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In the development of a syllable-centric automatic speech recognition (ASR) system, segmentation of the acoustic signal into
syllabic units is an important stage. Although the short-term energy (STE) function contains useful information about syllable
segment boundaries, it has to be processed before segment boundaries can be extracted. This paper presents a subband-based
group delay approach to segment spontaneous speech into syllable-like units. This technique exploits the additive property of the
Fourier transform phase and the deconvolution property of the cepstrum to smooth the STE function of the speech signal and
make it suitable for syllable boundary detection. By treating the STE function as a magnitude spectrum of an arbitrary signal,
a minimum-phase group delay function is derived. This group delay function is found to be a better representative of the STE
function for syllable boundary detection. Although the group delay function derived from the STE function of the speech signal
contains segment boundaries, the boundaries are difficult to determine in the context of long silences, semivowels, and fricatives.
In this paper, these issues are specifically addressed and algorithms are developed to improve the segmentation performance. The
speech signal is first passed through a bank of three filters, corresponding to three different spectral bands. The STE functions
of these signals are computed. Using these three STE functions, three minimum-phase group delay functions are derived. By
combining the evidence derived from these group delay functions, the syllable boundaries are detected. Further, a multiresolution-
based technique is presented to overcome the problem of shift in segment boundaries during smoothing. Experiments carried out
on the Switchboard and OGI-MLTS corpora show that the error in segmentation is at most 25milliseconds for 67% and 76.6% of
the syllable segments, respectively.
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1. INTRODUCTION

One of the major reasons for considering the syllable as a
basic unit for automatic speech recognition (ASR) systems
is its better representational and durational stability relative
to the phoneme [1]. The syllable was proposed as a unit for
ASR as early as 1975 [2], in which irregularities in phonetic
manifestations of phonemes were discussed. It was argued
that the syllable will serve as an effective minimal unit in the
time domain. In [3], it is demonstrated that segmentation
at syllable-like units followed by isolated style recognition of
continuous speech performs well.

Researchers have tried different ways of segmenting the
speech signal either at the phoneme level or at the sylla-
ble level, with or without the use of phonetic transcrip-
tion. These segmentation methods can further be classified
into two categories, namely, time-domain-based methods,

where short-term energy (STE) function, zero-crossing rate,
and so forth are used, and frequency-domain-based meth-
ods, where short-term spectral features are used.

In [4], a loudness function, defined as the time-smoothed
and frequency-weighted summation of the signal spectrum,
is used for segmenting speech into syllabic units. Syllable
boundaries are placed at local minima in the loudness func-
tion, subject to various conditions.

A syllabification procedure developed in [5] for German
makes an initial estimate of syllable boundaries based on
voicing, energy level, and place of articulation and then lo-
cates syllables based on a more detailed acoustic analysis.

In [6], for Japanese, a syllable-level segmentation tech-
nique is proposed, which is based on a common syllable
model. The segment boundaries are detected by finding the
optimal HMM state sequence.
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In [7], a multilayered neural network structure for con-
tinuous speech recognition, based on isolation and identifi-
cation of syllables, is presented. The syllable boundaries are
detected at the first layer of a neural network, which is an
adaptation of Kohonen’s phonotopic feature map trained by
unsupervised learning.

An STE-basedmethod for detecting syllable nuclei is pre-
sented in [8]. In this work, the speech is first bandpass filtered
and then the short-termmagnitude function is computed. To
suppress the ripples caused by f0 or transient phonemes, the
short-term magnitude function is further lowpass filtered at
approximately 10Hz. The peaks of the resulting energy con-
tour are declared as the syllable nuclei.

In [9], a temporal flow model (TFM) network has been
developed to extract syllable boundary information from
continuous speech, where TFM captures the time-varying
properties of the speech signal.

The syllable is structurally divisible into three parts, the
onset, nucleus, and coda [10]. Although many syllables con-
tain all three elements, a significant number contain either
one or two. With rare exceptions, when a single component
is present, it is the nucleus. Generally, the nucleus is vocalic,
while the onset and coda are usually consonantal in form. In
terms of STE function, the syllable can be viewed as an en-
ergy peak in the nucleus region and it tapers off at both ends
of the nucleus where a consonant may be present, which re-
sults in local energy fluctuations. If these local energy fluctu-
ations are smoothed out, then the valleys at both ends of the
syllable nucleus can be considered as syllable boundaries.

Many languages of the world possess a relatively sim-
ple syllable structure consisting of several canonical forms
[10]. Most of the syllables in such languages contain just
two phonetic segments, typically of CV type (e.g., Japanese
language). The remaining syllabic forms are generally of V
or VC variety. In contrast, English and German possess a
more highly heterogeneous syllable structure. In such forms,
the onset and/or coda constituents often contain two or
more consonants. But a salient property shared by stress-
and syllable-timed languages is the preference of CV syl-
labic forms in spontaneous speech. Nearly half of the forms
in English and over 70% of the syllables in Japanese are
of this variety. There is also a substantial proportion of
CVC syllables in the spontaneous speech of both the lan-
guages [10]. The analysis done on the Switchboard corpus
shows that nearly 88% of the syllables are of simple struc-
ture and only 12% of the syllables are of a more complex
structure with consonant clusters [10]. This shows that even
for the languages which are not syllable-timed, the syllable
can be defined using a simple structure. Further, the defini-
tion of syllable in terms of STE function is suitable for al-
most all the languages, in the case of spontaneous speech.
Keeping this fact in mind, in this paper, a time-domain-
based speech segmentation procedure is described, which
segments the speech signal into syllable-like units, without
the knowledge of the phonetic transcription. This approach
is somewhat similar to homomorphic filtering, which essen-
tially smoothes the magnitude spectrum of the windowed
speech signal.
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Figure 1: (a) Speech signal. (b) Corresponding STE function.
(c) Lowpass filtered STE function. (d) Mean-smoothed STE func-
tion.

Earlier, a method was proposed [11] for segmenting the
acoustic signal into syllable-like units, in which a minimum-
phase signal is derived from the STE function as if it were
a magnitude spectrum. It is observed that the group delay
function of this minimum-phase signal is a better represen-
tative of the STE function to perform segmentation. Later,
several refinements have been made to improve the perfor-
mance of the baseline segmentation algorithm [12]. In this
paper, we specifically discuss the refinements made on the
system described in [11].

2. SHORT-TERM ENERGY-BASED SEGMENTATION

A simple candidate for segmenting speech is the STE func-
tion of the speech signal. The high-energy regions in the
STE function correspond to syllable nuclei, and the val-
leys at both ends of the syllable nuclei are approximately
the syllable boundaries. But the raw STE function cannot
be directly used to perform segmentation due to signifi-
cant local energy fluctuations. This is due to the presence of
transient consonants and f0 (see Figure 1b). Techniques like
fixed thresholding can be used but suffer when energy vari-
ation across the signal is quite high. For continuous speech,
especially for spontaneous speech, the energy is quite high at
the beginning of a phrase and tapers off towards the end of
the phrase. An adaptive thresholding can be used to address
this problem but the threshold value will have to be learnt
continuously from the speech signal. Further, the region over
which the adaptive threshold is computed will become cru-
cial: too large a region will miss boundaries, while too short
a region will generate spurious boundaries.
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To overcome the problems due to local energy fluctu-
ations, the STE function should be smoothed. Smoothing
the STE function can be performed in several ways. Firstly,
the STE function can be computed with increased window
size, but with the consequence of shift in boundary locations.
The STE function is normally mean smoothed with a nar-
row window size (see Figure 1d). In this case, the order of
mean smoothing is crucial. If the order is large, it will re-
sult in significant shift in boundaries or even miss detection
of boundaries altogether, while if the order is small, it will
not properly serve the purpose of smoothing. In [13], it is
mentioned that the syllable duration can be conceptualized
in terms ofmodulation frequency. For example, a syllable du-
ration of 200milliseconds is equivalent to a modulation fre-
quency of 5Hz. Further, the syllable duration analysis [10]
performed on the Switchboard corpus [14] shows that the
duration of syllables mostly varies from 100milliseconds to
300milliseconds with a mean of 200milliseconds. In terms
of modulation frequency, it varies from 3 to 10Hz, with a
mean of 5Hz. Using this approach, in [8], a lowpass filter
with cutoff frequency of 10Hz is applied on the logarithmic
STE amplitude to suppress the ripples caused by f0 or tran-
sient consonants. This forces the system to oscillate at syl-
lable frequencies (see Figure 1c). The selection of cutoff fre-
quency is crucial; it should be different for different speech
rates.

In this paper, an attempt is made to overcome these is-
sues. The STE function is a nonzero, positive function. But
the magnitude spectrum of any real signal has the symmetry
property, that is,

∣∣X(ω)∣∣ = ∣∣X(−ω)∣∣. (1)

If the STE function is symmetrized, it will have the properties
similar to that of the magnitude spectrum. Therefore, tech-
niques applied for processing the magnitude spectrum can
be applied to the energy function. The inverse DFT (IDFT) of
this assumed magnitude spectrum will be a two-sided signal
(the real cepstrum). If the causal portion of this signal alone
is considered, it is a perfect minimum-phase signal since it is
derived from the magnitude spectrum alone. Now, smooth-
ing of this assumed magnitude spectrum can be performed
using one of the following techniques.

(1) Cepstrum-based smoothing. It is well established that
high-frequency ripples can be removed by applying a lifter
in the cepstral domain, thereby retaining the low-frequency
ripples alone [15]. Using the same analogy, in our work, the
symmetrized STE function is treated as if it were amagnitude
spectrum of an arbitrary signal. The low-frequency oscilla-
tions in the STE function correspond to the syllable rate and
the high-frequency oscillations or ripples correspond to the
presence of transient consonants and f0. The high-frequency
ripples in the STE function can be removed as is done in ho-
momorphic filtering.

(2) LP-cepstrum-based smoothing. By choosing a proper
order, which is based on the number of syllables present in
the speech signal, the cepstrum can be modeled.

(3) Root-cepstrum-based smoothing. In [16], it is shown
that spectral root homomorphic deconvolution performance
is similar to, or even better than, the log homomorphic de-
convolution, where the root-cepstrum is defined by the IDFT
|X(ω)|γ, with 0 < γ� 1.

It has been well established in the literature that
minimum-phase group delay functions are very useful in for-
mant extraction [17]. In the present work also, instead of de-
riving a new magnitude spectrum from the cepstrum, group
delay functions are derived as explained in the following sec-
tion.

3. GROUP-DELAY-BASED SEGMENTATION
OF SPEECH

The negative derivative of the Fourier transform phase is de-
fined as group delay. The group delay function exhibits addi-
tive properties. If

H(ω) = H1(ω) ·H2(ω), (2)

then the group delay function τh(ω) can be written as

τh(ω) = −∂
(
arg
(
H(ω)

))
∂ω

= τh1 (ω) + τh2 (ω).

(3)

From (2) and (3), observe that a multiplication in the
spectral domain becomes an addition in the group delay do-
main. To demonstrate the power of the additive property of
the group delay spectrum, three different systems are cho-
sen (Figure 2a, 2b, and 2c), where the first system consists
of a complex conjugate pole pair at an angular frequency
ω1, the second system with a complex conjugate pole pair
at an angular frequency ω2, and the third with two com-
plex conjugate pole pairs, one at ω1 and the other at ω2.
From the magnitude spectra of these three systems (Figures
2d, 2e, and 2f), it is observed that even though the peaks
in Figures 2d and 2e are clearly visible, in a system where
these two poles are combined together, the peaks are not re-
solved well as shown in Figure 2f. This is due to the multi-
plicative property of the magnitude spectra. But from Fig-
ures 2g, 2h, and 2i, it is evident that the group delay spec-
trum obtained by combining the poles together, the peaks
are well resolved as shown in Figure 2i. Further, in the group
delay spectrum of any signal, the peaks (poles) and val-
leys (zeros) will be resolved properly only when the sig-
nal is a minimum-phase signal. In our work, since the sig-
nal is derived from the positive function (which is simi-
lar to the magnitude spectrum), it can be shown that the
resultant signal is a minimum-phase signal. We have ex-
ploited the minimum-phase property of the signal derived
from any positive function and the additive property of the
group delay function to segment the speech into syllable-like
entities.
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Figure 2: Resolving power of group delay spectrum: z-plane, magnitude spectrum, and group delay spectrum of the cases of ((a), (d), and
(g)) a pole inside the unit circle at (0.8,π/8), ((b), (e), and (h)) a pole inside the unit circle at (0.8,π/4), and ((c), (f), and (i)) a pole at
(0.8,π/8) and another pole at (0.8,π/4) inside the unit circle.

3.1. Theminimum-phase property of
themagnitude spectrum

Consider a system function X(z) given below:

X(z) = 1
ΠN

i=1
(
1− aie jwiz

) . (4)

The square of the magnitude of the system frequency re-
sponse is given by

|X(e jω)|2 = X
(
e jω
)
Xc
(
e jω
) = X(z)Xc

(
1
zc

)∣∣∣∣
z=e jω

. (5)
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Let

C(z) = X(z)Xc
(
1
zc

)
, (6)

where “c” denotes complex conjugation;

C(z) = 1
ΠN

i=1
(
1− aie jwiz

)(
1− aie jwiz−1

) . (7)

From (7), we can infer that, for every pole in X(z), there is
a pole in C(z) at ai and 1/aci . Consequently, if one element
of each pair is outside the unit circle, then the conjugate re-
ciprocal will lie inside the unit circle [18]. Since the Fourier
transform of (7) exists, inverse z-transform of (7) leads to

c(n) =
N∑
i=1

[
Ai
(
aie

jwi
)−n

u(−n− 1) + Bi
(
aie

jwi
)n
u(n)

]
, (8)

where u(n) is the unit-step function.
If only the causal portion of c(n) is considered, then

cm(n) =
N∑
i=1

Bi
(
aie

jwi
)n
u(n). (9)

From (9), we conclude that the causal portion of the inverse
Fourier transform of the squared magnitude spectrum of a
signal whose root is at “ai” or “1/ai,” with |ai| < 1, will have
a root at “ai,” that is, the resultant signal will always be a
minimum-phase signal. But, since a window is applied in the
cepstral domain, the root-cepstrum is of finite length. Be-
cause of this, the z-transform of the signal will have spurious
zeros. These zeros may affect the positions of the actual zeros
present in the signal. To overcome this problem, the squared
magnitude spectrum can be inverted (1/(|X(e jω)|2)) and an-
other minimum-phase signal can be derived using the same
algorithm, if zeros are of interest.

Instead of taking the squared magnitude spectrum, in
fact, we can take |X(e jω)|γ, where γ can be any value.1 If the
signal x(n) is an energy bounded signal, from the Akhiezer-
Krein and Fejer-Riesz theorems [19], it can be shown that

F−1
(∣∣X(e jω)∣∣γ) = F−1

(∣∣X(e jω)∣∣0.5γ∣∣X(e jω)∣∣0.5γ)

= F−1
(
Y(e jω

)
Yc
(
e jω
))

= y(n)∗ y(−n),
(10)

where c and ∗ denote complex conjugation and convolu-
tion operations, respectively. Thus |X(e jω)| can be expressed
as the Fourier transform of the autocorrelation of some se-
quence y(n). Basically, the root-cepstrum of any signal x(n)
can be thought of as the autocorrelation of some other se-
quence y(n).

1Other values of γ, say γ < 1, are especially useful in formant and an-
tiformant extraction from the speech signal when the dynamic range is very
high.

3.2. Algorithm for segmentation

In [17, 20], it is shown that if the signal is of minimum phase,
the group delay function resolves the peaks and valleys of the
spectrum well. If the STE function is thought of as a mag-
nitude spectrum, an equivalent minimum-phase signal can
be derived, as explained in Section 3.1. The peaks and val-
leys of the group delay function of this signal will now cor-
respond to the peaks and valleys in the STE function. In the
STE function of any syllable, the energy is quite high in the
voiced region and tapers off at both ends, where a consonant
may be present, which results in local energy fluctuations. If
these local variations are smoothed, then the minima at both
ends of a voiced region correspond to syllable boundaries.
The algorithm for segmentation of continuous speech using
this approach is given below, which essentially smoothes the
energy contour and removes the local energy fluctuations.

(i) Let x(n) be the given digitized speech signal (Fig-
ure 3a) of a continuous speech utterance.

(ii) Compute the STE function E(m), where m = 1,
2, . . . ,M (Figure 3b), using overlapped windows. Let
the minimum value of the STE function be Emin.

(iii) Compute the order N of FFT as given below:

N = 2�log(2M)/ log(2)�. (11)

(iv) Invert the function E(m)γ (where γ = 0.001) after ap-
pending (N/2 − M) number of Emin to the sequence
E(m). Let the resultant function be Ei(m) (Figure 3c).

(v) Construct the symmetric part of the sequence by pro-
ducing a lateral inversion of this sequence about the Y-
axis. Let this sequence be E(K) (Figure 3d). Here, the
sequence E(K) is treated as the magnitude spectrum
of some arbitrary signal. In this time-frequency sub-
stitution, N is replaced by 2π irrespective of the value
of N .

(vi) Compute the IDFT of the sequence E(K). This resul-
tant sequence e(n′) is the root-cepstrum. The causal
portion of e(n′) has the properties of a minimum-
phase signal.

(vii) Compute theminimum-phase group delay function of
the windowed causal sequence of e(n′) (see [17, 20]).
Let this sequence be Egd(K). Let the size of the window
applied on this causal sequence, that is, the size of the
cepstral lifter, be Nc.

(viii) Detect the positive peaks in the minimum-phase
group delay function (Egd(K)) as given below. If
Egd(K) is positive and if

Egd(K − 1) < Egd(K) < Egd(K + 1), (12)

then Egd(K) is considered as a peak. These peaks ap-
proximately correspond to the syllable boundaries.

As explained in Section 2, for a given speech signal x(n)
(Figure 4a), a group delay function may be derived in three
different ways. The group delay function shown in Figure 4b
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Figure 3: (a) Speech signal. (b) Corresponding STE function. (c) Inverted STE function. (d) Inverted and symmetrized STE function.

is derived using the root-cepstrum-based approach. The
group delay functions derived using the other two meth-
ods, that is, cepstrum- and LP-cepstrum-based smoothing
methods, are also given in Figures 4c and 4d, along with
the group delay function derived using root-cepstrum-based
smoothing. Interestingly, all the three group delay functions
are almost similar, except for slight shifts in boundary loca-
tions in the case of LP-cepstrum based smoothing. But, each
method has its own advantages and disadvantages. In the
cepstrum- and root-cepstrum-based smoothing, the group
delay functions are exactly similar in shape. But the com-
putation of the conventional cepstrum requires a log oper-
ation. The common problem with these two methods is the
choice of the cepstral lifter size Nc. Appropriate choices for
this parameter are discussed in the next section. If we use
LP-cepstrum-based method, the cepstral lifter size is not cru-
cial and in fact, the whole causal portion of the cepstrum
can be considered for prediction. Even though this seems
to be very attractive, this method suffers from the fact that
the choice of the predictor order is related to the number of
boundaries.

3.3. Choice ofNc

The frequency resolution in the magnitude spectrum as well
as in the group delay spectrum depends on the size of the
cepstral lifter Nc applied in the root-cepstrum. Here, Nc is
defined as

Nc = Length of STE function
WSF

. (13)

In (13), the length of the STE function corresponds to the
number of samples in the STE function and the window
scale factor (WSF) represents a scaling factor which is used
to truncate the cepstrum. In this context, the value of WSF
is always greater than 1. If Nc is high, the resolution will also
be high, that is, it can resolve two closely spaced boundaries.
If Nc is chosen to be high, a boundary will appear between
CV/CVC at the CV transition. For syllable segmentation, this
is undesirable. On the other hand, if the resolution is too
low, even syllables will not be resolved, which is also not de-
sirable. To choose Nc appropriately, durational analysis was
performed. For this analysis, about 5000 speech dialogs of
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Figure 4: The utterance “group-delay-based segmentation” (an
example) (a) Speech signal. (b) Group delay function derived
from root-cepstrum. (c) Group delay function derived from LP-
cepstrum. (d) Group delay function derived from conventional cep-
strum.

Table 1: Durational properties of syllables in Switchboard corpus
(subset).

Duration (ms) Syllables (%)
< 50 1.92
50–100 13.10
100–200 42.78
200–300 25.37
300–400 11.11
400–500 4.19
500–600 1.52

the Switchboard data [14] were considered. Table 1 gives the
durations of a subset of syllables in Switchboard data. From
this table, observe that the lengths of approximately 70% of
the syllables vary from 100milliseconds to 300milliseconds.
The mean duration of a subset of Switchboard syllable data is
201.2milliseconds. For these different durations of syllables,
the experiments show that the values for Nc can be within
a fixed range. For example, a carefully uttered speech sig-
nal with different syllable durations from 75milliseconds to
325milliseconds is considered. The WSF is varied from 2 to
12. The analysis shows that when the WSF is varied from 4
to 10, the number of syllable boundaries detected is equal to
the number of actual boundaries. Based on this experiment,
the WSF in the computation of Nc can be set between 4 and
10. The number of samples in the STE function is directly re-
lated to the number of syllables present in the speech signal.
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Figure 5: (a) Speech signal for the alphanumeric string “1258abdg”
with silence. (b) Group delay function derived from the signal given
in (a). (c) Speech signal after removing long silences. (d) Group de-
lay function derived from the signal given in (c).

In a few instances, the syllable duration may be more than
300milliseconds or less than 100milliseconds. If the syllable
duration is more than 300milliseconds, then that particular
segment may be split into two segments. Similarly, if the syl-
lable duration is less than 100milliseconds, there is a chance
that the syllable boundary is not resolved. But most impor-
tantly, other syllable boundaries remain unaffected.

4. SILENCES, FRICATIVES, AND SEMIVOWELS

The group delay function resolves even very closely spaced
poles well when they are separated by a zero, provided the
zero is located at approximately the same radius as that of
the poles. In other cases, there may be some degradation in
performance. Three possible places where failure may occur
are (i) at the silence region, where the duration of the silence
is considerable, (ii) at fricative segments, where the energy of
the fricative is quite high, and (iii) at the semivowels, when
it comes in the middle of any word. To overcome these prob-
lems, on advice fromGreenberg at ICSI, a subband-based ap-
proach to syllable segmentation is attempted.

4.1. Presence of long silences

In this approach, since the symmetrized energy contour is
inverted, any drastic energy reduction in between two syl-
lables is considered as a pole in the z-domain and a pos-
itive peak in the group delay domain. But, for a long si-
lence (see Figure 5a) in between two syllables (say more than
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Figure 6: (a) Speech signal. (b) Group delay function derived from
the signal given in (a). (c) Lowpass filtered ( fc = 500Hz) signal given
in (a). (d) Group delay function derived from the signal given in (c).

about 30milliseconds), this rule may not apply. Instead we
may get more than one boundary in the group delay do-
main, depending upon the resolution (Figure 5b). Syllable
boundaries correspond to poles in the group delay domain.
The long silence is equivalent to having two or more consec-
utive poles with identical radii. To overcome this problem,
the silence segments present in the continuous speech, whose
duration is high, namely, about 30milliseconds, should be
removed. Based on the knowledge derived from the en-
ergy, zero-crossing rate, and spectral flatness of a frame,
the decision is made whether that frame of signal is si-
lence or speech. If the duration of the silence is more than
30milliseconds, that particular segment is removed from the
signal (see Figure 5c) and then processed. The resultant peaks
in the group delay spectrum now correspond to correct seg-
ment boundaries. This process reduces the spurious segment
boundaries (Figure 5d).

4.2. Presence of fricatives

In the speech signal x(n), if a fricative is present (Figure 6a),
when we compute the energy function, a boundary will be
generated at the middle of a fricative. This will be manifested
in the group delay domain also, which is a spurious peak (see
the 3rd and 4th peaks in Figure 6b). To avoid this, the signal,
x(n) is lowpass filtered to remove the high-frequency frica-
tives. Observe that the energy of the signal in the fricative
regions is significantly reduced (Figure 6c). Consequently, in
the group delay spectrum too, the spurious peak/boundary
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Figure 7: (a) Speech signal. (b) Group delay function derived from
the signal given in (a). (c) Bandpass filtered ( fl = 500Hz and fu =
1500Hz) signal given in (a). (d) Group delay function derived from
the signal given in (c).

is removed (Figure 6d). This results in the segment bound-
ary being slightly shifted. So the group delay function derived
from this should not be considered as the reference. Never-
theless, it can be used to remove peaks due to fricatives in the
original group delay (Figure 6d).

4.3. Presence of a semivowel

The semivowels are very similar to vowels in that they have
periodic, intense waveforms with most of the energy in the
low formants. Even though they are slightly weaker than
vowels, if they come in the middle of a word in continuous
speech, in most cases, a visible energy reduction may not be
perceived (see Figure 7a). Because of this, in the group delay
spectrum too, we may not get a boundary in between two
vowels when they are separated by a semivowel (see the three
vertical lines drawn in Figure 7 and the intersecting points
(1), (2), and (3) in Figure 7b). For example, in the word en-
velope, since there is no significant energy reduction in be-
tween the syllables /ve/ and /lope/, in the group delay spec-
trum too, the peak is not present (see the intersecting point
(1) in Figure 7b). If a suitable bandpass filter is applied to the
original signal, since the energy of the semivowels are con-
centrated at low formants, the semivowels will be attenuated
severely (see Figure 7c) without affecting the vowel regions
much. This will ensure that a boundary will be present at the
semivowel segment also (see the points/peaks (1), (2), and
(3) in Figure 7d).
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Figure 8: (a) Speech signal for the utterance of the digit string “1
2 9 10.” (b) Group delay function derived from signal given in (a)
with lower resolution (WSF = 2.5). (c) Group delay function de-
rived from the signal given in (a) with higher resolution (WSF =
1.2).

4.4. Refining segment boundaries

The boundaries derived from the group-delay-based algo-
rithmmay have slight deviations from the actual boundaries,
for example, in the nasal-consonant regions (Figures 8a and
8b). This is due to lower resolution. If the resolution of the
group delay spectrum is increased by increasing the cep-
stral lifter size Nc applied in the cepstral domain, a spuri-
ous segment is observed at the beginning of a nasal con-
sonant. Nevertheless, when the resolution is increased, the
error in the segment boundary is small (Figure 8c). Each
boundary location in the lower-resolution group delay spec-
trum is compared with all the peaks in the higher-resolution
group delay spectrum and the nearest peak is considered as
the actual segment boundary.

4.5. Combining evidence

Instead of using the group delay function derived from the
STE function of the original signal alone, here, the speech
signal is passed through a bank of three filters. The group
delay function of the outputs of each of these three filters is
computed. The basic steps involved in this approach for seg-
menting the speech signal at syllable-like units is given in the
block diagram (Figure 9). The boundaries derived from the
different group delay functions are combined using the fol-
lowing logic:

Pτal = Pi
τap (14)

if (Pi
τap ∼ P

j
τlp ) ≤ 20milliseconds for each peak “i” in Pτap and

for each peak “ j” in Pτlp ;

Ptemp = P
j
τbp (15)

if 50 ≤ (Pi
τal ∼ P

j
τbp ) ≤ 100milliseconds for each peak “i” in

Pτal and for each peak “ j” in Pτbp ;

Pτalb = Pτal ∨ Ptemp, (16)

Pτalbm = Pτm (17)

if (Pτalb ∼ Pτm) ≤ 30milliseconds, where

(i) ∨ represents “OR” operation and ∼ represents the dif-
ference operation (i.e., only magnitude of the time dif-
ference is considered);

(ii) Pτap—boundaries derived from the allpass signal;

(iii) Pτlp—boundaries derived from the lowpass filtered sig-
nal;

(iv) Pτbp—boundaries derived from the bandpass filtered
signal;

(v) Pτm—boundaries derived from the higher-resolution
group delay function;

(vi) Pτal—boundaries derived from allpass and lowpass fil-
tered signals after combining;

(vii) Pτalb—boundaries derived from allpass, lowpass, and
bandpass filtered signals after combining;

(viii) Pτalbm—boundaries derived from allpass, lowpass,
and bandpass filtered signals and from the higher-
resolution group delay function after combining.

For example, the speech signal for the utterance “group-
delay-based segmentation” (Figure 10a) is considered to de-
scribe the method of combining evidence. First, the silences
in between the syllables, if any, are removed. In Figure 10,
the solid vertical lines drawn between Figures 10b and 10c
denote the segment boundaries detected after combining the
evidence from the group delay functions of allpass and low-
pass filtered speech signals using (14). The dashed line be-
tween Figures 10b and 10c (labeled as “1”) denotes the spu-
rious boundary, which is removed after combining. The solid
vertical line drawn between Figures 10b and 10d denotes
the new boundary detected after combining the evidence
from the group delay functions of allpass and bandpass fil-
tered speech signals using (15) and (16). The dotted vertical
lines drawn from Figure 10e to Figure 10a denote the bound-
aries detected after refinement (see (17)) using the higher-
resolution group delay function derived from the allpass fil-
tered signal. Observe that a spurious segment boundary pro-
duced at the fricative region is removed after lowpass fil-
tering the signal and a new boundary is detected (as indi-
cated by the solid vertical line with label “2”) in between
the syllables /de/ and /lay/ because of bandpass filtering the
signal.
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Figure 9: Block diagram of subband-based approach.
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Figure 10: (a) Speech signal. (b) Group delay function derived from
the allpass filtered signal. (c) Group delay function derived from
lowpass filtered ( fc = 500Hz) signal. (d) Group delay function de-
rived from the bandpass filtered ( fl = 500Hz and fu = 1500Hz) sig-
nal. (e) Group delay function with higher resolution derived from
the allpass filtered signal.

5. EXPERIMENTS AND RESULTS

5.1. Speech corpora

The Switchboard corpus [14] andOGI-MLTS corpus [21] are
used for analyzing the performance of our system. Switch-
board is a corpus of several thousands of informal speech
dialogs recorded over the telephone. For our analysis, a por-
tion of the corpus, which has syllable-level transcription, is
considered. For these speech dialogs, syllable-level transcrip-
tion [13] is also provided in this corpus. The duration of

the speech signals varies from 0.5 seconds to 25 seconds. In
OGI-MLTS, 40 speech files uttered by 40 different speakers
are considered for the analysis. In this subset, each file is of
45 seconds duration. These files are manually segmented into
syllabic units and used as a reference to verify the perfor-
mance of our segmentation approach.

5.2. Experimental setup

Prior to automatic segmentation, the speech signals are first
preprocessed by removing the long silences (if any) as ex-
plained in Section 4.1. For the computation of STE function,
overlapped rectangular windows are used, where the win-
dow length is of duration 20milliseconds and the overlap is
of 10milliseconds duration. Further, the value of γ in E(m)γ

is set to 0.001 to reduce the dynamic range of the STE func-
tion, irrespective of the speech corpus considered. In fact, any
value of γ < 0.01 has been found to be appropriate. As de-
fined in Section 3.3, the WSF used to compute the size of the
Hanning window (cepstral lifter size Nc) is set to 4.0. Since
the value of the WSF is fixed, the length of the root-cepstrum
is proportional to the length of the STE function. Three dif-
ferent group delay functions are computed from (a) the orig-
inal speech signal (allpass filtered), (b) lowpass filtered ( fc =
500Hz) speech signal, and (c) bandpass filtered ( fl = 500Hz
and fu = 1500Hz) speech signal. The evidence derived from
these group delay functions are combined as explained in
Section 4.5. In order to see the effect of each of the group de-
lay function in the performance of the final system, four dif-
ferent experiments are carried out separately on the Switch-
board corpus and the results are tabulated (see Table 2). In
all these experiments, a boundary is said to be detected if
the error between an automatic segmentation boundary and
manual segmentation boundary is less than 80milliseconds.
Based on the error, four different categories are observed (see
1st column of Table 2). In each of these four categories, the
performance is calculated by computing the ratio between
the number of boundaries in each category and the total
number of automatically detected boundaries.

From Table 2, observe that, for the baseline system (Pτap
alone), the number of insertions and deletions are very high
(see 5th and 6th rows of 2nd column). The number of
insertions is considerably reduced when Pτap and Pτlp are
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Table 2: Performance (%) of different experiments.

Error (ms) Pτap Pτal Pτalb Pτalbm

< 25 64.08 63.8 63.39 66.81

25–40 12.82 12.66 13.35 18.10

40–60 7.49 7.69 7.75 11.21

60–80 15.6 15.82 15.5 3.88

Insertion 8.14 5.64 5.80 5.96

Deletion 10.72 10.88 6.45 6.53

Table 3: Performance (%) of the group-delay-based segmentation
approach. (A) Switchboard corpus. (B) OGI-MLTS.

Error (ms) A B

< 25 66.81 76.58

25–40 18.10 9.62

40–60 11.21 7.86

60–80 3.88 5.94

Insertion 5.96 5.02

Deletion 6.53 4.38

combined (see 3rd column) and the number of deletions
is also reduced when Pτap , Pτlp , and Pτbp are combined (see
4th column of Table 2). The error in segmentation bound-
aries are found to be greatly reduced when Pτalb are com-
bined with Pτm (see 5th column). The performance of the
final system on Switchboard data is compared with the per-
formance on OGI data (see Table 3). The performance of
the final system on Tamil data in OGI corpus is found to
be better than that of Switchboard corpus. The better per-
formance for the language Tamil may be due to its simple
syllable structure.

6. DISCUSSION

After several refinements, the performance of the segmen-
tation algorithm is reasonably better than that of the base-
line system described in Section 3. But still, there are some
issues which are yet to be addressed. For example, the knowl-
edge derived from the durational analysis can be incorpo-
rated into the system for reducing the number of inser-
tions and deletions of syllable boundaries, which is yet to
be done. The major problem in our approach is with syl-
lables whose durations (Ds) are out of range, that is, when
Ds < 100milliseconds or Ds > 300milliseconds. For this par-
ticular case, even the durational knowledge will not be of any
help. This problem can be handled if the phonetic transcrip-
tion is available or at least if the number of syllables present
in the signal is known a priori. In our approach, the silence
regions are detected and removed from the signal in the pre-
processing stage itself. The STE function, zero-crossing rate,
and spectral flatnessmeasure are used with proper thresholds
for silence detection. This methodmay suffer when analyzing
signals with very low SNR.

As such, this segmentation approach is successfully used
in two different tasks, namely, spoken language identification
and automatic speech transcription, as described below. A
syllable-level, unsupervised, and incremental clustering pro-
cedure is proposed in [22] for spoken language identifica-
tion. In this work, for each language, a syllable inventory is
created by first segmenting the speech signal into syllable-like
units. Similar syllable segments are then clustered using an
incremental approach which results in a set of syllablemodels
for each language. These language-dependent syllable mod-
els are then used for language identification. Further, in [23],
the same approach is extended for the speech transcription
task. This segmentation algorithm can also be used in a real-
time speech recognition system by considering a few syllables
(say a phrase) at a time.

7. CONCLUSIONS

In this paper, a novel approach for segmenting the speech sig-
nal into syllable-like units is presented. Several refinements
are suggested for improving the segmentation performance.
The performance of the minimum-phase group-delay-
function-based segmentation approach, before and after re-
finements, is tested on Switchboard and OGI corpora. When
compared with the performance of the baseline system, there
is a considerable reduction in segmentation errors and the
number of insertions and deletions. The advantage of seg-
mentation prior to labeling in speech is that it can be inde-
pendent of the task. Simple isolated syllable models can be
built from the segmented data. Once syllable sequences are
available, appropriate postprocessing can be done to build
systems for specific tasks.
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