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Hybrid video coding combines together two stages: first, motion estimation and compensation predict each frame from the neigh-
boring frames, then the prediction error is coded, reducing the correlation in the spatial domain. In this work, we focus on the
latter stage, presenting a scheme that profits from some of the features introduced by the standard H.264/AVC for motion esti-
mation and replaces the transform in the spatial domain. The prediction error is so coded using the matching pursuit algorithm
which decomposes the signal over an appositely designed bidimensional, anisotropic, redundant dictionary. Comparisons are
made among the proposed technique, H.264, and a DCT-based coding scheme. Moreover, we introduce fast techniques for atom
selection, which exploit the spatial localization of the atoms. An adaptive coding scheme aimed at optimizing the resource allo-
cation is also presented, together with a rate-distortion study for the matching pursuit algorithm. Results show that the proposed
scheme outperforms the standard DCT, especially at very low bit rates.
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1. INTRODUCTION

The most successful class of video compression algorithms
is based on hybrid methods consisting in the combination
of prediction loops in the temporal dimension (motion esti-
mation/motion compensation) with a suitable uncorrelation
technique in the spatial domain (transform coder).

The state of the art for hybrid video coding is spec-
ified by the recent standard H.264, also named advanced
video coding (AVC) (ITU-T Rec. H.264, or ISO MPEG-4,
part 10). In this work, we aim at exploiting the advantages
of coding the displaced frame difference (DFD), output of
the motion compensation (MC) algorithm, using a redun-
dant dictionary. This kind of dictionaries leaves more free-
dom to the basis functions design and therefore they can
be created with the goal of catching the structures of DFDs.

In order to remain as close as possible to the state of the art,
we adopt a motion estimation algorithm that is compatible
with H.264 (see Section 2). The output of this block is then
coded using a pursuit algorithm and an appositely designed
bidimensional, anisotropic dictionary. Thanks to this tech-
nique, we achieve a sparse representation of the signal and
therefore a more compact energy concentration.

The problem of recovering the sparsest representation
over a given redundant dictionary corresponds to the min-
imization of the l0 norm of the representation. In general,
this is a nonpolynomial (NP) problem, but recent results
show that, under certain conditions on signal and dictionary,
the sparsest solution can be approximated using greedy tech-
niques such as orthogonal matching pursuit (OMP) [1] or
matching pursuit (MP) [2, 3].
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This kind of methods experiences an increasing success
especially for one-dimensional signal representation (e.g., see
[4]) and natural image representation [5, 6]. MP has been
already used for video coding too: for example, in [7, 8],
the authors present an MP-based codec which offers very
good performances. The main differences with respect to this
method are the use of a dictionary of bidimensional, nonsep-
arable, anisotropic functions, the atom selection performed
through the entire frame, and the coding technique.

The main points of our work are

(a) the design of a redundant dictionary suitable for cod-
ing DFD,

(b) the use of fast techniques for atom selection, which
work in the Fourier domain and exploit the spatial lo-
calization of the atoms,

(c) the adaptive coding scheme aimed at optimizing the
resource allocation for transmitting the atom parame-
ters,

(d) the rate-distortion (RD) study for the MP algorithm
which allows an optimal selection of the number of
atoms to be placed in every frame.

In addition, the obtained results are compared with a tech-
nique that codes the DFD (found using the same MC) using
a classical DCT scheme and with the standard H.264.

This paper is structured as follows. Section 2 presents
the motion estimation/compensation block, inspired by the
H.264/AVC standard. The coding algorithm adopted for
DFDs is explained in Section 3, with details about new faster
methods for atom selection. Section 4 illustrates the in-loop
quantization and entropy coding, while the RD optimization
is explained in Section 5. Results and comparisons can be
found in Section 6, while Section 7 concludes and presents
possible future developments.

2. MOTION ESTIMATION

High compression efficiency in video coding is achieved by
adopting hybrid systems which combine two stages. In the
first stage, motion estimation and MC predict each frame
from the neighboring frames. At the second one, the pre-
diction error is coded. Current video compression standards
use block-based orthogonal transforms to code the residual
error. These two stages are then followed by appropriate en-
tropy coding.

Relative to prior coding methods, the standard H.264/
AVC has an enhanced motion estimation that allows higher
compression ratios [9]. In particular, we can attribute this
improvement to the new variable block-size MC with small
block sizes, the quarter-sample-accurate MC, and the use
of multiple reference frames. Moreover, the 4 × 4 inte-
ger transform turns out to be well adapted to this kind of
MC [10].

In our coding scheme, we adopt some of the new features
introduced by this standard and obtain anMC scheme that is
compatible with H.264. In particular, we used the following
features:

(i) variable block-size MC, with a minimum size of 4× 4,
(ii) tree-based MC,
(iii) MC with quarter-pel accuracy,
(iv) use of improved “skipped” motion inference [9].

Our encoder allows I- and P-pictures only. Moreover, due
to the frame-based structure of our MP codec, intrablocks
are not permitted. I-pictures are fully compliant with the
H.264/AVC standard, using the integer transform illustrated
in [10]. Currently, only three of the nine prediction direc-
tions are used and only the 4 × 4 predicted block mode is
implemented (not the 16× 16 one) [9].

3. CODING DISPLACED FRAME DIFFERENCES

The residual error of themotion compensated prediction still
contains spatial redundancy: to reduce the amount of re-
sources needed for transmission, this error is typically coded
via block-based DCT. In H.264/AVC, this transform is re-
placed by an integer orthogonal approximation of the DCT,
able to work with 4 × 4 blocks and so compatible with the
finest MC segmentation. The advantage of this transform is
that it can be computed exactly in integer arithmetic, thus
avoiding inverse transform mismatch problems; moreover, it
reduces the computational complexity thanks to the fact that
it can be calculated without multiplications, in 16-bit arith-
metic [10].

However, linear invariant block-based transforms are far
from optimal for representing (and then compressing) bidi-
mensional signals such as natural images or motion compen-
sated images [11]. In [7, 8, 12], the authors have shown that
improved coding efficiency can be achieved by replacing the
DCT with an overcomplete nonorthogonal transform. This
kind of approach, together with a suitable dictionary design,
can represent a valid alternative to DCT or wavelet-based
schemes, especially (but not necessarily only) at low bit rates,
where most of the signal energy can be captured by only a
few elements of the dictionary.

In the proposed scheme, the output of the motion esti-
mation is a predicted image that is subtracted from the cur-
rent frame. The DFD, difference between these two images,
is then coded with an MP algorithm, as explained in the fol-
lowing. Note that this algorithm is not block-based: both the
coding and the atom selection procedures work on the full
frame, without any spatial subdivision.

3.1. Greedy algorithms

Structured signals can be effectively represented by a super-
position of few elements selected from a specifically designed
redundant dictionary of basis functions. We then say that
such signals have a sparse representation over the dictionary
D . Once we have designed an “appropriate” dictionary to
decompose our structured signal, if we are able to find the
sparsest representation or sparsestm-term approximation, it
follows that we are representing the signal in the most ef-
ficient way. In general, this leads to an efficient compres-
sion.
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We take a signal f which has a sparse decomposition b
over the dictionaryD such that

f =Db =
∑
gi∈Λ

gibi, (1)

where Λ is a subset of D , with |Λ| = m. The problem of
finding the sparsest solution of (1) corresponds to minimiz-
ing the l0 norm of the representation, ‖b‖0. In the general
case, it is an NP hard problem. However, recent results show
that under certain conditions on the dictionary and the sig-
nal, the problem can be solved with linear complexity. The
first results, given by Donoho and Xuo in [13] and Elad and
Bruckstein in [14], discuss the uniqueness of the sparsest so-
lution and the independence from the sparseness measure.
In practice, the solution can be found by minimizing ‖b‖1,
the l1 norm of (1), which leads to the basis pursuit principle
[15].

The latest results in [2, 3, 16] prove that the greedy algo-
rithms MP and OMP can also recover sparse solutions and
moreover they can achieve a sparse approximation of the sig-
nal with an exponential decay of the energy of the error. It is
important to notice that the condition of incoherence intro-
duced by Donoho and Elad et al. is a bit relaxed with “quasi-
incoherent dictionary,” a concept developed by Tropp, that
permits to prove the good behavior of basis pursuit and MP
with more redundant dictionaries. Taking into account the
good approximation property of MP and the flexibility that
it allows concerning the dictionary design, we think that this
greedy decomposition algorithm could be a good candidate
in order to code structured signals, especially at low bit rates.
It is worth mentioning that, compared with the OMP de-
composition or with the linear programming used to solve
the basis pursuit problem, MP allows solutions that make it
faster.

3.2. Matching pursuit

In this subsection, we recall the basics of the iterative pro-
cess used for the selection of the waveforms that represent
the signal structures. A more detailed explanation of the MP
algorithm can be found in [17].

LetD = {gγ}γ∈Γ be a dictionary of unitary norm vectors
gγ called atoms and let Γ represent the set of possible indexes.
At the Nth iteration, a function f is decomposed as follows:

f =
N−1∑
n=0

〈
gγn ,R

n f
〉
gγn + RN f , (2)

where R0 f = f and Rn f is the residual after the nth step. To
minimize the residual, at each iteration, we must choose gγn
such that the absolute value of the projection |〈gγn ,Rn f 〉| is
maximal. It can be proved [17] that Rn f converges exponen-
tially to zero when n tends to infinity. Since at each iteration,
the residual and the selected atom are orthogonal, it follows
that

‖ f ‖2 =
N−1∑
n=0

∣∣〈gγn ,Rn f
〉∣∣2 + ∥∥RN f

∥∥2. (3)

Equation (3) expresses the energy conservation of MP. The
convergence depends on both the dictionary and the search
strategy. In [18], it has been shown that there are two real
numbers α,β ∈]0, 1] such that for all n ≥ 0, the following
relation is valid:

∥∥Rn+1 f
∥∥ ≤ (1− α2β2

)1/2 · ∥∥Rn f
∥∥, (4)

where α is an optimality factor related to the strategy adopted
to select the best atom in the dictionary, while β depends on
the dictionary, representing its ability to capture the features
of the input function f [19].

The complexity of an MP decomposition of a signal of n
samples proves to be of the order

k ·N · d · n log2 n, (5)

where d depends on the size of the dictionary (it is actually
the size of the dictionary without considering translations),
N is the number of chosen atoms, and the constant k depends
on the strategy adopted for atom selection. In particular, we
can obtain k� 1. See also Section 3.4 where we propose two
solutions to speed up the atom selection and pick up more
than one atom per iteration. Given a highly redundant dic-
tionary, MP proves to be more computationally demanding
than both the 8×8 DCT and the 4×4 integer transform used
in H.264, whose complexity is O(n log2 n).

3.3. Dictionary design

Dictionary design is a crucial item for MP, since it strongly
affects its convergence and visual performances. The dictio-
nary used in our experiments is particularly suited for ex-
ploiting the signal structures of DFDs, mainly thanks to the
use of peculiar generating functions and anisotropy (see also
[20]).

The proposed dictionary is thus composed of a set of real
bidimensional functions, named atoms, built by applying the
following three types of transformations to the generating
function g(�x ) : R2 → R with �x = (x1, x2).

(a) Translation T�b, to move the atom all over the frame:

T�bg(�x ) = g
(
�x −�b). (6)

(b) RotationRθ , to locally orient the atom:

Rθg(�x ) = g
(
rθ(�x )

)
, (7)

where rθ is a rotation matrix:

rθ(�x ) =
[
cos θ − sin θ
sin θ cos θ

][
x1
x2

]
. (8)

(c) Anisotropic scaling Sa1,a2 :

S�ag(�x ) = Sa1,a2g
(
x1, x2

) = g
(
x1
a1
,
x2
a2

)
. (9)
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Figure 1: Generating functions g1 and g2.

Atoms are generated varying the parameters �b, θ, �a of the
three previous transforms in the following order:

atom
(�b,θ,�a )(�x ) = T�bRθS�ag(�x ). (10)

Finally, the obtained waveforms are normalized as follows:

atom norm
(�b,θ,�a )

(�x ) =
atom

(�b,θ,�a )(�x )∥∥atom
(�b,θ,�a )(�x )

∥∥
2

. (11)

The dictionary used by theMP algorithm is obtained by suit-
ably discretizing all parameters:

D =
{
atomnorm

(�b,θ,�a )
(�x )
}
�b,θ,�a

. (12)

In [5], it has been shown that bended atoms can improve
the performances of an MP encoder when the target is a nat-
ural still picture. We tested this option for video signals, find-
ing that only an extremely small gain in terms of error and
visual quality is obtained, but with the drawback of a big in-
crease in the dictionary size. Thus, we choose not to include
this transformation in our set.

The “mother functions” which generate the whole dictio-
nary with the previous transformations have been selected in
order to best match the characteristics of the input signal,
that is, the DFD coming out from the MC block. In particu-
lar, three functions have been chosen.

(a) A second derivative of a B-spline on the x1 axes, times
a bivariate exponential; see (13) and Figure 1. It is a
peaky function that fits the usual behavior of DFDs;
this function is nothing else than a small variation of
the piecewise function introduced in [20] for coding
motion-compensated prediction errors:

g1
(
x1, x2

) = gbs
(
x1
)
e−(x

2
1+x

2
2), (13)

where gbs is as follows:

gbs(x) =



−2 + 3|x| if 0 ≤ |x| < 1,

2− |x| if 1 ≤ |x| < 2,

0 if |x| ≥ 2.

(14)

(b) A Gabor function with oscillations in both the x1 and
the x2 directions and with a frequency independent of
the scaling factors (see Figure 1). Note that this func-
tion has an additional parameter for the frequency but
has only two possible rotations that correspond to the
vertical and horizontal positions:

g2
(
x1, x2

) = cos
(
ωxx

)
cos
(
ωy y

)
e−(x

2
1+x

2
2). (15)

In our implementation, we set ωx = ωy .
(c) A simple rectangular function expressed by (16), able

to code errors due to the block-based nature of the
MC:

g3
(
x1, x2

) =

1 if

∣∣x1∣∣ < 1∧ ∣∣x2∣∣ < 1,

0 otherwise.
(16)

Note that this generating function, like the previous
one and unlike the second derivative of a B-spline, has
a reduced set of possible rotations since the only two
orientations we are interested in are the vertical and
the horizontal.

The whole dictionary is composed of 2D atoms, com-
puted in a nonseparable way. Moreover, spatial supports of
all the waveforms are limited since, where the normalized
atom has a value smaller than a certain threshold, it is set
to zero. It is important to observe that, given a very small
threshold, this choice does not affect at all the quality of the
decomposition but, on the other hand, reduces the compu-
tational time.
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Figure 2: Scheme for the atom selection in the Fourier domain.

Taking into account all atom parameters and the three
generating functions, the dictionary can be written as

D =
{
atom

(g,�b,θ,ω,�a )(�x )
}
g,�b,θ,ω,�a

. (17)

Here the index g specifies which function has been chosen
to create the atom, ω is the frequency used only for the Ga-
bor functions, while the other values are the same as in (12).
Finally, the number of waveforms in our dictionary (the pa-
rameter d in (5)) is approximately 1000: each of them can
additionally be translated in any location of the image (see
(6)). This set of atoms proves to be highly redundant.

3.4. Atom selection

MP decomposes a DFD into its most important features: this
greedy algorithm, as previously described, selects at each it-
eration an atom from the dictionary such that the projec-
tion coefficient |〈gγn ,Rn f 〉| is maximum. To find such gγn ,
we use a full-search algorithm that computes the inner prod-
ucts between the residual and all the functions of the dictio-
nary. Since the dictionary is composed of all the translations
of the transformed generating functions (TGFs), see (10), it
is clear that all the inner products between the TGF translated
all over the residual and the residual itself correspond to the
convolutions of the TGF with the residual. In order to speed
up the search, convolutions are computed like products in
the frequency domain, as depicted in Figure 2; the Fourier
transform of the entire dictionary is computed only once at
the beginning of the video sequence and stored. Direct and
inverse Fourier transforms are computed in a fast way using
the FFTW package (http://www.fftw.org/) (version 3.0.1, see
[21]).

Even with this method, the atom selection is still too slow
for our purposes. Here we propose two solutions to speed up
the algorithm. The first method (multiple atom algorithm),
already introduced in [5], consists of a slightly modified ver-
sion of MP: at each iteration, more than one atom is selected
and used to decompose the residual. This can be done since
in an image, there are structures that are definitely separated
in the spatial domain, and this is even more evident in a
DFD where the features to code are usually small. Like in (2),

we can write

f =
K−1∑
k=0

( nk+1−1∑
n=nk

〈
gγn ,R

n f
〉
gγn

)
+ RN f , (18)

with n0 = 0 and nk = N . At the kth iteration, all the atoms
of the dictionary are sorted according to the absolute value
of the projections. Starting from the one with the highest
projection, all the nk atoms that are quasiorthogonal are se-
lected. Selecting on average nk atoms at once, it turns out that
MP only needs N/nk iterations. For example, decomposing a
QCIF sequence, we observed a speed-up factor of around 10.
The drawback of this method is that there is no more guar-
anty that at each iteration, the best atom will be selected as in
the case of the full-search MP. However, the resulting loss in
the image quality is almost negligible.

A second possible strategy to speed up the searching al-
gorithm can be found considering that from one iteration
to another, usually only a small area of the residual image
changes. At the first iteration, all the convolutions between
the image and each atom are computed; the main idea of
this method is to store these values and at the next itera-
tion update them only in the region where the best atom has
been placed. The gain lies in performing the convolution and
the inverse Fourier transform on a smaller area. The gain
increases as the selected atoms get smaller (have a smaller
surface). This solution is possible only because the atoms we
are using have a limited spacial support, as already observed
in Section 3.3. This method has no quality loss and, accord-
ing to our simulations, gives a gain in computational time
of around 20% compared with the full search in the Fourier
domain [22]. On the other hand, the required memory in-
creases around 30%.

The two presented algorithms permit to speed up the
atom selection procedure, but unfortunately they are not
compatible. The “multiple atom search” gives a higher reduc-
tion in terms of computational load and therefore is perhaps
the most useful. However, the second method is still interest-
ing since it turns out to be completely lossless with respect to
the full search.

http://www.fftw.org/
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4. QUANTIZATION AND ENTROPY CODING

As said in Section 3.3, parameters that specify an atom in the
dictionary are the generating function type, two scale factors,
the rotation angle, and, only for Gabor atoms, the frequency.
Moreover, we have to add to this list the atom position (two
natural numbers whose range is determined by the frame
size) and its projection coefficient. The indexes that charac-
terize the atom shape are entropy coded using an adaptive
arithmetic coding algorithm. Since the rotation depends on
the x2-scale, the arithmetic algorithm uses the conditioned
probability p(rotation|x2-scale) to code the rotation param-
eter.

In order to code the positions and projection coefficients
of the atoms, two different approaches can be taken into ac-
count. The first one consists in ordering the atoms accord-
ing to their decreasing projection absolute values, then the
projections are quantized in a differential way (DPCM) fol-
lowed by arithmetic coding; the x1 and x2 coordinates are
simply stored without any particular coding scheme. We will
refer to this scheme as “projection DPCM” coding. The sec-
ond approach performs a different sorting of the atoms in
such a way to take advantage of coding the atoms positions
[12], coding the coordinates in a differential way, followed
by arithmetic coding. We will refer to this scheme as “po-
sition” coding. Another interesting approach for coding the
atoms is presented in [23], where bit-plane quantization of
atom projections and quadtree prediction of atom positions
are combined.

For both “projection DPCM” and “position” coding,
quantization is performed in-loop: this provokes the re-
injection of quantization error in the coding loop and per-
mits encoding of this error. For a detailed study about in-
loop quantization for MP, we recommend [24]. Yet, we have
to emphasize that our approach is independent and does not
follow the modelization that is proposed in the cited paper.

4.1. “Position” versus “projection” coding

At very low bit rates, when just few atoms per frame are
coded, the projection DPCM method gives the best results.
When the number of atoms per frame increases, the posi-
tion encoding improves and finally outperforms the projec-
tion DPCM; later, the gap between these two coding styles
increases together with the number of atoms selected (see
Figure 3). This phenomenon is easily explicable, since the po-
sition DPCM performances are related to the atoms density
in the frame.

For example, simulations showed that for QCIF
sequences, usually the switching point is around 50
atoms/frame, after this threshold, position encoding starts to
outperform projection DPCM. With 200 atoms/frame, the
average gain is around 10% of the rate [22]. Figure 4 shows
the percentage of bits allocated to code the atom’s parame-
ters, positions, and projections in both cases.

4.2. An adaptive solution

The situation illustrated by Figure 3 suggests that we can op-
timize the coding procedure by running both the previously
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illustrated entropy encoders and choosing the best one. In
practice, after the position coding has been selected for few
consecutive iterations, we can stop checking and start to use
this method only. In this way, we always adopt the best cod-
ing solution, and from a rate point of view, the only price to
be payed is absolutely negligible: one bit per frame to specify
the coding style. The possibility to switch from one encod-
ing method to an other is integrated in the RD optimization,
explained in next section.

5. RATE-DISTORTION OPTIMIZATION

In a video sequence, some consecutive frames are very sim-
ilar one to each other: in this case, the DFD contains very
few information and, in our MP implementation, it can be
coded with a small number of atoms. On the other hand,
there are situations in which the amount of information to
code strongly increases, requiring more atoms. Hence, given
a certain target bit rate, or a fixed quality, we have to face
the problem of choosing the number of atoms per frame. A
classical approach to this kind of issues is based on the mini-
mization of a Lagrangian RD functional [25]:

min{J}, J = D + λR, λ ≥ 0. (19)

In (19), D is the distortion (MSE) and R is the rate
(bytes/second); λ is constant for the whole sequence. For a
convex problem, the necessary and sufficient condition to
find the absolute minimum of J is

∂D

∂n
= −λ∂R

∂n
. (20)

The first term in (20) is the variation of MSE through iter-
ations, a negative number whose value is linked to the en-
ergy of the residual that an atom is able to catch. The second
term represents the weighted differential rate. We can state
that ∂R/∂n is always positive and on average decreases with
n. Hence −λ(∂R/∂n) is negative and increases. In order to
minimize J , we need a last consideration: the two terms of
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(20) are both negative and they increase on average with de-
creasing the first derivative, but their limit when n → ∞ is
different (the first limit comes from [17, Lemma 2]):

lim
n→∞

∂D

∂n
= 0, lim

n→∞−λ
∂R

∂n
= C. (21)

Assume that the constant C is negative. Now we can have two
cases: either

lim
n→0

∂D

∂n
< lim

n→0
−λ∂R

∂n
, (22)

and it means that we do not have to code any atom, or

lim
n→0

∂D

∂n
≥ lim

n→0
−λ∂R

∂n
, (23)

and we have to stop the expansion when the condition in (20)
is respected. From (21), thanks to the continuity of the first
derivative of R and D, and assuming that both ∂R/∂n and
−λ(∂R/∂n) with their first derivatives are monotonically de-
creasing (and not only in average), it comes that there exists

only one point ñ which solves (20) and this point is the abso-
lute minimum we are looking for. In theory, since the dictio-
nary is finite, the constant C in (21) can assume the value 0,
a depending solution adopted for coding the atoms. Anyway
this situation has no practical interest since we never use a
number of atoms which can be comparable with the size of
the dictionary.

From an implementation point of view, we have the
problem that the differential MSE has a monotone trend but
it does not always increase with n. The same observation
holds for the differential rate. These small deviations from
the ideal behavior imply the possible existence of local min-
ima. However, this problem can be easily solved, since J(n)
always shows a precise trend, as can be seen in Figure 5a. The
only precaution we take is not to stop the coding process ex-
actly when J starts to increase, but to go on for few iterations
in order to be sure that we are not in a local minimum.

Concluding, given a required quality factor, the master
coder fixes the value of the parameter λ. An amount of bits is
then assigned to each frame according to the rate control of
the master coder.
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Figure 6: (a) MSE obtained by coding the first 100 frames of Container using MP (0.190 KB/frame) and the 8× 8 DCT (0.194 KB/frame);
no I-frames. (b) RD curves obtained by coding the first 100 frames of Traffic using 8× 8 DCT and MP with the same motion estimation and
H.264; I-frames enabled.

It is important to point out that this RD approach can
be used even when the atom selection is performed by turn-
ing to the multiple atom algorithm (see Section 3.4). In this
case, however, some changes are required due to the fact that
atoms are not necessarily selected in decreasing order of pro-
jection absolute value. Hence at the first step, we subtract all
the selected atoms from the residual but we code only the
best one, and we put all the others in a list sorted by decreas-
ing projections. In the following steps, we code the best of the
current step plus all the atoms in the list whose projection is
higher than the projection of the best atom of the current
step.

In order to compute the rate, two different situations
have to be taken into account since we do not know a pri-
ori if a position or projection DPCM coding style will be
adopted (see Section 4). Also the choice between these meth-
ods is then left to the RD algorithm.

Figure 5b shows the MSE behavior of the test sequence
“News.” It is easy to observe the improvement achieved by
the RD optimization with respect to the case in which a fixed
number of atoms per frame is coded.

6. RESULTS AND COMPARISONS

The first comparisons are aimed at testing the quality of
the MP codec with respect to a standard 8 × 8 DCT. So we
adopt the same motion estimation described in Section 2
and we then code the DFDs using either MP or a classical
DCT block-based scheme. The MP atom selection is per-
formed using the fast multiple atom algorithm, explained in
Section 3.4. In this case, for all the tested sequences, the MP
outperforms DCT. For example, Figure 6a shows the MSE
behavior for the sequence “Container” in QCIF format: even
if the DCT has a slightly higher rate, it is outperformed by

MP in terms of both visual quality and mean square error.
In Figure 6b, one can see the RD curve obtained by coding a
video-surveillance traffic sequence (QCIF format), allowing
the encoders to put I-frames when necessary. Comparisons
show the superiority ofMP versus DCT, especially at very low
bit rates. Moreover, thanks to several algorithm optimiza-
tions [22], a real-time decoding is possible for sequences up
to CIF format.

In order to compare the MP video coder with H.264, we
disabled some of the options not yet implemented in ourmo-
tion estimation. The following settings have been used:

(i) Hadamard transform: enabled;

(ii) search range: 16;

(iii) number of reference frames: 1;

(iv) block sizes (for motion estimation): all enabled;

(v) B-frames: disabled;

(vi) CABAC: disabled.

Results clearly show that H.264 obtains better perfor-
mances than our encoder. For example, coding the sequence
“Traffic” in QCIF format, we can observe a gap of more than
1.5dB (see Figure 6b). This gap can be explained assuming
that the H.264 encoder is fully optimized for the block-based
integer transform, while we work in a frame-based way. In
fact, we notice that, especially at low bit rates, the losses due
to a coding syntax not suited for the overall coder heavily af-
fect the performances of MP. We also have to consider that,
even with some disabled option, the motion estimation of
H.264 is still more accurate than the one we used in our MP
implementation (see also Section 2). In fact, we did not dis-
able all the features missing in our MC algorithm and this
results in a not completely fair comparison between the two
approaches.
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7. CONCLUSIONS

In this paper, we present a new video coding scheme based on
H.264 motion estimation and bidimensional MP. The use of
a redundant dictionary allows to design basis functions that
catch the main structures of a DFD so that a sparse represen-
tation of the signal is obtained. Atom selection is performed
on the whole frame, with a fast algorithm. Atom parameters
are quantized in-loop and entropy coded, using an adaptive
criterion to choose which encoding style best fits the atoms
stream. A rate distortion optimization is performed in or-
der to select the number of atoms per frame. Simulations at
very low bit rates show that, given the same motion estima-
tion algorithm, MP outperforms 8 × 8 DCT. If this proves
the superiority of the proposed scheme versus more stan-
dard transform techniques, on the other hand, it is not suffi-
cient to equal the performances of the standard H.264. This
is mainly due to a lack of optimization between the MC part
and the DFD coding.

The approach we present here, being based on MP, im-
plies a computational cost that is definitely higher than the
standards. Nevertheless, it involves many advantages, like the
possibility of easily including scalability, the improved visual
quality, and the flexibility in the dictionary design. The latter
point can in particular be exploited by optimizing the dictio-
nary or adapting it to the changes of the residual image [26]:
for example, when there are no more edges, we could deac-
tivate the B-spline and rectangular functions, inserting new,
smaller atoms. Moreover, good suboptimal strategies (here
we propose two of them) can considerably reduce the com-
plexity of the MP algorithm.

More work on the quantization of the projection value
would be necessary. In fact, for the position entropy coding
mode, we have used a simple uniform quantizer, while find-
ing more appropriate ways to reduce the range of the quan-
tized values could improve the compression ratio. In addi-
tion, an RD system which takes into account also the quanti-
zation step of the atoms could improve the coding efficiency.
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