and con-
jugate cyclic spectra of e(n) at cycle α and frequency f , defined
as

S2e(α; f ) :=
∑
τ

lim
N→∞

1
N

N−1∑
n=0

E
{
e∗(n)e(n + τ)

}
e− j2παne− j2π f τ ,

S̃2e(α; f ) :=
∑
τ

lim
N→∞

1
N

N−1∑
n=0

E
{
e(n)e(n + τ)

}
e− j2παne− j2π f τ ,

(20)

respectively.

As an immediate corollary of Theorem 1, in the case
when only the spectral line with the largest magnitude is con-
sidered, we obtain that the asymptotic variance of estimator
(11) is given by

lim
N→∞

N3 E
{(
α̂N − α0

)2} = 3RH
0 G0,0R0

π2
∥∥R0

∥∥4 . (21)

Note that when P = 1, the autocorrelation c2e(n; τ) :=
E{e∗(n)e(n + τ)} depends only on the lag τ, hence e(n) is
stationary with respect to its second-order autocorrelation
function and the cyclic spectrum S2e(0;α0) coincides with the
second-order stationary spectrum S2e(α0). Result (21) shows
that the asymptotic variance of F̂eT converges asO(N−3) and
depends inversely proportionally on the signal-to-noise ratio
(SNR) corresponding to the k = 0 spectral line4 SNR0 :=
|C̃4x(α0; 0)|2/ re{S2e(0;α0)− S̃2e(2α0;α0)}.

Evaluation of asymptotic variance (18) requires calcu-
lation of the unconjugate/conjugate cyclic spectra, S2e(α; f )
and S̃2e(α; f ), whose closed-form expressions will be
sketched in what follows.

Define the variables

κ8 := cum
{
w∗(n), . . . ,w∗(n)︸ ︷︷ ︸

4

,w(n), . . . ,w(n)︸ ︷︷ ︸
4

}
,

κ̃8 := cum
{
w(n), . . . ,w(n)︸ ︷︷ ︸

8

}
,

(22)

4The notations “re” and “im” stand for the real and imaginary parts,
respectively.
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and define the fourth- and sixth-order (l = 4, 6) mo-
ments/cyclic moments of x(n) as follows:

mlx(n; 0, . . . , 0︸ ︷︷ ︸
l/2−1

, τ, . . . , τ︸ ︷︷ ︸
l/2

) := E
{
x∗l/2(n)xl/2(n + τ)

}
,

Mlx(k; 0, . . . , 0︸ ︷︷ ︸
l/2−1

, τ, . . . , τ︸ ︷︷ ︸
l/2

)

:= 1
P

P−1∑
n=0

mlx(n; 0, . . . , 0︸ ︷︷ ︸
l/2−1

, τ, . . . , τ︸ ︷︷ ︸
l/2

)e− j2πkn/P.

(23)

Some lengthy calculations, the details of which are illustrated
in Appendix 2 at http://ee.tamu.edu/∼serpedin, show that
the following results hold.

Proposition 1. For P = 1, the unconjugate/conjugate cyclic
spectra of e(n) are given by

S2e
(
α0

)
=

∑
τ

[
16m2x(τ)m6x(0, 0, τ, τ, τ) + 18m2

4x(0, τ, τ)

− 144m2
2x(τ)m4x(0, τ, τ) + 144m4

2x(τ)
]
e− j2πα0τ

+
κ8

κ̃24

∣∣C̃4x
(
α0; 0

)∣∣2
,

S̃2e
(
2α0;α0

)
=

∑
τ

κ̃8 ∑
l

h4(l)h4(l + τ)

+ 16κ̃ 2
4

∑
l

h(l)h3(l + τ) ·
∑
l

h3(l)h(l + τ)

+ 18κ̃ 2
4

(∑
l

h2(l)h2(l + τ)

)2
,

(24)

respectively.

Proposition 2. For P > 1, the unconjugate/conjugate cyclic
spectra of e(n) are given by

S2e

(
k

P
;α0 +

l

P

)
=

∑
τ

[
16V1 + 18V2 − 144V3 + 144V4

]
e− j2π(α0+l/P)τ

+
κ8P

κ̃24
C̃4x

(
α0 +

l

P
; 0

)
C̃∗4x

(
α0 +

l − k

P
; 0

)
,

S̃2e

(
2α0 +

k

P
;α0 +

l

P

)
=

∑
τ

[
16Ṽ1 + 18Ṽ2 + C̃8x(k; τ)

]
e− j2πl/Pτ ,

(25)

where

V1 :=
P−1∑

k1,k2=0
k1+k2−k≡0modP

M2x
(
k1; τ

)
M6x

(
k2; 0, 0, τ, τ, τ

)
,

V2 :=
P−1∑

k1,k2=0
k1+k2−k≡0modP

M4x
(
k1; 0, τ, τ

)
M4x

(
k2; 0, τ, τ

)
,

V3 :=
P−1∑

k1,k2,k3=0
k1+k2+k3−k≡0modP

M2x
(
k1; τ

)
M2x

(
k2; τ

)
×M4x

(
k3; 0, τ, τ

)
,

V4 :=
P−1∑
ki=0∑

i ki−k≡0modP

3∏
i=0

M2x
(
ki; τ

)
,

Ṽ1 :=
P−1∑

k1,k2=0
k1+k2−k≡0modP

C̃4x1

(
k1; τ

)
C̃4x3

(
k2; τ

)
,

Ṽ2 :=
P−1∑

k1,k2=0
k1+k2−k≡0modP

C̃4x2

(
k1; τ

)
C̃4x2

(
k2; τ

)
,

C̃4xi(k; τ) :=
κ̃4
P

∑
n

hi(n)h(4−i)(n + τ)e− j2π(kn/P), i = 1, 2, 3,

C̃8x(k; τ) := κ̃8
P

∑
n

h4(n)h4(n + τ)e− j2π(kn/P).

(26)

When P = 1, the discrete-time additive noise v(n) is
white. Then, it is not difficult to show that neither S2e(α0) nor
S̃2e(2α0;α0) depends on fe. Therefore, the asymptotic vari-
ance (21) is independent of the unknown FO. The same con-
clusion can be obtained in the case of P > 1 if the SNR is
large enough (σ22v � 1). However, it should be pointed out
that when the channel model (3) applies, this independency
generally does not hold.

To assess the performance of the proposed estimators, we
derive the CRB as a benchmark, which is given as the inverse
of the Fisher information matrix (FIM):

J
(
fe
) = −E

{
∂2 ln

[
Ew

{
fX

(
x
∣∣w; fe)}]

∂ f 2e

}
, (27)

where x := [x(0) x(1) · · · x(N − 1)]T and w denotes the
information symbol vector. Since the evaluation of exact
CRB is computationally intractable, it is common to adopt
a looser bound, the modified CRB (MCRB) [19], whose FIM
is shown by direct calculations to take the following expres-
sion according to [20, Appendix 15C]:

J
(
fe
) = −Ew E

{
∂2 ln

[
fX

(
x
∣∣w; fe)]

∂ f 2e

}

= 8π2 re

{∑
l

hHl C
−1
v hl

}
,

(28)

http://ee.tamu.edu/~serpedin


1998 EURASIP Journal on Applied Signal Processing

100

10−2

10−4

10−6

10−8

10−10

M
SE

(F̂
eT

)

0 5 10 15 20 25 30

SNR (dB)

The.: P = 1
Exp.: P = 1
The.: P = 4 one
Exp.: P = 4 one

The.: P = 4 all
Exp.: P = 4 all
MCRB: P = 1
MCRB: P = 4

Figure 1: MSEs of F̂eT versus SNR.

where

hl :=
[
0 e j2π feh(1−lP) · · · (N−1) e j2(N−1)π feh(N−1−lP)]T,

(29)

and the covariance matrix Cv of

v :=
[
v(0) v(1) · · · v(N − 1)

]T
(30)

is a Toeplitz matrix of the following form:

Cv := E
{
vHv

} = σ22vC,C

:=


hd(0) hd(1) · · · hd(N − 1)
hd(1) hd(0) · · · hd(N − 2)
...

. . .
...

...
hd(N − 1) hd(N − 2) · · · hd(0)

 ,
(31)

and hd(n) := (h(tr)c (t)∗ h(rec)c (t))|t=nTs . Thus, we obtain

E
{(
F̂e − Fe

)2} ≥ P2

T2
J−1

(
fe
) = P2σ22v

8π2T2 re
{∑

l h
H
l C−1hl

} .

(32)
Note that when P = 1, C is an identity matrix and

E
{(
F̂e − Fe

)2} ≥ σ22v
8π2T2

∑
l

∑N−1
n=0 n2

∣∣h(n− l)
∣∣2

.= 3σ22v
8π2T2N3

∑M
m=0

∣∣h(m)
∣∣2 ,

(33)

whereM is the order of channel {h(m)}, that is, the number
of significant channel taps. It can be seen that in this case, the
corresponding MCRB does not depend on the unknown FO.

10−2

10−3

10−4

10−5

10−6

10−7

10−8

10−9

M
SE

(F̂
eT

)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Timing delay ε

The.: P = 1
Exp.: P = 1
The.: P = 4 one

Exp.: P = 4 one
MCRB: P = 1
MCRB: P = 4

Figure 2: MSEs of F̂eT versus timing error ε.

5. SIMULATIONS
In this section, the experimental (Exp.) mean-square error
(MSE) results and theoretical asymptotic bounds (The.) will
be compared. The experimental results are obtained by per-
forming 200Monte Carlo trials. The transmitter and receiver
filters are square-root raised cosine filters with roll-off factor
ρ = 0.5 [13, Chapter 9], and the additive noise v(n) is gen-
erated by passing Gaussian white noise through the square-
root raised cosine filter to generate a sequence, with auto-
correlation sequence cv(τ) := E{v∗(n)v(n + τ)} = σ22vhrc(τ),
where hrc(t) stands for a raised cosine pulse [7]. The SNR is
defined as SNR := 10 log10(σ

2
2w/σ

2
2v). All the simulations are

performed assuming the FO FeT = 0.011 and, unless oth-
erwise noted, the transmitted symbols are selected from a 4-
QAM constellation, and the number of transmitted symbols
is L = 128.

In all figures except Figures 3, 5, and 7, the theoretical
bounds of estimators (11) and (12) for P = 1 and P = 4
are represented by the solid line, dash-dot line, and dash
line, respectively. Their corresponding experimental results
are plotted using the solid line with squares, dash-dot line
with circles, and dash line with diamonds, respectively. The
MCRB curves for P = 1 and P = 4 are shown as the solid
lines with triangles and stars, respectively.

Experiment 1. Performance with respect to SNR
Assuming the timing error ε = 0.3, in Figure 1 we com-
pare the MSEs of FO estimators (11) and (12) with their
theoretical asymptotic variances and MCRBs. It turns out
that in the presence of ISI, the performance of FO estima-
tor (11) can be significantly improved at medium and high
SNRs by oversampling (fractionally sampling) the output
signal. This result is further illustrated by Figure 2, where
the MSE of FO estimator (11) is plotted versus timing error
ε, assuming again two different values for the oversampling
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factors P = 1 and P = 4. An intuitive explanation that
one can envisage for this result is to interpret the theoretical
MSE expression of the carrier frequency estimator (see, e.g.,
(21)) as a ratio between a quantity that reflects the power of
“self-noise” (the numerator of (21)) and the amplitude of the
spectral line (the denominator of (21)). It is well known that
oversampling induces CS statistics in the received sequence
that contribute to an increase of the magnitude of this spec-
tral line relative to the self-noise power, a fact which might
explain the improved MSE performance in the presence of
oversampling.

In the case of P = 4, from the comparison of the per-
formances of estimators (11) and (12), which estimate fe by
taking into account the information provided by only one
spectral line and all the P spectral lines of C̃4x(α; 0), respec-
tively, one can observe that both the theoretical and experi-
mental results depicted in Figure 1 show that estimator (12)
does not significantly improve the performance of (11), es-
pecially in the low SNR range. In fact, the experimental MSE
results of (12) are even worse than those of (11) in the low
SNR regime. This is due to the fact that the additional har-
monics that are exploited in (12) have small magnitudes and
their location information can be easily corrupted by the ad-
ditive noise. Figure 3 shows themagnitudes of these harmon-
ics versus the cyclic frequency. Thus taking into account all
the harmonics appears not to be justifiable from a computa-
tional and performance viewpoint.

Experiment 2. Performance with respect to timing error ε
In Figure 2, the theoretical and experimental MSEs of FO es-
timator (11) are plotted versus the timing error ε, assum-
ing the following parameters: SNR = 15 dB, and two over-
sampling factors P = 1 and P = 4. It turns out once again
that oversampling of the received signal helps to improve the
performance of symbol-spaced estimators and a significant
improvement is achieved (several orders of magnitude) in
the presence of large timing offsets (ε ≈ 0.5). Moreover, the
oversampling-based FO estimator is quite robust against the
timing errors.
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Figure 4: MSEs of F̂eT versus number of symbols (L).

Experiment 3. Performance with respect to
the number of input symbols L

In Figure 4, the theoretical and experimental MSEs of FO es-
timator (11) are plotted versus the number of input symbols
L, assuming SNR = 15 dB and timing delay ε = 0.3. It can
be seen that when the number of input symbols L increases,
the experimental MSE results are well predicted by the theo-
retical bounds derived in Section 4. This plot also shows the
potential of these estimators for fast synchronization of burst
transmissions since the proposed frequency estimator with
P > 1 provides very good frequency estimates even when a
reduced number of symbols are used (L = 60÷ 80 symbols).
From Figures 1 and 4, one can distinguish at least two bene-
ficial effects of oversampling: (1) a better MSE performance
at medium and high SNRs, and (2) a lower threshold effect
(a reduced SNR or number of samples) under which the es-
timated (simulated) MSE performance of carrier estimators
exhibits a sudden increase and departure from the theoretical
(analytical) MSE expression. In other words, oversampling
proves useful in reducing the outlier effects.

Experiment 4. Performance with respect to
the oversampling factor P

In this experiment, we study more thoroughly the effect of
the oversampling rate P on FO estimators. By fixing SNR =
15 dB, ε = 0.3, and varying the oversampling rate P, we com-
pare the experimental MSEs of estimator (11) with its theo-
retical variance. The result is depicted in Figure 5. It turns
out that increasing P does not improve the performance of
the FO estimator as long as P ≥ 2 does. This invariance
result is a pleasing property since large sampling rates re-
sult in higher implementation complexity and hardware cost,
which are not desirable for high-rate transmissions. We re-
mark that a rigorous proof of this invariance result might be
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obtained by extending the results from [9, 21], where a sim-
ilar invariance property has been established in the context
of the second-order CS-statistics-based carrier frequency es-
timators. However, such a proof appears to be extremely dif-
ficult and lengthy in the case of the present estimation set-up
due to the higher-order statistics involved, and for this rea-
son, it is deferred to a future investigation.

Experiment 5. Performance with respect to SNR
in frequency-selective channels

Figure 6 shows the results when FO estimator (11) is applied
assuming a two-ray frequency-selective channel. Assuming

the baseband channel impulse response h(ch)c (t) = 1.4δ(t −
0.2T) + 0.6δ(t − 0.5T), we compare the experimental MSEs
with the theoretical asymptotic variances for estimator (11)
in two scenarios. P = 1 and P = 4, respectively. Figure 6
shows again the merit of the FO estimator with P > 1.

Experiment 6. Performance with respect to SNR
in time-varying fading channels for 16-QAM

For the sake of completeness, we illustrate, in Figure 7, the
numerical results for 16-QAM constellation. The influence of
the time-varying fading process is also examined. The num-
ber of symbols is L = 512, and we assume a Rician fading
process with normalized energy and Rician factor K = 5.
The Doppler spread fd is chosen as 0, 0.005, and 0.05, re-
spectively, and the Rayleigh fading component is created by
passing a unit-power zero-mean white Gaussian noise pro-
cess through a normalized discrete-time filter, obtained by
bilinearly transforming a third-order continuous-time all-
pole filter, whose poles are the roots of the equation (s2 +
0.35ωds + ω2

d)(s + ωd) = 0, where ωd = 2π fd/1.2. It can be
seen that the performance of the proposed estimators deteri-
orates with fd increasing, and it exhibits an error floor due to
the large self-induced noise caused by the higher-order QAM
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Figure 6: MSEs of F̂eT versus SNR in frequency-selective channels.
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Figure 7: MSEs of F̂eT versus SNR in time-varying channels for
16-QAM.

constellations. Once again, the results of Figure 7 corrobo-
rate the conclusion that the oversampling process improves
the performance of carrier frequency estimators.

6. CONCLUSIONS

This paper analyzed the performance of a class of non-data-
aided feedforward carrier frequency offset estimators for lin-
early modulated QAM-signals. It is shown that this class of
cyclic frequency offset estimators is asymptotically a fam-
ily of NLS estimators that can be used for synchronization
of signals transmitted through AWGN channels with un-
known timing errors. The asymptotic performance of these
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estimators is established in closed-form expression and com-
pared with the modified CRB. It is shown that this class of
FO estimators exhibits a high convergence rate, and in the
presence of ISI effects, its performance can be significantly
improved by oversampling the received signal with a small
oversampling factor (P = 2). This work can also be ex-
tended to other types of modulations (M-PSK, MSK), and
to flat/frequency-selective fading channels.
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