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Gaussian mixture models (GMMs) are commonly used in text-independent speaker identification systems. However, for large
speaker databases, their high computational run-time limits their use in online or real-time speaker identification situations.
Two-stage identification systems, in which the database is partitioned into clusters based on some proximity criteria and only a
single-cluster GMM is run in every test, have been suggested in literature to speed up the identification process. However, most
clustering algorithms used have shown limited success, apparently because the clustering and GMM feature spaces used are derived
from similar speech characteristics. This paper presents a new clustering approach based on the concept of a pitch correlogram
that captures frame-to-frame pitch variations of a speaker rather than short-time spectral characteristics like cepstral coefficient,
spectral slopes, and so forth. The effectiveness of this two-stage identification process is demonstrated on the IVIE corpus of
110 speakers. The overall system achieves a run-time advantage of 500% as well as a 10% reduction of error in overall speaker
identification.
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1. INTRODUCTION

Speaker recognition aims at extracting and modeling char-
acteristics of speech data that uniquely represent a per-
son. These characteristics should ideally be robust to chan-
nel effects and noisy environment [1]. Cepstral coefficients
[2], in Mel frequency domain, are the most robust, in this
sense, among all feature vectors currently employed in speech
recognition systems in a Gaussian mixture model (GMM)
framework [3, 4]. At present, these features are also com-
monly employed for speaker identification, even though the
best feature vector for speaker identification, as contrasted
with speech recognition, is still an open problem. Recent pa-
pers suggest transformed feature vectors for performance en-
hancement [5] in speaker identification systems. Campbell’s
paper is still a very good reference to the problem and issues
involved in speaker identification [6].

Speaker recognition is done at two levels: verification [7,
8, 9] and identification [1, 10]. Verification systems are closed
set operations in which a speaker’s claim to be one of the
enrolled speakers is verified, generally in a cooperative text
prompted mode, as in voice-based access control systems.

The system conducts a binary hypothesis test, relative to the
claimed identity, on the speech feature data and returns a
yes/no result. Speaker identification, on the other hand, in-
volves finding the identity of the speaker from a given test ut-
terance. This is normally done in a text-independentmanner,
for example, in surveillance operations where voice channels
are monitored or in other noninvasive access control applica-
tions. Identification systems, in closed set operation, identify
the most likely enrolled member as the source of the utter-
ance. In open set identification, where the utterance may or
may not belong to the enrolled class, the most likely fit is fur-
ther verified to return a confirmation.

A major issue in the identification problem is the GMM
run-time computation, which is linear in population size.
To combat this problem, systems where the enrolled speaker
database is partitioned into clusters based on some prox-
imity criteria have been proposed in the literature [11]. In
these two-stage identification systems, a test utterance is first
mapped into a cluster and thenmatched to the nearest GMM
in that cluster only. This reduces the run-time computation
since only a few GMMs have to be run at a time. Also, if
clustering is based on features uncorrelated with the GMM
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feature space and robust to channel and noise distortion,
the overall system error performance improves. In addition,
clustering helps in better positioning of GMM priors as well.
GMM computation time reduces, on an average by a fac-
tor equal to the number of clusters. Computational advan-
tage for complete identification will be somewhat less due to
cluster identification time for a test utterance. As we will see
later, for large speaker populations, clustering is particularly
advantageous when the average cluster size is small, the clus-
ter size variation is low and the cluster identification is rea-
sonably fast. Popular approaches to clustering include vec-
tor quantization (VQ) codebook-based clustering (see [12]
for comparison of various VQ approaches) and covariance-
based clustering (see Wang et al. [11]). Algorithms that clus-
ter speakers in reduced dimension spaces have also been pro-
posed [13]. These algorithms cluster speakers based on pro-
jected individual speaker data onto reduced dimension sub-
spaces corresponding to directions of maximum variability
(eigenspaces corresponding to large eigenvalues of dataset
covariance) of the speaker database. This ensures fast clus-
tering in addition to noise immunity [14].

Most clustering algorithms, however, use speaker features
(MFCCs, GMM variances, etc.) based, directly or indirectly,
on short-time spectrum analysis of the signal. These features,
in addition to inadequate noise and channel distortion ro-
bustness, are also the ones used for later GMM identifica-
tion. This can result in deterioration of performance at times.
To see this, note that in the overall two-stage identification
process, an error can occur because a given test utterance
is either wrongly classified (mapped into the wrong cluster)
in the first stage, or correctly classified but mapped onto a
wrong GMM within the cluster in the second stage. There-
fore, if P(e) denotes the probability of overall two-stage iden-
tification error, we have that P(e) = P(M) P(e/M) + (1 −
P(M)) P(e/C), where P(M) is the probability of cluster mis-
classification (the first stage error) and P(e/C) is the prob-
ability of second-stage error, that is, the error in mapping
onto a wrong GMM from within the correct cluster. Clearly,
P(e/M) = 1 so that P(e) ≥ P(e/C). In case clustering uses
the same features as the GMM, P(e/C) will be approximately
the same as the probability of error in an unclustered single-
stage GMM-based speaker identification system. Therefore,
irrespective of the run-time advantage, overall identification
performance, P(e), of a two-stage SI system will be good (low
P(e)) only if the clustering feature space is independent of
the GMM feature space. In fact, if a two-stage identification
system yields lower P(e) than a single-stage system, it is rea-
sonable to assume that this is due to relative independence of
clustering and GMM feature spaces.

In this paper, we introduce a clustering algorithm based
on speaker pitch variations for a two-stage speaker identi-
fication system. Human pitch is normally found in the 50–
400Hz range (males dominate the lower end and females the
higher end). For any speaker, however, there are small (2%–
10%) variations in pitch from one voiced speech frame to
the next, due to random variations in the vocal fold tension
[15, 16]. A frame is taken normally as 20–30 milliseconds
(160 to 240 speech samples at 8-kHz rate) in length for

speech stationarity. While this variation is too broad to sep-
arate nearby speakers, it can group neighborhood speakers
quite well. Also, current algorithms for pitch computation
are very accurate and robust to noise and channel effects
[16, 17]. There have been earlier attempts to base speaker
identification only on pitch properties, but these have not
succeeded much (beyond separation of sexes) due to reasons
mentioned above. Pitch contours, for example, were pro-
posed way back in 1972 for automatic speaker recognition
[18] but did not become popular. Attempts to use the log-
normal character of pitch for open set speaker identification
resulted in high false alarm or miss rates [19]. Algorithms us-
ing pitch along with other independent features show better
results [20, 21, 22]; for example, it has been shown that vocal-
tract-features-based identification systems perform better if
pitch histogram information is utilized as well [23].

In this paper, we introduce pitch correlogram as a de-
vice to measure frame-to-frame pitch variations and use it
to cluster speakers. Pitch is a property of the voiced part of
speech and equals the period of the impulse train excitation
of the vocal tract for voiced sound production in a short-
time stationary model [24]. Given a speech tract, its silent
frames are removed using a voice activity detection (VAD) al-
gorithm, after which the voiced speech is separated from un-
voiced speech using covariance thresholding, since unvoiced
speech has low correlation due to its random aperiodic na-
ture [24]. We divide the whole expected pitch region into
fixed equal bands (this paper uses 40), extract pitch for each
voiced frame, allocate its corresponding band, and monitor
this pitch band allocation from one voiced frame to next.
This information is stored in the pitch correlogram, which
is a 3-dimensional matrix whose (i, j, k)th entry denotes the
joint probability of pitch bands i- and j-, k-frames apart.
Clearly, a pitch correlogram captures local variation within
histogram bands, which makes it a better source of pitch in-
formation.

In the sequel, pitch is estimated using the mixed excita-
tion linear prediction (MELP) speech codec pitch estimator
that is based on the superresolution pitch estimation algo-
rithm [15]. This algorithm is the most accurate known at
present and only O(N = samples/frame) complex. Also, it
is robust to noise and channel distortion and does not de-
pend on direct short-time Fourier transform coefficients of
speech. Consequently, pitch correlograms are robust to noise
as well as reasonably independent of spectral features like the
MFCCs or spectral slopes. This is borne out by the perfor-
mance of the proposed overall two-stage identification sys-
tem. Since GMM identification is dependent on speaker pop-
ulation and speech SNR, using correlograms is also likely to
enhance the overall system performance due to low error in
classification, in addition to the computational gains from
clustering.

The clustering process is described in Figure 1 and dis-
cussed in Section 3. Given reference speech utterances from
enrolled speakers, we extract the pitch correlogram for each
utterance and use one of these as a reference correlogram
and others for training of the algorithm to fix the model
size. The overall two-stage identification system is depicted
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Figure 1: Clustering speaker using correlograms.
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Figure 2: Schematic of the two-stage identification system.

in Figure 2. Given an unknown utterance, it is first mapped
onto a cluster based on its correlogram and then passed
through GMM models of speakers corresponding to the
identified cluster. For closed set speaker identification, the
utterance is mapped onto the most likely GMM, while for
open set speaker identification, the nearest GMM is accepted
only on further verification, for example, by thresholding the
feature space a posteriori probability. This paper uses a 16-
mixture GMM model with the feature space of 13th-order
MFCC coefficients and spectral slope for experimental pur-
poses, as in Murthy and Heck [10].

In this paper, “clustering” means offline partitioning of
the speaker database using pitch correlograms. “Classifica-
tion” and/or “misclassification” refer to mapping of a test or
training speech track onto a cluster and “overall identifica-
tion” refers to the complete two-stage speaker identification
process in which the test track is first mapped onto a cluster
and then identified within the cluster by the normal GMM
identification process.

The rest of the paper is organized as follows. In Section 2,
we discuss the algorithms used for the estimation of pitch
and pitch correlograms. Section 3 develops the clustering
algorithm for an optimal number of clusters. Section 4
discusses the experimental results and comparisons with
Murthy and Heck [10] results. We conclude in Section 5.

2. PITCH ANALYSIS

Perceptually, pitch is the attribute of auditory sensation in
terms of which sounds are ordered on a musical scale. In
speech processing, a simplified linear prediction model for
voice production is used wherein pitch equals the period of
the impulse train that excites the vocal tract (modeled as a
linear system) in the voiced mode of articulation [24]. This
excitation is produced by vocal cords and its periodicity is re-

flected in the output voiced sound due to linear processing by
the tract. Since speech is only a short-time stationary process
(20–30 milliseconds), variation is observed in the pitch from
frame to frame; this variation is the principal classification
parameter in the sequel as discussed above.

The pitch perception models use temporal information
for identifying periodicities in the signal by estimating the
period of the autocorrelation function of voiced speech,
given by

c(l) =
∑

s(n)s(n− l), (1)

where s(n) is the speech sample and c(l) its autocorrelation
at a time lag l.

To obtain a useful set of results, the autocorrelation func-
tion is computed over a range of lag values. For periodic sig-
nals, the function attains a maximum at sample lags of 0,
+/−P, +/−2 P, and so forth, where P is the pitch. This tech-
nique is most efficient at mid to low frequencies and is quite
popular in speech recognition applications when the pitch
range is limited. The autocorrelation function can be further
used to differentiate between unvoiced and voiced frames. In
the unvoiced speech, the vocal cords are not vibrating, so the
resulting speech waveform is aperiodic or random in nature
[24]. Therefore the autocorrelation is low for an unvoiced
frame, which can be differentiated from a voiced frame us-
ing an autocorrelation threshold.

We use the MELP coder pitch extraction algorithm [25],
wherein pitch is estimated first in terms of integral sample
lags and later compensated for any fractional lag. The sam-
pled speech (normally at 8 kHz) is prefiltered by a 500Hz
LPF and framed into overlapping 22.5-millisecond blocks for
retaining process stationarity during autocorrelation compu-
tation. The pitch period normally is less than 20 millisec-
onds (160 samples) so that it is captured easily in a frame.
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The normalized autocorrelation function, with lag l, is given
by

r(l) = cl(0, l)√
cl(0, 0)cl(l, l)

,

where cl(m,n) =
−�l/2�+79∑

k=−�l/2�−79
sk+n · Sk+m.

(2)

Note that the length of the analysis window is fixed while
its starting point depends on lag l. Again, since frame station-
arity implies that cl(0, 0) = cl(l, l), then r(l) and cl(0, l) reach
their maximum at the same lag. The normalized correla-
tion is used, however, to threshold differentiate between un-
voiced and weakly voiced frames, since otherwise unstressed
phonemes or certain emotional states may result in very low
correlation and be taken for unvoiced sounds. The denomi-
nator in (2) nullifies the effect of low-impulse train strength
voiced frames in the autocorrelation function.

r(l) is computed over 20 to 159 sample lags (pitch in 50
to 400Hz range) and the lag at which it is maximum is taken

as the integral pitch estimate T . Actual pitch is normally at
an offset from this value. To find the direction of this offset,
we compute r(T − 1) and r(T + 1). If r(T − 1) > r(T + 1),
we decrement the integral pitch by 1; otherwise, we leave it
unchanged. Let ∆ be the offset required for the pitch period
and denoted as fractional pitch. The actual pitch period P is
thenT+∆, but r(T+∆) cannot be calculated directly from the
sampled speech signal. An interpolation is therefore used to
determine r(T +∆). Since a low-passed version of the speech
signal, with bandwidth much smaller than the sampling rate,
is used for pitch estimation, a convex linear interpolation of
the signal suffices. Therefore, we use

s(n + ∆) = (1− ∆) · s(n) + ∆ · s(n + 1). (3)

Since ∆ ∈ [0, 1), an optimal value of ∆ is computed by max-
imizing the autocorrelation between s(n) and s(n + T + ∆).
As outlined in [15], the optimization can be carried out us-
ing the orthogonal projection theorem to give the value of ∆
as

∆ = cT(0,T + 1)cT(T ,T)− cT(0,T)cT(T ,T + 1)
cT(0,T + 1)

[
cT(T ,T)− cT(T ,T + 1)

]
+ cT(0,T)

[
cT(T + 1,T + 1)− cT(T ,T + 1)

] . (4)

2.1. Correlogram

Phonetic unit of speech is a phoneme whose intonation
(pitch) varies depending on factors like stressed/unstressed
vowel or syllable, accent, boundary and edge tones, neigh-
borhood speech, and so forth. The pitch variation in
a phoneme is, therefore, considerably influenced by the
speaker style and accent. A pitch correlogram expresses the
correlation between pitch pairs at frame distances. It cap-
tures the pitch variation within a phoneme and at phoneme
junctions. Assuming that a speaker employs a reasonably
unique pitch variation in pronouncing particular phonemes,
the pitch correlogram can be used to capture this variational
characteristic (across all phonemes and their combinations if
sufficient data are available) and to group speakers with adja-
cent behavior. This is the main speaker clustering idea of this
paper.

Let S = {o1, o2, o3, . . .} denote the voiced speech utter-
ance of a speaker with oi being its ith frame. From each
frame oi, the pitch is extracted as discussed earlier. Hu-
man pitch P, normally between 50–400Hz, is then quantized
into uniform nonoverlapping intervals called pitch bands.
Let P1, P2, P3, . . . , PB be the B pitch bands and P : S →
{P1, P2, . . . , PB} be the utterance to pitch band map. We de-
fine

SP j =
{
ok | P

(
ok
) = P j ; k ∈ Z+

}
, (5)

where Z+ is the set of positive integers and SP j is the set of
frames with pitch P j .

The k(≥ 0)-delay joint distribution of pitch bands Pi and
P j (in specified order) is defined as

λkPi,P j
(S) = Prob.

{
ol ∈ SP j , ol−k ∈ SPi | l ∈ Z+

}
. (6)

As mentioned above, a pitch correlogram is a 3-
dimensional feature matrix of speech with (i, j, k)th entry
given by (6). We will, however, use only the next-frame
pitch changes (k = 1) so that our correlogram is a two-
dimensional matrix C, with Cij = λPi P j (S). Once the voiced
frame pitch estimates are made and mapped onto pitch
bands, the correlogram entries Cij are given by the estimates

Cij =
Number of times pitch band Pi is succeeded by Pj

Total number of voiced frames− 1
.

(7)
Note that

∑M
i, j=1 Cij = 1. The number B of pitch bands

used depends on performance requirement andmemory and
computation time tradeoffs. In our experiments, we found
that 35 to 45 pitch bands give reasonably good results. As
already mentioned, this paper uses 40 bands.

Since pitch varies by 2%–10% in successive frames, the
maximum pitch change is about 20Hz in themid pitch range
of about 200Hz. This implies that a pitch band i is most
likely to transit to bands i, i± 1, and i± 2 in the next frame.
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Figure 3: (a) Diagonal, (b) postdiagonal, and (c) prediagonal en-
tries of correlograms (y-axis) for three different utterances of a ran-
dom speaker.

Hence C is dominant on the diagonal band. Figure 3 shows
the diagonal, postdiagonal, and prediagonal distribution of
three different utterances of a randomly chosen speaker. The
highly correlated nature of the three correlograms suggests
speaker invariance of this feature. Also, as will be seen be-
low, correlograms tend to cluster in a normed space, which
makes them an ideal speaker ensemble partitioning feature.
However, they are limited in scope as an indexing (speaker
identification) feature because (a) pitch quantization leads
to loss of information so that different speakers can occupy
the same band and (b) pitch is emotion dependent [26] so
that pitch bands need to be sufficiently broad to accommo-
date such dependence. Since it may not always be possible to
reconcile these conflicting requirements, it is not advisable to
use the correlogram as the sole indexing feature.

3. CLUSTERING

Clustering implies grouping of objects together based on
common characteristics, that is, partitioning a large database

on some proximity criteria. It is a technique to understand,
simplify, and interpret large amounts of multidimensional
data. An ideal clustering algorithm is one that results in high
intracluster correlation and low-intercluster correlation [27],
that is, it generates a sharp multimodal statistical distribu-
tion with identifiable peaks and valleys much like a Gaussian
mixture with separated means and comparable covariances.
This may not be always possible to achieve and, in practice,
algorithms that yield reasonably separated dense groups are
used.

We propose a two-step clustering algorithm. In the first
step, we take reference voiced speech tracks of enrolled mem-
bers, generate corresponding correlograms and continuously
merge nearest neighbor correlograms. This hierarchy yields
as many levels of clusters as the total speaker population, that
is, level 1 contains M clusters (M equals the population en-
semble size), each with population 1, and level M contains
1 cluster of population M. To fix the particular level in hier-
archy for the system, that is, the number and membership
of clusters to be used finally, the system is trained by an-
other set of correlograms of the same speaker population.
These are called the training correlograms. The training pro-
cess involves evaluation of a Bayesian risk function—in our
case, not strictly convex—for each level in hierarchy relative
to the set of training correlograms. The level that results in
the smallest number of clusters with minimum risk is cho-
sen as the final model level for the system. The algorithm is
explained in detailed steps below.

For the correlogram space, we use the matrix norm1

‖A‖ = ∑
i, j |ai j| so that the distance metric is given by

d(X ,Y) = ∑L
i, j=1 |xi j − yi j|, where X and Y are each L × L.

The clustering algorithm is as follows.

(1) Generate correlograms for the speech track ref-
erence ensemble. The correlograms are labeled as
C1
1,C

1
2,C

1
3, . . . ,C

1
M , whereM is the number of reference

enrolled speakers. These correlograms are generated
on (at least) a 1-minute voice frame track of available
speech for each speaker. This is called level-1 cluster-
ing, where each cluster has a population of 1 speaker.

(2) Compute pairwise correlogram distances at level N ;
merge the cluster pair with the least distance into a
single cluster and calculate its new representative cor-

relogram (for (N + 1)th level) as C(N+1)
r = (PNs CN

s +
PNt CN

t )/(P
N
t +PNt ), where CN

s and CN
t are the near-

est neighbors at Nth level with respective probabilities
(relative sizes of clusters) PNs and PNt . Relabel the clus-

ters at N + 1th level as C(N+1)
1 ,C(N+1)

2 , . . . ,C(N+1)
M−N .

(3) Continue cluster merging up to level M when there is
only a single cluster left.

(4) Generate correlograms for cluster training utterances,
that is, for all speakers, use some utterances for train-
ing the system (these could come from the main

1Since the space is finite dimensional, all norms will induce the same
topology. Note that all correlograms are on the unit circle. We choose this
norm for ease of calculation and interpretation.
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ensemble or from outside). Let TN
i represent the set

of training correlograms belonging to speakers from
cluster i at level N . We use the same number of train-
ing correlograms for each speaker. This implies that
at level 1, all T1

i have equal number of correlograms
in their respective sets. If CN

s and CN
t are merged to

create level N + 1, then the training correlogram set
for the new cluster, say TN+1

r , will be the union of the
training correlograms of the underlying sets, that is,
TN+1
r = TN

Ns ∪ TN
Nt.

(5) Evaluate the following Bayesian risk function at each
level (level N hasM −N + 1 clusters):

RiskN =
M−N+1∑
i, j=1

RN
i j P

N (i, j). (8)

Bayesian risk is the expected value of a random cost

variable, given in our case by Rij as below:

RN
i j =



1, i �= j,

Pi, i = j,
(9)

Pi is the probability of cluster i, which, for equiprob-
able speakers, equals the relative cluster size PNi . The
cost of all wrong decisions is equal, while correct de-
cisions are rewarded in inverse proportion to cluster
size. This is done in order to reduce the computational
complexity (Section 3.1) of the overall speaker identi-
fication system. Let PN (i, j) be the probability that an
utterance from cluster i is mapped onto cluster j, that
is, the training correlogram from cluster i turns out to
be closest to the representative correlogram for cluster
j. PN (i, j) can be estimated as

PN (i, j) = Number of training utterances from TN
i mapped into cluster j

Total number of training utterances
. (10)

(6) The level at which the risk is the least represents an op-
timal number of clusters and, in case there are multiple
global minima, we use the one with the smallest cluster
size.

Experimental results (Section 5) show that the algorithm
meets with the properties of a good practical clustering algo-
rithm. Note also that once the algorithm has been executed,
each cluster is represented by a single correlogram, which is
the mean of all its element correlograms.

3.1. Computational complexity

As mentioned earlier, in the two-stage speaker identifica-
tion (see also Figure 2) process, an unknown utterance is
first mapped onto a cluster and then the speaker from the
cluster is identified using standard GMM identification. The
overall complexity of the two-stage identification process can
be computed in terms of complexity of its subprocesses and
compared with a single-stage GMM only identification pro-
cess. First, some notations are mentioned.

(1) α denotes the computational complexity of calculating
a pitch correlogram.

(2) β denotes the computational complexity of comparing
two correlograms.

(3) N0 denotes the number of clusters and, equivalently
the number of representative correlograms.

(4) Ni denotes the number of speakers in cluster i.
(5) M denotes the total number of speakers.
(6) γ denotes the computational complexity of running a

single GMM.

Clearly, the complexity of a single-stage GMM-based
identification process equals Mγ. In the two-stage scenario,
the computational complexity of the first stage, that of find-
ing the cluster to which an unknown speaker belongs equals
α+N0β. In the second stage, for a given identified cluster with
population Ni, the complexity equals Niγ. Therefore, the ex-
pected value of computation in the overall two-stage process
is given by

α +N0β +
N0∑
i=1

Pi ·Ni · γ. (11)

Pi is the probability of cluster i and equals Ni/M when all
the speakers are equiprobable, in which case (11) simplifies
to

α +N0β +
γ
∑N0

i=1Ni ·Ni

M
. (12)

The complexity is minimum when all clusters are equal, that
is, Ni = M/N0, for all i. In this case it is Mγ/N0 + N0β + α,
which, under the reasonable assumption that β	 γ, is much
smaller than Mγ. This computational advantage makes a
two-stage speaker identification system preferable to a single-
stage one.

Observe that fewer clusters implies large average cluster
size, which in turn, leads to small misclassification (map-
ping of a test/unknown utterance to a wrong cluster) prob-
ability and large GMM computational load. The converse is
equally true. Computationally, the worst and the best cases
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Figure 4: Probability of misclassification versus the number of
voiced frames used for training.

would occur when there are one andM clusters, respectively,
but classification errors follow exactly the reverse path. The
optimum number is actually a trade-off between misclassi-
fication error and total computational load. At the optimal
point, the decrease in misclassification error (further merg-
ing) does not compensate for the increase in computation
caused by larger average cluster size.

Note that, at any level in the clustering hierarchy, when
the number of clusters is N0, the mean cluster size equals
M/N0 and the cluster size sample variance equals

σ2N0
=
∑N0

i=1N
2
i

M
− M

N0
. (13)

Equation (12) can be represented in terms of sample vari-
ance as

α +N0β + γ
(
σ2N0

+
M

N0

)
. (14)

Clearly for a given number of clusters, the computation
complexity is a function of cluster size sample variance. If
this variance is large (a case encountered fairly often), so
the complexity is. Therefore, clustering algorithms that yield
small cluster size sample variance achieve better complexity
advantage. In general, the cluster size sample variance tends
to be large, because some clusters are likely to deviate much
from the mean in the algorithm. Therefore, computational
complexity of the system can be further reduced only if the
clustering algorithm is such that it limits the deviation of the
cluster sizes.

4. EXPERIMENTAL RESULTS

The database used in the study is the IVIE corpus, public-
ly available www.phon.ox.ac.uk/∼esther/ivyweb/download1.
html. It has 110 speakers (55 male and 55 female) with 12
utterances from every speaker, each of 15- to 60-second du-
ration.

The performance curves for the clustering algorithm are
given below. Figure 4 gives the probability of misclassifica-
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Figure 5: Probability of misclassification versus the number of clus-
ters for 110 speakers.
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Figure 6: Probability of misclassification verses the number of clus-
ters when an unknown utterance was mapped to the nearest cluster
(solid) and two nearest clusters (dashed).

tion versus the number of voiced frames used in training for
36 speakers. The probability of misclassification for N clus-
ters equals

∑N
i, j=1, i �= j P

N (i, j). It shows asymptotic behavior
that reaches a tractable minimum at around 1 000 frames.
This suggests that sufficient statistic for clustering is grabbed
in about 1 000 voiced speech frames.

Figure 5 shows for 110 speakers the probability of mis-
classification versus the number of clusters for 20 × 20
and 40 × 40 pitch correlograms. As the number of clus-
ters becomes larger—for example, when the data base size
increases—the performance difference between the two di-
verges. This is because smaller pitch bands capture more lo-
cal information that can differentiate nearby clusters.

The primary aim of introducing clusters in the speaker
identification system is to decrease the computational com-
plexity. However, since the overall SI system performance
(probability of overall speaker identification error) needs to
be kept above a threshold, the probability of misclassification
should be small. One approach to this problem is to map an
unknown speech utterance onto two nearest neighbors (see
Figure 6). The improved performance, however, comes at the
expense of running two-cluster GMMs for SI.

Figures 7, 8, and 9 give the risk versus the number of
clusters (solid lines) as well as the relative computational

file:www.phon.ox.ac.uk/~esther/ivyweb/download1.html
file:www.phon.ox.ac.uk/~esther/ivyweb/download1.html
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Figure 7: The solid line plots risk and the dashed line plots relative
computational complexity versus cluster size of our system. Num-
ber of speakers = 110.
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Figure 8: The solid line plots risk and the dashed line plots relative
computational complexity versus cluster size of our system. Num-
ber of speakers = 62.

complexity of the two-stage identification system with re-
spect to a single-stage one (dashed lines), when the num-
bers of speakers is 110, 62, and 36, respectively. The optimum
number of clusters is 18, 15, and 9 for 110, 62, and 36 speak-
ers, respectively and is clearly not a linear function of the en-
semble size. This is because some new speakers get classed
into present clusters themselves.

Clearly, the computation required varies inversely relative
to the number of clusters. At the optimum point, the compu-
tational complexity of the proposed two-stage system is only
0.2 times the computational complexity of a single-stage sys-
tem that uses the same GMM feature space (see Figure 7).

For a given number of clusters, the computational com-
plexity of the two-stage system (see (12)) is minimum when
all the clusters have the same population. However, since the
cluster formation is data dependent, the cluster sizes are of-
ten different. As suggested earlier, the intracluster distance
should be small. To test the algorithm’s efficiency from this
point of view, the largest cluster obtained was taken as new
seed population and the clustering algorithm was reapplied
afresh to this subensemble of 18 speakers. The process re-
turned 4 clusters as optimal (Figure 10) showing the robust-
ness of the algorithm. Therefore, speakers close in the cor-
relogram space get clustered together (intracluster distance
is small) in our process, which is a major desired behavior of
any clustering process as discussed in Section 3.

Table 1 shows the misclassification error obtained at
different SNRs at the optimal cluster level. Note that the
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Figure 9: The solid line plots risk and the dashed line plots relative
computational complexity versus cluster size of our system. Num-
ber of speakers = 36.
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Figure 10: Risk versus cluster size when the speakers belonging to
the largest cluster (cluster size is 18) were treated as an ensemble
and clustered.

Table 1: Misclassification errors at the optimal point for different
SNRs when the number of speakers is 110.

SNR 35 dB 20 dB 13 dB

Error 8.79% 8.91% 8.91%

Table 2: Misclassification errors for male and female speakers.

No. of speakers Male error (%) Female error (%)

110 9.7 7.0

62 7.1 8.2

36 5.0 1.5

misclassification error remains constant for a large SNR
range, showing the robustness of the algorithm to noise.
Again, it is well known that identifying females is tougher
than identifying males. Table 2 shows that our algorithm
is not biased in favor of either sex in terms of perfor-
mance.

To test the relative performance of the one-and two-stage
SI systems, individual speaker GMMs with 16 mixtures with
a feature space of 13th-order MFCC coefficients and spec-
tral slope were trained and then run in a closed set frame-
work. The results are listed in Table 3. The two-stage sys-
tem returned the overall speaker identification error 10%
lower than the single-stage one. It also used only about 23%
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Table 3: Comparison of SI systems with and without clustering.

SI system
Average no. of GMMs
to run per utterance

Overall identification
error probability (%)

Computation
time (CPU)

Single-stage system 110 34.09 2736 s

Two-stage system using pitch
correlogram clustering 21.34 24.59 618 s

of the computation time. The performance improvement
suggests the relative independence of the pitch correlogram
and GMM feature space. The proposed two-stage SI system
is efficient in both the performance and computation time
dimensions.

The apparently high error rates (34% in single-stage and
24% in two-stage systems) are because of the small feature
space dimensionality (13 MFCC and spectral slope) used.
Normally, a minimum of 39 features (13 MFCC, 13 delta
and 13 acceleration coefficients) is used. Still, errors tend
to be high, for example, Reynolds reports around 26 per-
cent error for telephone quality speech with this dimen-
sionality [2]. The feature space used in this paper is the
same as the one used by Murthy and Heck [10], who ob-
tained an error of 42% on telephone quality speech with
64 GMMs on 100 speakers (we use the clean speech of the
IVRS database and only 16 GMMs for our experiments).
Our aim is to reduce computation time without perfor-
mance compromise (and noise robustness) and this will
certainly hold better on larger feature space dimensional-
ity.

5. CONCLUSION

This paper suggests using a pitch-correlogram-based front-
end database classifier to speed up text-independent SI sys-
tems based on Gaussian mixture models. We have shown
that, in addition to a large computational advantage, bet-
ter robustness to noise and distortion and a better overall
performance are ensured by clustering. This is due to ro-
bustness as well as relative independence of the clustering
statistic from the GMM space. The run-time advantage is
particularly significant for surveillance and access control
SI systems where live, or near-live, identification is desir-
able.

The pitch correlograms are computationally inexpen-
sive and can be easily implemented on a real-time plat-
form. Though the pitch correlogram has been used with
GMMs in this paper, the framework allows these to be di-
rectly integrated with any SI system for computational gain
and increased robustness. The effectiveness of the pitch-
correlogram-based classifier has been demonstrated in a
closed set SI system. It can also be used with similar effect
in an open set SI solution.

The clustering algorithm yields the optimal number of
clusters in Bayesian framework. Dynamic enrolment and dis-
tortion channel issues for clustering are under study and will
be reported elsewhere.
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