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Channel Tracking Using Particle Filtering
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We propose a new timing error detector for timing tracking loops inside the Rake receiver in spread spectrum systems. Based
on a particle filter, this timing error detector jointly tracks the delays of each path of the frequency-selective channels. Instead of
using a conventional channel estimator, we have introduced a joint time delay and channel estimator with almost no additional
computational complexity. The proposed scheme avoids the drawback of the classical early-late gate detector which is not able
to separate closely spaced paths. Simulation results show that the proposed detectors outperform the conventional early-late gate

detector in indoor scenarios.
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1. INTRODUCTION

In wireless communications, direct-sequence spread spec-
trum (DS-SS) techniques have received an increasing inter-
est, especially for the third generation of mobile systems. In
DS-SS systems, the adapted filter typically employed is the
Rake receiver. This receiver is efficient to counteract the ef-
fects of frequency-selective channels. It is composed of fin-
gers, each assigned to one of the most significant channel
paths. The outputs of the fingers are combined proportion-
ally to the power of each path for estimating the transmitted
symbols (maximum-ratio combining). Unfortunately, the
performance of the Rake receiver strongly depends on the
quality of the estimation of the parameters associated with
the channel paths. As a consequence, we have to estimate
the delay of each path using a timing error detector (TED).
This goal is generally achieved in two steps: acquisition and

tracking. During the acquisition phase, the number and the
delays of the most significant paths are determined. These
delays are estimated within one half chip from the exact de-
lays. Then, the tracking module refines the first estimation
and follows the delay variations during the permanent phase.
The conventional TED used during the tracking phase is the
early-late gate-TED (ELG-TED) associated with each path. It
is well known that the ELG-TED works very well in the case
of a single fading path. However, in the presence of multipath
propagation, the interference between the different paths can
degrade its performance. In fact, the ELG-TED cannot sepa-
rate the individual paths when they are closer than one chip
period from the other paths, whereas a discrimination up to
T./4 can still increase the diversity of the receiver (T, de-
notes the chip time) [1]. When the difference between the
delays of two paths is contained in the interval 0-1.5 T, we
are in the presence of unresolvable multipaths. This scenario
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corresponds, for example, to the indoor scenario. The prob-
lem of unresolvable multipaths has recently been analyzed in
(2,3, 4].

Particle filtering (PF) or sequential Monte Carlo (SMC)
methods [5] represent the most powerful approach for the
sequential estimation of the hidden state of a nonlinear dy-
namic model. The solution to this problem depends on the
knowledge of the posterior probability density (PPD) of the
hidden state given the observations. Except in a few special
cases including linear Gaussian system models, it is impos-
sible to analytically calculate a sequential expression of this
PPD. It is necessary to adopt numerical approximations. The
PF methods give a discrete approximation of the PPD of the
hidden state by weighted points or particles which can be re-
cursively updated as new observations become available.

The first main application of the PF methods was target
tracking. More recently, these techniques have been success-
fully applied in communications, including blind equaliza-
tion in Gaussian [6] and non-Gaussian [7, 8] noises and joint
symbol and timing estimation [9]. For a complete survey of
the communication problems dealt with using PF methods,
see [10].

In this paper we propose to use the PF methods for es-
timating the delays of the paths in multipath fading chan-
nels. Since these methods are based on a joint approach,
they provide optimal estimates of the different channel de-
lays. In this way, we can overcome the problem of the ad-
jacent paths which causes the failure of the conventional
single-path-tracking approaches in the presence of unresolv-
able multipaths. Moreover, we will combine the PF-based
TED (PF-TED) with a conventional estimator for estimating
the amplitudes of the channel coefficients. We will also apply
the PF methods to the estimation of the channel coefficients
in order to jointly estimate the delays and the coefficients.

This paper is organized as follows. In Section 2, we will
introduce the system model. Then in Section 3, we will
describe the conventional ELG-TED and the PF-TED. In
Section 4, we will present the conventional estimators of the
channel coefficients and the application of the PF methods
to the joint estimation of the delays and the channel coeffi-
cients. In Section 5, we will give simulation results. Finally,
we will draw a conclusion in Section 5.

2. SYSTEM MODEL

We consider a DS-SS system sending a complex data se-
quence {s,}. The data symbols are spread by a spreading se-
quence {d )"0 where Ny is the spreading factor.
The resulting baseband equivalent transmitted signal is
given by
Ni-1
e(t) =D sy > dug(t —mT. —nT), (1)
n m=0
where T, and T are respectively the chip and symbol period
and g(¢) is the impulse response of the root-raised cosine fil-

ter with a rolloff factor equal to 0.22 in the case of the uni-
versal mobile telecommunications system (UMTS) [11].
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FiGURE 1: Equivalent lowpass transmission system model.

h(t, T) denotes the overall impulse response of the multi-
path propagation channel with L;, independent paths (wide-
sense stationary uncorrelated scatterers (WSSUS) model):

Ly
h(t,7) = > ()8 (1 — 7). (2)

I=1

Each path is characterized by its time-varying delay 7;(¢) and
channel coefficient h(t).
The signal at the output of the matched filter is given by

N;-1

Ly
r(t) = > (t) > sy > dwRy(t —mT. — nT — 1(t)) + a(t),
I=1 n m=0
(3)

where 7i(t) represents the additive white gaussian noise
(AWGN) n(t) filtered by the matched filter and

Ry() = J_:g*(r)g(t t1)dr )

is the total impulse response of the transmission and receiver
filters.

Figure 1 shows the equivalent lowpass transmission
model considered in this paper.

The output of the matched filter is used as the input of the
Rake receiver. The Rake receiver model is shown in Figure 2.
The Rake receiver is composed of L branches corresponding
to the L most significant paths. In the /th branch, the received
and filtered signal r(¢) is sampled at time mT. +nT + 7; in or-
der to compensate the timing delay 7; of the associated path
with the estimate ;. The outputs of each branch are com-
bined to estimate the transmitted symbols. The output of the
Rake receiver is given as

drr(mT.+nT+1). (5)

3. THE TIMING ERROR DETECTION
3.1. The conventional TED

The Rake receiver needs good timing delays and channel es-
timators for each path to extract the most signal power from
the received signal and to maximize the signal-to-noise ratio
at the output of Rake receiver.
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Fi1GURE 2: Rake receiver model.

The conventional TED for DS-SS systems is the ELG-
TED. The ELG-TED is devoted to the tracking of the delay
of one path. It is composed of the early and late branches.
The signal r(¢) is sampled at time mT, + nT + #; = A. In this
paper, we will use A = T./2. We will restrict ourselves to the
coherent ELG-TED where the algorithm uses an estimation
of the transmitted data or the pilots when they are available.
The output of a coherent ELG-TED associated with the Ith
path is given by

x, = x(nT)
(n+1)N;—1 T
=Re{§,’fh1* Z (r(mTc+fz+—c)
m=nN; 2 (6)

- r(mTc+fl - ?))d;@}

The main limitation of the ELG-TED is its discrimination ca-
pability. Indeed, when the paths are unresolvable (separated
by less than T.), the ELG-TED is not able to correctly dis-
tinguish and track the path. This scenario corresponds for
example to the indoor case.

These drawbacks motivated the proposed PE-TED.

3.2. ThePF-TED

We propose to use the PF methods in order to jointly track
the delay of each individual path of the channel. We assume
that the acquisition phase has allowed us to determine the
number of the most significant paths and to roughly estimate
their delay.

The PF methods are used to sequentially estimate time-
varying quantities from measures provided by sensors. In
general, the physical phenomenon is represented by a state
space model composed of two equations: the first describes
the evolution of the unknown quantities called hidden state
(evolution equation) and the second the relation between the
measures called observations and the hidden state (observa-
tion equation). Given the initial distribution of the hidden
state, the estimation of the hidden state at time ¢ based on the
observations until time ¢ is known as Bayesian inference or
Bayesian filtering. This estimation can be obtained through

the knowledge of two distributions: the PPD of the sequence
of hidden states from time 1 to time ¢ given the correspond-
ing sequence of observations and the marginal distribution
of the hidden state at time ¢ given the sequence of the obser-
vations until time t. Except in a few special cases including
linear Gaussian state space models, it is impossible to analyt-
ically calculate these distributions. The PF methods provide a
discrete and sequential approximation of the distributions. It
can be updated when a new observation is available, without
reprocessing the previous observations. The support of the
distributions is discretized by particles, which are weighted
samples evolving in time.

Tracking the delay of the individual channel paths can be
interpreted as a Bayesian inference. The delays are the hidden
state of the system and the model (3) of the received samples
relating the observations to the delays represents the observa-
tion equation. We notice that this equation is nonlinear with
respect to the delays and as a consequence, we cannot analyt-
ically estimate the delays. To overcome this nonlinearity, we
propose to apply the PF methods.

The PF methods have previously been applied for the de-
lay estimation in DS-CDMA systems [12, 13]. In [12], the
PF methods are used to jointly estimate the data, the chan-
nel coefficients, and the propagation delay. In [13], the PF
methods are combined with a Kalman filter (KF) to respec-
tively estimate the delay propagation and the channel coef-
ficients; the information symbols are assumed known, pro-
vided by a Rake receiver. In both papers, the delays of each
channel path are considered known and multiple of the sam-
pling time; therefore, only the propagation delay is estimated.
In this paper, the approach is different. We suppose that each
channel path has a slow time-varying delay, unknown at the
receiver. This environment can represent an indoor wireless
communication. We assume that the information symbols
are known or have been estimated essentially for three rea-
sons:

(i) the computational complexity of the receiver should
be reduced;

(ii) the channel estimation is typically performed trans-
mitting known pilot symbols, for example using a spe-
cific channel as the common pilot channel (CPICH) of
the UMTS;
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F1Gure 3: Structure of the proposed PE-TED.

(iii) the PF methods applied to the estimation of the in-
formation symbols perform slightly worse than simple
deterministic algorithms [12, 14].

Firstly, we will apply the PF methods only to the estima-
tion of the delays of each channel path, considering that the
channel coefficients are known. In the next paragraph, we
will introduce the estimation of the channel coefficients.

The structure of the proposed PF-TED is shown in
Figure 3. This estimator operates on samples from the
matched filter output taken at an arbitrary sampling rate 1/7T
(at least Nyquist sampling). Then, the samples are processed
by means of interpolation and decimation in order to ob-
tain intermediate samples at the chip rate 1/T,. These sam-
ples are the input of the particle filter. In order to reduce the
computational complexity of the PF-TED and since the time
variation of the delays is slow with respect to the symbol du-
ration, we choose that the particle filter works at the symbol
rate 1/T. Moreover, in order to exploit all the information
contained in the chips of a symbol period, the equations of
the PF algorithm are modified. The PF algorithm proposed
in this paper is thus the adaptation of the PF methods to a
DS-SS system.

Following [15], the evolution of the delays of the channel
paths can be described as a first-order autoregressive (AR)
process:

Tin = ®1TL,n—-1 1 Vin

(7)

TLn = QLTLn-1 T VLu»

where 77, for I = 1,..., L denotes the delay of the /th channel
path at time n, ), ..., ay express the possible time variation
of the delays from a time to the next one, and v,,..., v, are
AWGN with zero mean and variance ¢2. Note that the time
index # is an integer multiple of the symbol duration.

The estimation of the delays can be achieved using the
minimum mean square error (MMSE) method or the max-
imum a posteriori (MAP) method. The MMSE solution is
given by the following expectation:

fn = E[Tn‘rlzn]) (8)

where 7, = {71,1,..., 71,4} and ry., is the sequence of received
samples from time 1 to n. The calculation of (8) involves the
knowledge of the marginal distribution p(7,|r1.,). Unlike the
MMSE solution that yields an estimate of the delays at each
time, the MAP method provides the estimate of the hidden
state sequence Ty, = {T1,...,Tp}:

T1. = arg rrrllaxp(flznlrlzn). 9)

The calculation of (9) requires the knowledge of the PPD
p(len ‘ rl:n)-

The simulations give similar results for the MMSE
method and the MAP method. Hence, we choose to adopt
the MMSE solution as in [9]. In order to obtain samples from
the marginal distribution, we use the sequential importance
sampling (SIS) approach [16]. Applying the definition of the
expectation, (8) can be expressed as follows:

fn = JTnp(Tn|r1:n)dTn~ (10)

The aim of the SIS technique is to approximate the
marginal distribution p(7,|ri.,) by means of weighted par-
ticles:

NP
p(Tn|rl:n) = Zwsli)a(‘[n - Téi)), (11)
i=1

where N, is the number of particles, Wﬁi) is the normalized

importance weight at time # associated with the particle i,
and &(1, — Ty(,i)) denotes the Dirac delta centered in 7, = gl

The phases of the PF-TED based on the SIS approach are
summarized below.

(1) Initialization. In this paper, we apply the PF meth-
ods for the tracking phase, assuming that the number of the
channel paths and the initial value of the delay for each path
have been estimated during the acquisition phase [17]. We
assume that the error on the delay estimated by the acquisi-
tion phase belongs to the interval (—T./2, T./2). Hence, the a
priori probability density p(7y) can be considered uniformly
distributed in (7o — T,/2, o+ Tc/2), where 1 is the delay pro-
vided by the acquisition phase. Note that the PF methods can
be used also for the acquisition phase. However, the number
of particles has to be increased, because we have no a priori
information on the initial value of the delays.

(2) Importance sampling. The time evolution of the parti-
cles is achieved with an importance sampling distribution.
When r, is observed, the particles are drawn according to
the importance function. In general, the importance func-
tion is chosen to minimize the variance of the importance
weights associated with each particle. In fact, it can be shown
that the variance of the importance weights can only increase
stochastically over time [16]. This means that, after a few it-
erations of the SIS algorithm, only one particle has a nor-
malized weight almost equal to 1 and the other weights are
very close to zero. Therefore, a large computational effort is
devoted to updating paths with almost no contribution to
the final estimate. In order to avoid this behavior, a resam-
pling phase of the particles is inserted among the recursions
of the SIS algorithm. To limit this degeneracy phenomenon,
we need to use the optimal importance function [16], given
by

a(t@1 et i) = p(e 17, ). (12)
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Unfortunately, the optimal importance function can be ana-
Iytically calculated only in a few cases, including the class of
models represented by a Gaussian state space model with lin-
ear observation equation. In this case, the observation equa-
tion (3) is nonlinear and thus, the optimal importance func-
tion cannot be analytically determined. We can consider two
solutions to this problem [16]:

(i) the a priori importance function p(‘rﬁli) |rfj21 ;

(ii) an approximated expression of the optimal impor-
tance function by linearization of the observation
equation about Tl(g = (X[Tl()z_l forl=1,...,L

>

Since the second solution involves the derivative calculation
of the nonlinear observation equation, and hence very com-
plex operations, we choose the a priori importance function
as in [9]. Considering that the noises v;, for [ = 1,...,L in

(7) are Gaussian, the importance function for each delay [ is

a Gaussian distribution with mean (xlrl(,',z,l and variance o2.

(3) Weight update. The evaluation of the importance
function for each particle at time n enables the calculation
of the importance weights [16]:

o plraltd)p(ai 7))

n—1 T
T (TV(II) | Tfflf 1571:n)

w,(j) =w (13)

This expression represents the calculation of the importance
weights if we only consider the samples of the received sig-
nal at the symbol rate. However, in a DS-SS system we have
additional information provided by N samples for each sym-
bol period due to the spreading sequence. Consequently, we
modify (13) taking into account the presence of a spreading
sequence. Indeed, observing that the received samples are in-
dependent, the probability density p(rnlrﬁf)) at the symbol
rate can be written as

(n+1)N;—1

1_[ p(rmlti?). (14)

m=nNs

P("n|T£li)) =

Considering (3) at the chip rate and recalling the assump-
tions of known symbols, the probability density p(rml‘r,gl)) is
Gaussian. Typically, the received sample r,, is complex. For
the calculation of the Gaussian distribution, we can write 7,
as a bidimensional vector with components being the real
part and the imaginary part of r,,. The probability density

p(rmlTi) is thus given by

. 1 1 12
(DY) — _ _ @
p(rWI|Tn ) - 7_[02 CXP{ 0,% |rm Aum | }’ (15)

n

where o2 is the variance of the AWGN () in (3) and the
mean ‘u%) is obtained by

L m+3
Uy = S hisn Y diRe(mT. —KTe—nT = 7),). (16)
1=1 k=m-3

In order to reduce the computational complexity of the PF-
TED, in (16) we have assumed that the contribution of the
raised cosine filter R, to the sum on the spreading sequence is
limited to the previous 3 and next 3 samples. By substitution
of (15) in (14), the latter becomes
1
-}

o 1 N, 1 (n+1)
o = () el
(17)

N
m=nN;
Assuming the a priori importance function, (13) yields
wi = w p(ral )
1 N; 1 (n+1)N,—1 5
_ 0 (i)
_Wnl(—2> exp{__z Z |rﬂ’l_.“m| }
02 Ti S
(18)

Finally, the importance weights in (18) are normalized
using the following expression:

)

N (j)*
Zji] an

W) = (19)

(4) Estimation. By substitution of (11) into (10), we ob-
tain at each time the MMSE estimate:

Np
= > wil, (20)
i=1

(5) Resampling. This algorithm presents a degeneracy
phenomenon. After a few iterations of the algorithm, only
one particle has a normalized weight almost equal to 1 and
the other weights are very close to zero. This problem of the
SIS method can be eliminated with a resampling of the parti-
cles. A measure of the degeneracy is the effective sample size
Nefr, estimated by

(21)

When N is below a fixed threshold Nipyes, the particles are
resampled according to the weight distribution [16]. After
each resampling task, the normalized weights are initialized
to 1/Np.

4. THE ESTIMATION OF THE CHANNEL COEFFICIENTS

4.1. The conventional estimators

Channel estimation is performed using the known pilot sym-
bols. If we suppose that the channel remains almost un-
changed during the slot, the conventional estimator of the
channel coefficients of the Ith path is obtained by correlation
using the known symbols [18]:

1 Npilotle_‘-—l
= > D skdpr(mTe+nT +11,),  (22)
Npiloth n=0 m=0
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where Ny is the number of pilots in a slot. For each path,
the received signal is sampled at time mT. +nT + 1, in order
to compensate its delay. Then the samples are multiplied by
the despread sequence and summed on the whole sequence
of pilot symbols. The problem of this estimator is that when
the delays are unresolvable, the estimation becomes biased.
To eliminate this bias, we can use an estimator based on the
maximum likelihood (ML) criterion. In [1, 19], a simplified
version of the ML estimation is proposed. The channel coef-
ficients which maximize the ML criterion are given by

h=P'a (23)

where h = (le,...,sz), P is an L X L matrix with elements
Pij = Rg(Tin — 7ju), and a is the vector of the channel coeffi-
cients calculated using (22).

4.2. The PF-based joint estimation of the delays
and the channel coefficients

We can apply the PF methods to jointly estimate the delays
of each path and the channel coefficients with a very low ad-
ditional cost in terms of computational complexity. This is
a suboptimal solution, since the observation equation (3) is
linear and Gaussian with respect to the channel coefficients.
The optimal solution is represented by a KE. However, com-
bining the PF methods and the KF to jointly estimate the de-
lays and the channel coefficients involves the implementation
of a KE It is better to use the particles employed for the delay
estimation and to associate to each particle the estimation of
the channel coefficients.

In this case, the hidden state is composed of the L de-
lays and the L channel coefficients of each individual path.
When a particle evolves in time, its new position is thus de-
termined by the evolution of the delays and the evolution of
the channel coefficients. The delays evolve as described for
the PF-TED. For the channel coefficients, we assume that the
time variations are slow as, for example, in indoor environ-
ments. Hence, the evolution of the channel coefficients can
be expressed by the following first-order AR model:

hin = Brhip—1 + z1
(24)
hpn = Brhra—1 + 2L

where fi,..., B describe the possible time variation of the
channel coefficients from a time to the next oneand zy, ..., z;
are AWGN with zero mean and variance ¢2. The parameters
of the channel AR model (24) are chosen according to the
Doppler spread of the channel [20]. Notice that this joint es-
timator operates at the symbol rate as the PF-TED.

As for the delays, we only consider the MMSE method
for the estimation of the channel coefficients and we use the
a priori importance function:

2 (hQ 1R, i) = p(hP 1R, (25)

2333
where h, = {h1,...,hLn}. Considering that the noises z;,
for! =1,...,Lin (24) are Gaussian, the importance function

for the channel coefficients is a Gaussian distribution with
mean ﬁzhi’i_l and variance 2. To determine the positions of
the particles at time n from the positions at time n — 1, each
particle is drawn according to p(‘rr(,i) ITfQI and (25).

The calculation of the importance weights is very simi-
lar to the case of the PF-TED. The only difference is that the
channel coefficients h;, are replaced by the support of the

particles hl(fz to calculate the mean (16).

5. SIMULATION RESULTS

In this section, we will compare the performance of the con-
ventional ELG-TED and the PF-TED. In order to demon-
strate the gain achieved using the latter, we will consider
different indoor scenarios with a two-path Rayleigh channel
with the same average power on each path and a maximum
Doppler frequency of 19 Hz corresponding to a mobile speed
of 10 Km/h for a carrier frequency of 2 GHz. The simulation
setup is compatible with the UMTS standard. In these con-
ditions, the time variations of the channel delays can be ex-
pressed by the model (7), with a; = - -+ = ar = 0.99999
and o2 = 107> [15]. Moreover, the time variations of the
channel coefficients can be represented by the model (24),
Bi=---=p=0999and g2 = 1072,

In these simulations, a CPICH is used. In each slot of
CPICH, 40 pilot symbols equal to 1 are expanded into a chip
level by a spreading factor of 64. The spreading sequence is a
PN sequence changing at each symbol.

5.1. Tracking performance

We assume that the channel coefficients are known to eval-
uate the TED’s tracking capacity and the simulation time is
equal to 0.333 second, corresponding to 500 slots. We have
firstly considered the delays of the two paths varying accord-
ing to the following model:

Tin = 1 T1n—1 + Vins (26)
Ton = 02T2n—-1 1 Von,

where a1 = a, = 0.999, 67, = a7, = 0.001, 719 = 0, and
0 = 1.

Figure 4 shows one realization of the considered delays
and the tracking performance of two ELG-TEDs used for the
estimation of the two delays. We assume that E;/N, = 10dB,
where E; is the energy per symbol and Ny is the unilateral
spectral power density. The classical ELG-TED presents dif-
ficulties to follow the time variation of the two delays, espe-
cially when the delay separation becomes less than 1 T..

However, it is very important for the TED to distinguish
the different paths of the channel to enable the Rake receiver
to exploit the diversity contained in the multipath nature
of the channel. In [1], it has been shown that the gain in
diversity decreases as the separation between the paths de-
creases. In particular, a loss of 2.5 dB in the performance of
the matched filter bound for a BER equal to 1072, passing
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FIGURE 4: Delay tracking with the conventional ELG-TED.
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FIGURE 5: Delay tracking with the PE-TED.

from T, to T./4, has been observed. Moreover, it has been
noted that an interesting gain in diversity occurs if the TED
distinguishes paths separated by more than T./4. On the
other hand, it has been found that the performance of the
matched filter bound for a separation of T./8 is very close
to the one obtained with only one path. Consequently, the
TED discrimination capacity has to be equal to T./4. Unfor-
tunately, the ELG-TED fails to distinguish all the paths with
a delay separation less than 1 T,. In Figure 5, we can observe
how the discrimination capacity of the TED can be improved
using the PF methods.

2.5

Testimate/ T ¢

0 50 100

150 200 250 300 350 400 450 500

Time in slots

+ Estimated delay, second path
— Real delay, second path

* Estimated delay, first path
--- Real delay, first path

FIGURE 6: Delay tracking with the conventional ELG-TED.

In order to better highlight this behavior, we have fixed
the delay of the first path at 0 and the delay of the second
path is decreasing linearly from 27T, to 0 over a simulation
time of 0.333 second corresponding to 500 slots. We assume
that E/Ny = 10dB, where E; is the energy per symbol and
Ny is the unilateral spectral power density.

Firstly, we consider that the channel coefficients are
known to evaluate the TED’s tracking capacity. Figure 6 gives
a representative example of the evolution of the two esti-
mated delays using two ELG-TEDs. As soon as the difference
between the two delays is lower than 1T, due to the cor-
relation between the two paths, the estimated delays tend to
oscillate around each real delay. The ELG-TEDs are no longer
able to perform the correct tracking of the delays. On the
other hand, as shown in Figure 7, the proposed PF-TED is
able to track almost perfectly the two paths. These results
have been obtained using a particle filter with only 10 par-
ticles.

Then, we have introduced the estimation of the channel
coefficients into the TED. Figure 8 shows the results obtained
with two ELG-TEDs combined with the conventional esti-
mator based on the correlation. As soon as the difference
between the two delays is lower than 1 T, the detectors no
longer recognize the two paths: the weaker path merges with
the stronger one.

In Figure 9, the PF-TED is also associated with the con-
ventional estimator of the channel coefficients based on the
correlation. When the delay of the second path becomes less
than 17T, the channel estimator decreases its capacity to
track the time variations of the channel coefficients and the
PF-TED cannot track the delays of the two paths. To im-
prove the channel estimation, we associate the PF-TED with
the ML estimator, as shown in Figure 10. In this case, the
PF-TED can track the delay of the second path up to T,/2.
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F1GURE 7: Delay tracking with the PE-TED.
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FIGURE 8: Delay tracking with the conventional ELG-TED associ-
ated with a conventional channel coefficient estimator based on the
correlation.

For smaller delays, the PF-TED continues to distinguish the
two paths, but it cannot follow the time variations of the sec-
ond delay. The delay of the second path remains close to the
values estimated at T./2.

Using the PF methods to jointly estimate the delays and
the channel coefficients, we can notice in Figure 11 that the
PF-TED can track the time variations of the second path.
This solution implies only a low additional cost in terms of

2.5 T T T T T

Testimate/ T ¢

0 50 100 150 200 250 300 350 400 450 500

Time in slots

—— Real delay, first path
--- Real delay, second path
—— Estimated delay, first path
+ Estimated delay, second path

FIGURE 9: Delay tracking with the PF-TED associated with a con-
ventional channel coefficient estimator based on the correlation.

Testimate/ T ¢

~05 .
0 50

100 150 200 250 300 350 400 450 500

Time in slots

—— Real delay, first path
- - - Real delay, second path
—— Estimated delay, first path
+ Estimated delay, second path

F1GURE 10: Delay tracking with the PF-TED associated with a con-
ventional channel coefficient estimator based on the ML.

computational complexity with respect to the PE-TED, since
it exploits the set of particles used for the delay estimation for
the channel coefficient estimation.

5.2. Mean square error of the delay estimators

In this section, we will compare the estimation of the mean
square error (MSE) estimating 7, of the ELG-TED and
the PF-TED with the lower posterior Cramer-Rao bound



2336

EURASIP Journal on Applied Signal Processing

2.5 T T T T T T T T T

Testimate/ T ¢

100 150 200 250 300 350 400 450 500

Time in slots

0 50

—— Real delay, first path
- -~ Real delay, second paths
—— Estimated delay, first path

+ Estimated delay, second path

FiGURE 11: Delay tracking with a joint delay and channel coefficient
estimator based on the PF methods.

(PCRB). In the Bayesian context of this paper, the PCRB [21]
is more suitable than the Cramer-Rao bound [22] to evaluate
the MSE of varying unknown parameters.

The PCRB for estimating 7, using 1., has the form

R 2
E(th—1a)" = 10 (27)

where J, ,, is the right lower element of the #n X n Fisher infor-
mation matrix.

In [21], the authors have shown how to recursively eval-
uate J, . For our application, the nonlinear filtering system
is

Tp+l = ATy + Vi,
~ (28)
tn = 2, (1) + iy,

where the second relation represents the nonlinear observa-
tion equation (3) at chip rate.

Since the spreading sequence is different at each chip
time, we have to evaluate z,(7,) at this rate.

From the general recursive equation given in [21], the se-
quence {J, .} can be obtained as follows:

_ 2 _
Jntinr1 = 0, Ly E[v1n+lzn+1(fn+l)] onl (29)
- (ocav’l)z(]n,n + oczav’l)_l.

In order to calculate E[V,,,zy+1(Tn+1)], we have applied
a Monte Carlo evaluation. We generate M i.i.d. state trajec-
tories of a given length N; {Té,T{,...,TIin} withl <i<M
by simulating the system model defined in (28) starting from
an initial state 7y drawn from the a priori probability density
p(7o). For the calculation, we fixed M = 100.

Mean square error

0 2 4 6 8 10 12 14 16 18 20
Time in slots
—+ PE-TED

— PCRB
- ELG-TED

FiGure 12: Comparison of the PCRB with the MSE estimating 7, of
ELG-TED and PF-TED.

In Figure 12, we show the comparison of the PCRB with
the MSE estimating 7, of the ELG-TED and PF-TED. For
both algorithms, we use a uniform initial pdf p(7y). For the
PF-TED, the 10 particles were initialized uniformly in the
interval {—T./2,T./2}. The signal-to-noise ratio E;/Ny was
fixed to 10 dB. We can see in Figure 12 that the PF-TED out-
performs the ELG-TED and reaches the PCRB bound after
15 slots. The slow convergence of the ELG-TED and PE-TED
compared to the PCRB can be explained since the two TEDs
are updated at each symbol while the PCRB bound is calcu-
lated for each chip.

5.3. Performance evaluation

Figure 13 shows the BERs versus E;/Nj considering a two-
path channel with the same average power on each path. The
delays of the first and second paths were respectively fixed at
0 and 1 T,. The same maximum Doppler frequency as above
was used. The BER values have been averaged over 50 000
bits.

When using two ELG-TEDs, except when the channel is
known, the performance is very poor compared to the max-
imum achievable performance (known delays and channel
coefficients). On the other hand, the PF-TED with channel
coefficients known or estimated reaches the optimal perfor-
mance. We can conclude that the considered TED must be
able to separate the different paths of the channel, otherwise
the performance of the Rake receiver breaks down.

6. CONCLUSIONS

In this paper we have proposed to use the PF methods in or-
der to track the delay of the different channel paths. We have
assumed that an acquisition phase has already provided an
initial estimation of these delays.
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FIGURE 13: Performance comparison of the ELG-TED and the PF-
TED.

We have firstly considered that the channel coefficients
are known. We have compared the tracking capacity of the
conventional ELG-TED and the proposed PF-TED. We have
shown that when the delays of the channel paths become very
close (less than 1 T,), the ELG-TED is unable to track the
time variations of the delays. However, the PF-TED contin-
ues to track the delays.

We have introduced the channel coefficient estimation to
the TED. We have considered two classical methods: the es-
timation based on the correlation using pilot symbols and
the estimation based on the ML criterion. We have shown
that the ELG-TED with estimation of the channel coefficients
loses the capacity to distinguish the paths when the delays
are very closed. On the other hand, the PF-TED associated
with the classical two-channel estimator is able to separate
the different paths. However, for very close delays the chan-
nel estimators prevent the PF-TED from tracking the time
variations of the delays. We have proposed to estimate jointly
the delays and the channel coefficients using the PF methods
to avoid this loss of tracking. We have found that the joint
estimation enables a better tracking of the delays.

Finally, we have seen that it is very important for the Rake
receiver that the TED can distinguish the different paths of
the channel. We have observed that in the case of unresolv-
able paths, the ELG-TED confuses the paths and the perfor-
mance of the Rake receiver is very poor.

As a conclusion, we can say that the PF-TED based on
the joint estimation of the delays and the channel coefficients
can be a good substitute of the classical ELG-TED, specially
for indoor wireless communications. Moreover, the compu-
tational complexity of the PE-TED is very limited, since we
have used only 10 particles.
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