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Abstract

This article presents a new scheme for movie de-scratching, de-noising and de-blotching based on wave atom
transform and nonparametric model. According to the analysis of the noise, scratches and blotches in the film, we
establish a hybrid model for movie signal. In the proposed model, we model scratch as directional additive noise,
which can be represented effectively by a new multi-scale analysis tool called wave atom transform. Based on wave
atoms, de-noising and de-scratching are combined in a nested thresholding framework which can suppress both
homogeneous noise and structural artifacts. On the other hand, blotch is described as multiplicative noise in the
model, which can be restored by a “detecting and inpainting” strategy. We use the inter- and intra-frame discontinuity
of blotch to detect them and then restore them by kernel regression method. Combining the processing operations
above together, we design an effective automatic movie restoration system. Experimental results show that the
proposed method not only achieves excellent performances even for seriously damaged movies but also has low
computational complexity compared with the existing methods.

Keywords: Movie restoration, Wave atom transform, Nested thresholding, Nonparametric inpainting

Introduction

Movie restoration is a problem with both academic chal-
lenge and great practical value. Due to long display time
and undesirable storage environment, movies are dam-
aged by various kinds of artifacts such as noise, loss of
contrast, scratch, blotch, etc. These artifacts have nega-
tive influences on the artistic and commercial values of
movie. For recent years, many efforts have been devoted to
movie restoration, especially to de-noising, de-scratching
and de-blotching problems.

In the literature, wavelet domain soft-thresholding
based algorithms [1-4] have shown good performances
in image de-noising. For those methods, the selection
of threshold is of vital importance. Although Donoho
[1] gives the universal upper bound of threshold and
researchers try to achieve even better solutions in
[2,4], performances of these algorithms largely hinge
on accurate noise variance estimation. An expectation-
maximization (EM) algorithm for noise estimation is pro-
posed in [3], but its computational complexity is very
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high. Besides transform-based methods mentioned above,
non-parametric and parametric model based algorithms
[5-7] also achieve good de-noising results. Currently,
the methods combining parametric and nonparametric
model achieve state-of-the-art results in image and video
de-noising, such as the BM3D in [8] algorithm and the
training-based sparse de-noising method in [9]. Both of
them take advantages of self-similarity of the patches in
the image and represent the image sparsely by a dictio-
nary. However, although those algorithms are effective
to remove Gaussian noise, they do not work well for
structural artifacts.

Recently, some algorithms for structural artifacts
removal are proposed. For example, in [10,11], a training-
based adaptive least square filter is designed to remove
the coding artifacts in the image. Many de-scratching
and de-blotching algorithms have also been proposed
in the literature [12-15]. A joint scratch and blotch
restoration method using Markov Random Field (MRF)
model was presented in [16]. However, this method is
not robust enough for movies with large motion. The
methods in [12,17-20] exploit inter-frame information
in the Bayesian framework for scratch detection and
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restoration. Because of using the directionality of scratch
in the detection phase, these method cannot be extended
to blotch restoration straightforwardly. In our opinion,
because scratch has strong directionality whereas blotch
is isotropic, scratch and blotch should be restored sepa-
rately. How to restore them respectively to achieve better
result is a problem we try to solve. On the other hand,
a common point of all these methods is that all of them
use sequential detection and restoration steps, thus the
overall performance will be limited by the accuracy of
the detection stage, which is often very ad hoc in nature.
How to reduce the dependence of restoration result on the
accuracy of detection is another interesting problem.

The contribution of this work includes three folds.
Firstly, according to the analysis of the scratches in the
film, we model scratch as directional additive noise which
can be represented effectively by wave atoms. Secondly,
inspired by soft-thresholding de-noising method, we com-
bine de-noising and de-scratching in a nested threshold-
ing framework based on wave atom transform, which is
robust to the performance drift of detection step. Thirdly,
after de-noising and de-scratching, we detect blotches
by the inter- and intra-frame discontinuity and restore
them by kernel regression. Because scratches have been
restored before, the computational complexity caused by
applying kernel regression to de-blotching.

The article is organized as follows. In Signal model
of movie section, we establish a hybrid model of movie
signal and analyze the properties of noise, scratch and
blotch in the movie. In Joint de-scratching and de-nois-
ing section, we propose a nested thresholding method
in wave atom domain, which can be used for de-noising
and de-scratching. In Blotch detection and restora-
tion section, we design a robust blotch detection and
restoration algorithm based on motion estimation and
nonparametric kernel regression. The integrated system
and experimental results are given in Implementation
details and experimental results section. Conclusions
and future work section concludes this article.

Signal model of movie
Hybrid noise model
We model movie signal by a hybrid noise model, as shown
in (2.1).
Y=¢gX+1-¢9B+S+N, (2.1)
where X is the ideal pixel value of video signal and Y is
the noisy observation. N is homogeneous additive noise
and S is the scratch component. B is the blotch compo-
nent. g is a random variable controlling the transparency
of blotch, and g €[0,1] generally. If B is regarded as
additive noise, (2.1) becomes a pure additive noise model.
However, because B has not homogeneous property, the
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additive noise model increases the difficulty of analysis
and restoration. For simplification, we restrict g € {0, 1}.
Based on the binarization of g, B is modeled as multiplica-
tive noise and (2.1) becomes a hybrid noise model.

This hybrid model is different from the model proposed
in [21-24], which regards scratch as multiplicative noise.
This change is based on both physical and chemical causes
of scratch. Scratch results from the shedding of coats on
the film. As long as the contact surface between the pro-
jector and the film is not clean, scratches will appear in the
film during displaying. We can model the phenomenon
as an additive process, i.e. the film coat becomes thinner
damaged by those foreign matters. On the other hand,
blotch artifacts can be caused by mildews, dirty spots or
the shedding of film coats. The spatial and temporal dis-
continuity of blotch makes it suitable to be modeled with
the multiplicative noise model. The hybrid model guides
us restore them by different methods.

The analysis of noise, scratch and blotch

Generally, distribution of N in our model (2.1) can be
modeled as Gaussian noise. However, since the variance
o2 is not known beforehand, soft-thresholding based de-
noising algorithm cannot be used directly. For simplifying
the problem, we make the following assumption: the noise
in the movie is homogeneous, which obeys N (0, o2) in the
spatiotemporal domain. In other words, the noise in the
movie is assumed to be stationary in the spatiotemporal
domain, which can be estimated by the residual signal of
successive frames.

Considering its generative mechanism, scratch is a
kind of anisotropic sudden interference, usually along an
approximate vertical direction. It means that S is a direc-
tional noise. Further, scratch can be classified into two
types according to its inter-frame continuity, as exempli-
fied in Figure 1. In Figure la, we can find that the first
type of scratch is relatively “weak’, which is short and nar-
row and does not have inter-frame continuity. This kind of
scratch can be detected straightforwardly by motion esti-
mation based method. Figure 1b shows another type of
scratch whose location in adjacent frames is almost stable.
Motion estimation based method cannot be useful for the
second type of continuous scratch.

Because of the variety of scratch, the detection method
based on either inter- or intra-frame discontinuity is sen-
sitive to the choice of parameters. For detecting scratch
more accurately, Bruni proposed a damped sinusoid
model for scratch in [15], which is useful to detect isolated
and serious scratch. Bruni’s model reveals the oscillatory
property of scratch—to each individual scratch, it can be
described as a damped sinusoid signal. In fact, this micro-
scopic view can be extended to macroscopic situation.
Because scratch can accumulate during multiple times
of film projection, not only does the individual but also
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Figure 1 The comparison of two kinds of scratch. (a) Two
adjacent frames with the type of discontinuous scratch. (b) Two
adjacent frames with the type of continuous scratch.

the whole scratches in the frame obey oscillatory pattern.
As shown in Figure 2, we choose several frames from
some old movies to investigate the pattern of scratch. It
can be found that scratches in the film have local oscil-
latory patterns, and such pattern would change from a
local phenomenon to a global one with the increase of the
displaying time.

Bruni’s model aims to solve the detection problem
only while the proposed model provides a guidance to
design a restoration algorithm directly. Based on the
analysis above, we can find that additivity, directionality
and local (even global) oscillation are three features of
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scratch. According to the intrinsic properties, wave atom-
based method matches this problem perfectly, which will
be addressed with details in Joint de-scratching and
de-noising section.

Different from scratch, blotch artifact shows the
isotropic pattern in most situations. Generally, it does not
have the spatiotemporal continuity between and among
movie frames. The blotch artifact can be very bright, very
dark or even semi-transparent, as instanced in Figure 3.
All of these properties increase the difficulty of removing
blotch [16,21-25].

Joint de-scratching and de-noising

Overview of wave atom transform

Wave atom transform is developed firstly by Demanet and
Ying [26,27]. It is a variation of traditional wavelet aim-
ing to overcome the weakness of wavelet in representing
the directionality of high dimensional signals. The def-
inition of wave atoms is closely related to the Fourier
transform. Consider a 2D Fourier transform pair of f(x)
andf(a)), where x = (x1,%2), ® = (w1, wy) are the coordi-
nates in spatial domain and frequency domain, then wave
atoms can be defined as ¢, (x), where p = (j,m,n) =
(j, m1, mg, n1, n2) is a label representing the scale, direc-
tion and location of the corresponding wave atom in 2-D
situation. The indexed point (x,,®w,) in phase-space is
defined as

Xy = 2_jn, Wy = 7t2jm,
(3.1)

a2 < max|m;| < C22j,

where Cj, C; are positive constants.

It can be seen that the notations follow those of the
wavelet and curvelet, where j controls the resolution scale,
and m and n control the location in frequency and spatial
domain, respectively. However, there are two differences

pattern. (c) 3D plots of regions marked by red circles in (b).

Figure 2 The illustration of the oscillatory pattern of scratch. (a) Scratched movie frame. (b) Red circles highlight the region with oscillating
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Figure 3 Examples of blotch artifacts.

between wavelet and wave atom. First, wavelets obey
a linear scaling wavelength while wave atoms obey the
parabolic scaling wavelength: at scale 2% the essential
frequency support is of size 2/, and at frequency 2%, the
essential time support is of size 277. Second, the basis
function of wave atom is different from that of conven-
tional wavelet.

In the 1D situation, the frequency formula of basis
function wfn (%) is

1/72,((0) = e /2 |:ei°"”g (em (a) -7 (m + %))) +
i 1
)|

Y@ =1,

(3.2)

with €, = (=1)" and o, = 5 (m + %). g is a real-valued,
C®° bump function on a compact support with length 2,
which promises the energy of basis function is normalized
(I¥°]l2 = 1). Similarly, the 2D basis function of wave atom
can be written as

Pulrn,x2) = 2y (Y — n)Yo, @y —my).  (3.3)

The transform process of wave atom transform is sim-
ilar to that of curvelet, which is based on FFT and IFFT.
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For a 2-D signal u € RN*N, we first perform a FFT of

size N x N of u, and then get . For each pair (j, m),

we wrap the product Yt by periodicity insert the inter-
val [—2m,2n] x[ 27,2 7). We then compute inverse
FFT of size 2 of the result to get c,. We repeat the pro-
cess above over each pair (j, m) to get all the coefficients
of wave atom transform. Finally, we permute these coeffi-
cients according to the label # = (j, m, n) to get a matrix
of coefficients. Please refer to [26,27] for the details of
wave atom transform.

Figure 4 gives some examples of wave atoms and their
frequency representation. It can be found that wave atoms
have outstanding performance in directional representa-
tion. This is one reason why wave atoms are used for
scratch representation.

The features of wave atom transform to represent scratch
Recalling the analysis in “The analysis of noise, scratch
and blotch” section, we know that scratch is a direc-
tional additive noise having an oscillatory pattern. Figure 5
illustrates the coefficient’s distribution of a straight-line
image in wave atom, curvelet, wavelet and dual tree com-
plex wavelet [28] domains after 3-level decomposition. All
the four coefficient domains can be divided into several
regions corresponding to different directions and scales.
We can find that the coefficients corresponding to verti-
cal, horizontal and diagonal lines are separated perfectly
in wave atom domain. The coefficients in red boxes in
Figure 5b,e,h,k correspond to vertical signal. An intuitive
thresholding example is to remove the coefficients con-
tained in red boxes in both domains. Figure 5¢,fi,1 give the
vertical line removal results. We find that under the same
situation (removing the coefficients corresponding to the
first two levels), the vertical line removal result using wave
atom transform is clearly superior. It means that under the
same decomposition level, the directionality of wave atom
transform is better than three competitors.

Another feature of wave atom transform is its spar-
sity of representing oscillatory signals. In [27], wave atom
transform has been proven to be able to achieve sparser
representation of oscillatory signal than the existing trans-
forms including wavelet, and curvelet. If O(N) wave atom
coefficients suffice to represent an oscillatory signal to rea-
sonable accuracy, O(N 3/2) curvelet coefficients or O(N?)
wavelet coefficients will be needed to achieve the same
accuracy.

The analysis above implies that if we decompose an
image with scratches by wave atoms, the coefficients cor-
responding to scratches will be sparse and distribute in a
narrow region in transform domain.

Nested thresholding in wave atom domain
We now consider how to threshold the coefficients of wave
atoms so as to remove scratch and noise. The coefficients
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Figure 4 The examples of wave atoms. The first row shows two wave atoms with different directions and scales. The second row shows their
frequency responses. The corresponding labels are ;s = (3,6,3,0,0), up = (4,10,5,0,0), uc = (3,1,6,0,0), g = (4,1,10,0,0).
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representing scratch will be limited in the narrow region
corresponding to vertical component of signal, as shown
in the red boxes in Figure 5b. A naive method that removes
all the coefficients in this region will damage meaningful
vertical image pixels rather than scratch. Another diffi-
culty is to avoid ringing artifacts caused by the sidelobes
of signal, which is common in wavelet shrinkage methods.
To overcome these two problems, we propose a nested
thresholding method.

We use a vertical 5 x 5 Sobel detector to find where
scratches are likely to appear and get a mask matrix M.
To ensure an accurate scratch detection, morphological
dilation operation [29] is applied to M. Besides Sobel
detector, there exists many other effective edge and ridge
detector, such as the method in [30]. However, consider-
ing the requirement for processing a large volume of data
real-time, we apply the simple strategy.

The threshold of Sobel detector is critical to M. If the
selected threshold is too low, it will not only generate false
detection result of scratch; if the threshold is too high,
then many of the scratches may not be detected or the
detected scratches are too segmented. To make a trade
off between computational complexity and robustness, we
choose the threshold adaptively by Otsu threshold seg-
mentation method [31]. According to the analysis below
we will prove that the proposed method is robust to
detection false.

Rather than classic shrinkage of the coefficients in trans-
form domain, we propose to iteratively subtract a quan-
tized residual from the reconstructed signal (or original
signal in the first step) in the detected region. We define
a quantization function as St (e) with quantization step T
as follows.

S7(e) = T x round (%) . (3.4)

Let F and F be transform and inverse transform respec-
tively. We perform wave atom transform to input frame Y
and get coefficient matrix C = F(Y). C; is the set of coef-
ficients in the region corresponding to vertical signal. The
scale level of C, corresponding to the first and the second
level. Figure 5b gives an example of 3-level decomposition
and the region of C; as the red boxes shows.

We compute the quantized residual St (F(Cy)) and
restore scratch in spatial domain by the following proce-
dure

Y=Y-MoSs (ﬁ(cs)) , (3.5)
where © denotes element-wise multiplications. With the
help of M and quantization, we can effectively avoid
the ringing effect. The mask M ensure that the only
those regions with scratch artifacts will be restored
while other regions can be passed, thus protected well.
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Figure 5 The comparison of different multi-scale transforms. (a), (d), (g) and (j) are the same test image with size of 128 x 128. (b) The green
boxes illustrate the scale segments of wave atom domain and the red boxes contain the coefficients corresponding to the vertical signals. (e) The
red boxes contain the curvelet coefficients corresponding to the vertical signals. (h) The red boxes contain the wavelet (db1) coefficients
corresponding to the vertical signals. (k) The red boxes contain the dual tree complex wavelet coefficients corresponding to the vertical signals. (c),
(f), (i) and (I) are the images by the inverse transform after removing the coefficients inside the red boxes.
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Although M may carry some texture and edge regions
besides scratches, the directionality selection of wave
atom transform ensures only those pixels along vertical
direction will be modified. The quantization function in
(3.5) further reduces ringing effect by setting the small
oscillatory tails to zero.

Meanwhile, we can incorporate soft-thresholding de-
noising process into our iterative framework. Denote the
soft shrinkage function as Thres, (e), as following shows

sign(x)(|x| — &5), x| > o5

0, otherwise. (3.6)

Thresy (x) = {

Here we use the conclusion in [4] and define §, €
[0,4/202logN], N is the size of signal. Based on the
assumption of noise mentioned in Signal model of movie
section, the variance o2 can be estimated according to the
residual between adjacent frames after motion compensa-
tion. In the first iteration, 8} is set as the upper bound of
the interval. To the ith iteration, 8. = 0.85:~!. This strat-
egy ensures the convergence of residual signal X’ — X‘~!
during iteration. When max |X‘ — X~!| < 3, the itera-
tion is stopped. Under such stop criterion, we find that 4-8
iteration can achieve excellent performance for scratch
restoration.

The algorithm of the nested thresholding scheme for
joint de-scratching and de-blotching is summarized in
Algorithm 1. One of the contributions of our algorithm is
reducing the dependence of the scratch restoration results
on the accuracy of detection. A dilation operation will
enlarge the region of scratch in the detection mask, which
may introduce positive false into M. However, our method
is robust to the enlarging of detection mask. The residual
quantization step in our algorithm can reduce the influ-
ence of sidelobes. As a result, even if the scratched region
is enlarged by dilation operation, the sidelobes can still be
suppressed by iterative quantization of residual, which will
not influence on visual effect seriously.

Algorithm 1. The nested thresholding scheme
Task:
De-noising and de-scratching restoration for Y.
Initialization:
Maximum iteration number I,
initial result X° = Y,
quantization step T,
estimation of variance of noise o 2.
Process:
Get mask matrix M = Dilation(Sobel(Y)).
In the ith iteration, i > 0

C' =F(X™1);
X' =X~ - Mo Sr(F(Ch);
T=1

X! = F(Thres, (F(XY))).

Page 7 of 19

If max X! — X7 <3ori=1
Y =X
Elsei=1i+1.

Because our algorithm only processes the signal regis-
tered by detection mask, it is robust to the positive false of
detection. In other words, even if an unscratched area is
detected as scratch, the proposed method can still protect
it. But if a scratch is not detected, the proposed method
cannot restore it. For reducing the risk of negative false,
we think the dilation operation is necessary, which ensures
the robustness of our method.

To reduce the negative influence of negative-false, we
apply an adaptive dilation operation row by row. To each
row of M, the detected scratched region is registered
as continuous non-zero pixels. Generally, the longer the
length of the continuous non-zero pixels is, the smaller
size of dilation operator we should use. Based on this prin-
ciple, we adaptively select the size of dilation operation
according to Table 1.

Figure 6 gives an illustration of the restoration process
for a row from an image with scratches, where it can found
that with the increase of iteration, the scratch artifact can
be restored without introducing serious ringing effect.

Blotch detection and restoration
Blotch detection
Recall that blotch is modeled as a multiplicative noise in
our degradation model. Motion estimation can be used
for blotch detection because the inter-frame residual of
motion estimation in the location of blotch will be much
higher than other regions. Currently, the general blotch
detection method is using ranked order difference (ROD)
detector. In [24], a two-stage simple ROD detector (two-
stage SROD) is proposed, which measures the inter-frame
discontinuity of blotch in the 3 x 3 patches of three suc-
cessive frames. However, abrupt motion of image objects
can also cause large residual if the size of the search
window in motion analysis is not large enough. On the
other hand, too-large search window size will increase the
computational complexity significantly. So, merely taking
advantage of the inter-frame residual is insufficient for
blotch localization.

To detect blotch robustly, we will also exploit the intra-
frame information. Although both blotch and motion

Table 1 Choosing dilation operator based on the length of
continuous non-zero pixels in the row of M

The length of continuous non-zero pixels Size of dilation operator

>10 1x1
[5,10] 1x2
<5 1x3
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dots) and the original signal (red points).

Figure 6 An illustration of de-scratching. (a) The original signal with obvious catastrophe points. (b, e, h) The residual signal M © ST(?(CQ)) in
each iteration. (¢, f, i) After subtracting the residual signals in (b, e, h) during each iteration, we get restored signal marked by blue dots. (d, g) The
initial signal of each iteration is the restoration result from the former iteration. (j) Compared with original signal represented by red points, after 3

times iteration, our algorithm produces a smooth result without ringing effect. (k) The final results of joint de-noising with scratch restoration (blue

object have large inter-frame residual, we can discriminate
them according to their intra-frame features. Based on
the analysis of Signal model of movie section, we know
that blotch artifact is incoherent to its neighbor pixels.
On the other hand, the pixels of the moving objects are
more likely to have similar values in the neighborhood.

We define the pixel in the ith row, jth column and tth
frame as Y. Py, € RIXL is a patch with the center
at Yji. L is the size of the patch. Calculating the resid-
ual between the patches in adjacent frames, we can get
Res;; = |P;j; — Pjj;1|. If there are pixels in P;;; belonging
to blotch, they should satisfy Res;(a, b) > t1, where t] is



Xu et al. EURASIP Journal on Advances in Signal Processing 2012, 2012:132

http://asp.eurasipjournals.com/content/2012/1/132

a threshold and 4, b is the coordinates of pixel in Py;. We
can get a mask M; as following shows.

1, Resji(a,b) > 1

0, otherwise ab=1,...,L

Ml(a, b) = {
(4.1)

M; chooses the candidates of blotch according to the
inter-frame discontinuity of blotch. For getting a more
accurate estimation, we should take intra-frame disconti-
nuity into consideration. So, we define E € RI*L as the
residual among Yj;; and its neighborhood pixels as follows.

E(a,b) = |Yjr — Pyi(a, b)l,
ab=1,...,L/)2—1,L/2+1,...,L. (4.2)
Similarly, if there are pixels in P;;; belonging to blotch,
they should satisfy E(a,b) > tp, where t; is another
threshold. We can get another mask My as following
shows.

1, E(ab) >t
ab=1,...,L/2—1,
My(a, b)= L/2+1 L/

0, otherwise
(4.3)

Only the pixels satisfying Ma(a,b) = M;(a,b) = 1 are
considered as blotch. After getting the primary detection
result, a dilation operation is used to suppress the negative
false of detection further.

It should be noted that if the blotch has almost uni-
form luminance value, My will contain the pixels of the
boundary of the blotch rather than the whole region of the
blotch. Generally, blotches having almost uniform lumi-
nance value are likely to have small areas. After finding
their boundaries in My, we can detect their whole regions
by dilation operation. On the other hand, if a blotch has
large area, its luminance value is generally not uniform. In
such situation, we can still detect blotch with the help of
M1 and Mz.

Our method can be regarded as an extension of the work
in [13,24]. The improvement of our method is that we
not only consider the inter-frame discontinuity of blotch
but also consider the intra-frame discontinuity. In [24],
there is only one threshold in two-stage SROD controlling
the criterion of inter-frame discontinuity. The principle
of the Bayesian method in [13] is also taking advantages
of inter-frame discontinuity. In our method, we use two
thresholds #; and f; to control the criterions of inter-
and intra-frame discontinuity respectively. Because intro-
ducing intra-frame information of blotch, our method is
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Figure 7 The comparison of different blotch detectors. (a,b) Test
frame 1,2 of size 1024 x 1024 for blotch detection. (€) The inter-frame
blotch detection result of frame 1. (d) The inter- and intra-frame
detection result of frame 1.

more robust to pathological motion [13] and occlusions in
the movie.

Figure 7 shows an example of blotch detection, where
it can be found that using intra-frame discontinuity prop-
erty, the detection is robust to large motion. In this
algorithm, ¢; and £, are thresholds for inter-frame and
intra-frame discontinuity. Note that ¢, is related to the
search window size L. Generally, with the increase of L,
intra-frame coherence of arbitrary two pixels in the win-
dow becomes weaker, so the value of ¢, should decrease.
Too large ¢; and #; will increase the risk of false-negative
response while too small thresholds may cause a false-
positive response. In our experiments, we choose L = 18,
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Figure 8 The architecture of final system.
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Table 2 Comparison among different noise estimator
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Video name Actual o The method in [35] The method in [36] Proposed
o Error rate (%) o Error rate (%) o Error rate (%)

Demo 1 255 23.5576 7.6 23.0676 9.5 29.5166 158
Demo 2 255 23.3363 85 21.1579 17.0 26.7723 5.0
Demo 4 255 22.3471 124 23.1300 9.3 30.2774 18.7
Demo 5 255 23.7797 6.7 163132 36.0 28.2639 10.8
Prof. Bullinger 255 24.3093 4.7 21.9882 13.8 27.4088 7.5
Outdoor Flower 255 234828 79 21.5795 154 26.6728 4.6

tr = 2, and t; = 15 empirically based on the experimen-
tal results of over 4,000 frames. A dilation operation [29]
is used to the detection result for improving the accuracy.
The dilation operator is a square with size of 5 x 5 for
the test frame with size of 1024 x 1024. From Figure 7,
we can find that our detection result is good enough for a
computationally efficient algorithm.

Blotch restoration

For blotch restoration of the old movie, we can take advan-
tages of both inter- and intra- frame information with a
nonparametric kernel regression based approach. For a
missing pixel value y, its temporal and spatial context is
denoted as a vector form x. We can approximate y using
conditional expectation as

P(yi,x;)

dy;.
Pxy)

Y= E(YX = x)) = / YOI dy: = / ”
(4.4)

To get y = E(Y|X = x) we have to compute the joint
probability P(y;,x;) and the marginal probability P(x;),
without presuming any parametric relationship between
y; and x;. Kernel regression is a widely used nonparametric
technique to estimate probability functions [32,33]. With
kernel regression, we have

. 1<
Pox) = =3 Klllxi = x5, (4.5)
j=1

j=

N 1<
Plyixi) = — 3 Killxi = xiIDKg (i = 51) - (46)
j=1

where the kernels Ka (o) = %K (%) can be chosen from
functions that are nonnegative, sum to 1 and symmetric
around 0. / and g are called bandwidth of the kernels.
Widely used kernel function includes the triangle ker-
nel, Gaussian kernel, Epanechnikov kernel among others.
Note that the product kernels rather than multivariate
kernels are used in (4.6) to simplify the analysis. See [32]
for more details.
Substituting P(x;) and f’(yi, X;) into (4.4), we have

y=EX|X =x;) (4.7)

S 2 Kallxi = xiDKg (lly: — 51y
> i1 Kullxi = x511)

i1 Kin(llxi = x50 ([ yiKg (lyi = yjlDdyz)
o1 Ki(lxi — xjD) '

Now we have to deal with [ y;Kg(||ly; — yjl)dy;. By defin-
ing a residual term as ' = y; — y;, and omitting the
bandwidth parameter g for simplicity, we have

/ yiK (llyi—yjhdy; = / Oj+yHK Y Ddy: = yj, (4.8)

de-noising result gotten by the proposed method.

Figure 9 To each sub-figure, the images from light to right are original image, the image having Gaussian noise with 0 = 25 and the
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a

Cc

Figure 10 Scratch removal results. In each sub-figure, images from top to bottom and from left to right are: original image; the de-scratching
results gotten by BM3D restoration, non-local means inpainting, MCA inpainting, the method in [12], coefficients removing in wave atom domain
and the proposed method. The test frames are: (a) “TAO LI JIE"; (b) “FANG ZHEN ZHU"; (c) the test image in [12,15].

where we used the properties of the kernel function that The nonparametric conditional expectation estima-
it sums to 1 and is symmetric around the origin. Letting  tor in (4.9) is known as the Nadaraya—Watson (N'W)
(4.8) into (4.7), we have estimator, which is weighted average of the observa-

Z;;l K (lIx; — x;l)y; (4.9) tions {y1,¥2, ..., yn} with the weight in inverse proportion
> Knllxi — x51) ’ ’ to the distances between x;,1 < j < n and x;. For

y=E(YIX =x)~
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Table 3 Comparison among different algorithms on PSNR (dB)

Original Non-local + BM3D MCA + BM3D Proposed
Demo 1 25015 25423 25.507 24.496
Demo 4 25547 25.969 26.193 26.538
Demo 5 25.109 25.806 25692 26.336
Prof. Bullinger 26.553 30.002 29372 29.583
Outdoor Flower 24932 27.114 27.020 26.149
Pepper 25358 26.188 26.097 26.295
Lena 25360 271071 26.943 27.606
House 25382 26.578 26.826 27.288
Man 25.292 26.122 26.245 27.053

higher accuracy of the approximation, normalization is
recommended and we can rewrite (4.9) as following shows

o1 Kn(II%: — %5108y

—EYIX=x) ~ 7
Y ‘ K% — %)

, (4.10)

where X is the normalized vector of x and §; is the
ratio between the [, norm of x; and that of x;. The ker-

2
nel we choose is Gaussian kernel (%&g’”), where

h is the bandwidth of the kernel. The adaptive band-
width selection for the kernel is based on cross validation.
By minimizing the following cost function, we get the
optimized bandwidth.

1 n
h= in= Y G- 4.11
argmin — ) (; — ) (4.11)

j=1

where J; is the estimated pixel value of y; without using the
jth context x;. Because the cross validation method is com-
putationally very demanding, we only take the neighbors
of y; into consideration and set # < 9 in (4.11).

Implementation details and experimental results
The diagram of the proposed movie restoration system
is given in Figure 8. The system includes three modules:
parameter estimation, joint scratch and noise removal,
and blotch restoration. And the implementation details
will be introduced in this section.

Noise estimation and de-noising

We estimate the variance of noise using motion esti-
mation. For each patch in the current frame, we search
the patch with the shortest Euclidean distance in the

Figure 11 Each sub-figure gives the processing result of the proposed old movie restoration algorithm, from left to right: original
images, degraded images and restored images by proposed method.
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Table 4 Comparison among different algorithms on SSIM
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Original Non-local + BM3D MCA + BM3D Proposed
Demo 1 0.6128 0.6659 0.6673 0.6604
Demo 4 0.2976 04207 04222 0.4233
Demo 5 0.1218 0.2067 0.2061 0.2060
Prof. Bullinger 0.2986 03724 0.3699 0.3792
Outdoor Flower 0.3809 0.4383 04370 04306
Pepper 0.4392 0.5417 0.5402 0.5545
Lena 04372 0.5532 0.5507 0.5644
House 0.5707 0.6619 0.6638 0.6650
Man 0.5570 0.6396 0.6399 0.6401

preceding frame to get the motion vector and the resid-
ual patch. For simplicity, we employ the three-step motion
estimation method [34] in this research. Define P; and P;
as original patches, W; and Wj the i.i.d. Gaussian random
variables obeying N(0,02). It is obvious that W; — Wj
N(0,202). Moreover, according to the spatiotemporal sta-
tionary assumption of the noise in the movie, P; — P; has
Laplacian distribution Laplace(0, b) [29]. So, we can esti-
mate the variance of noise with the residual images from
the sequential frames.

Compared with other professional noise estimator, such
as the methods in [35,36], the proposed estimator has
lower computational complexity, which can be achieved
real-time. Considering the large volume of data in the
movie restoration system, the complexity of the algo-
rithm should be limited. Moreover, the methods in [35,36]
focus on estimate the noise in the single image while
the proposed method takes advantage of the inter-frame
continuity of movie signal.

For testing the performance of the proposed method,
we select six test sequences from the database http://sp.
cs.tut.fi/mobile3dtv/stereo-video/ and add Gaussian noise
to them. After applying different estimators to these

Figure 12 The comparison of different resotration methods in
blotch detection. (a) The region waiting for inpainting in our
method, which only contains blotches. (b) The region waiting for
inpainting in other methods, which contains both blotches and
scratches.

sequence, we give comparison results of different meth-
ods on the accuracy of noise estimation in Table 2. We
can find that the proposed method achieves a comparable
even better performance on noise estimation.

Based on the noise estimation result, we can apply wave
atom based de-noising algorithm proposed in Nested
thresholding in wave atom domain section. Figure 9
gives a comparison among original video frames, the
degraded frames and de-noising results. After perform-
ing the proposed de-noising method, we can improve the
visual effect of the frames greatly.

Scratch restoration

We compare our algorithm with some existing scratch
restoration algorithms. The initial quantization step is 8.
The four test movies are from China Film Archive, namely
“TAO LIJIE’, “FANG ZHEN ZHU’, “DA LU” and “GUAN
LIAN ZHANG”

Figure 10 shows the experimental results of scratch
removal (without blotch restoration) by different algo-
rithms, including BM3D, non-local means restoration [6],
MCA inpainting [37,38], the method in [12,15] (we used
the method proposed in [15] to detect scratch, after
that, we use the method in [12] to restore the degraded
images), the simple wave atom coefficients pruning based
method mentioned in Joint de-scratching and de-nois-
ing section and our proposed algorithm.

It can be found that BM3D is only effective on noise
removal. Both non-local means and MCA tend to pro-
duce over-smoothed results and remove some important
details in the images (see the area of human eyes). The
method in [15] gives false-negative detection when on
light vertical scratches, so that non-local means, MCA
and the method in [12] have the risk of false-negative
judgment. On the other hand, our proposed scratch
removal algorithm based on wave atom transform does
not closely depend on accurate detection. The naive coef-
ficient pruning method mentioned in Joint de-scratching
and de-noising section causes obvious ringing effect. The
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(1) Original frames

(2) Scratch restoration and de-noising results

(3) Blotch detection results

(4) The proposed method

Figure 13 Restoration process of our system. Each sub-figure corresponds to a processing step numbered in Figure 8. The test frames are from
"TAO LIJIE".
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Figure 14 The comparison of different methods. The first row is detection results of frames before inpainting. The second row is results of
non-local means inpainting based on the detection results from the first row. The third row is results of MCA inpainting [37] based on the detection
results from the first row. The fourth row is the results gotten by the method in [13]. The final row are results by the proposed method, which
corresponds to the output marked by (4) in Figure 11. The test frames are from “TAO LI JIE".
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Figure 15 The enlarged images of results. In each sub-figure, the images from left to right are: the original image; non-local mean inpainting;
MCA inpainting; the method in [12]; the proposed method. The test frames are: (a) “TAO LI JIE"; (b) FANG ZHEN ZHU".

c d

Figure 16 More test results. The first row of each sub-figure: to original frames. The second row of each sub-figure: automatic restoration result of
our proposed system. The test frames are: (@) “DA LU"; (b) “TAO LI JIE"; (€) “"GUAN LIAN ZHANG" and (d) “FANG ZHEN ZHU".
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Table 5 Run time per frame
Method MCA
3109.581

Method in [13]
287.335

Non-local Proposed

60.317

Run time (sec) 263217

proposed algorithm overcomes the drawback and gets the
best restoration results in our test.

Objective quality evaluation

We have also designed an objective evaluation test for the
proposed algorithm. First, we select five test sequences
from the database http://sp.cs.tut.fi/mobile3dtv/stereo-
video/ and another four normally used test images as orig-
inal data. Then we extract some frames with scratches
from the beginning of old movies. After removing the
mean of those scratched frames, we add the residual to
the test sequences. As a result, we have both the origi-
nal clean sequences and relevant degraded sequences, so
we can calculate PSNR as an objective quality measure.
We compared our algorithm with other restoration algo-
rithms, including the non-local means, MCA and BM3D.
Table 3 lists the PSNR comparison of these algorithms.
Figure 11 gives some visual results as well. From the
results, we can find that our algorithm outperforms other
methods under most conditions. Note that for a faith-
ful test, scratches are detected by the method in [15] and
blotches are detected by the method in the tests before
inpainted by the algorithms of non-local means or MCA.

Besides PSNR, another objective image quality assess-
ment method called structural similarity indexing (SSIM)
[39,40] is used to evaluate the performance of the pro-
posed method. Similarly, the quality index of our results is
better in most situations, as Table 4 shows.

The reason for the outstanding performance of the pro-
posed method can be summarized as follows. (1) As we
have said that our method is robust to the positive false in
the detection phase. The region not belonging to scratch
and blotch can be protected better than other methods.

(2) The inpainting based restoration method aban-
dons the information hidden by scratch and blotch. It
estimates original signal merely according to the neigh-
borhood of the signal. When the region of scratch or
blotch is too large, this method can not get enough
prior knowledge from the neighborhood of signal, which
makes the result of restoration over-smooth. In the pro-
posed method, instead of abandoning the information of
original signal totally, we just suppress the interference
added on the signal as much as possible. This strategy
is better than inpainting based method when it comes
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to serious degraded image. Figure 12 gives an illustra-
tion of the advantage of our method. Because we only
apply inpainting algorithm to blotches, to the same frame,
the region waiting for inpainting in our method is much
smaller than that of other method.

Overall performances of de-scratching, de-noising and
de-blotching in old movie

Results of the proposed system on practical data are
shown in Figure 13, 14, 15 and 16. In Figure 13, each sub-
figure reports the result from the step marked in Figure 8.
The size of test frames is 1024 x 1024. We can find that the
proposed system can produce outstanding results even to
seriously damaged movies.

Our proposed system also has the advantage of high
computational efficiency. On the platform of MATLAB
with Inter Core2 CPU and with 3 Gb memory, the pro-
cessing speed of our algorithm is on average 60.317 s per
frame. In fact, compared with other existing methods,
such as those based on pure nonparametric inpainting
for both scratch and blotch, MCA inpainting and the
method in [13], our method is much faster on the same
hardware and software platform. Table 5 shows the aver-
age CPU time for processing a test frame of the testing
algorithms. In Figure 16, we test our system on four dif-
ferent movie segments and give three consecutive frames
and corresponding restoration results respectively.

The high efficiency of our proposed system can be
explained by the following facts.

(1) Inscratch restoration stage, we do not have to
perform complex detection, which is a large part of
total time.

(2) Wave atom transform is based on FFT and IFFT,
whose complexity is O(N log N), so the complexity
of our nested-thresholding method is only
O(IN log N) with I the iteration number, which is
much lower than wavelet based methods.

(3) Our empirically test shows that the iterative
thresholding algorithm converges fast and the
iteration number we need is less than 10, whereas the
iteration number of MCA can be hundreds times and
even more.

(4) Itisnoted that inpainting is the most computationally
expensive step in our movie restoration system,
whose complexity is about O(NL?), where N is the
number of pixel to be inpainted and L? is the number
of pixel in the neighborhood. Taking scratch out of

Table 6 Average run time per frame and percentage in total time of each phase

Phase Parameters estimation Scratch, noise restoration Blotch detect Blotch inpaint
Run time (s) 6.280 8327 13.067 32.643
Percentage (%) 10 14 22 54
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non-parametric inpainting step can further reduce
the computation time.

The average time cost of each phase and their percent-
age in the total processing time in our system is given in
Table 6. The blotch inpainting phase costs most of the
processing time while the de-noising and de-scratching
phases occupy much less processing time.

It should be mentioned that although our system in
Figure 8 shows an obvious serial type of process manner
for a single frame, it can be highly paralleled on GPU for
the processing of movie sequence due to the following
observations.

(1) wave atom transform and inverse-transform is
block-by-block, which can be done with a high
degree of parallelism.

(2) The kernel regression based inpainting process using
only local data can also be conducted in parallel.

Therefore, our proposed system already has lower com-
plexity as compared to the existing competitors, and it is
expected by facilitating GPU and other parallel computing
techniques in practical implementation.

Conclusions and future work

In this article, we propose an automatic system for movie
restoration. Based on the analysis of features of noise,
scratch and blotch artifacts in the damaged movie, we
combine a nested thresholding method in wave atom
domain with nonparametric model towards effective
restoration. In scratch restoration stage, we use wave atom
transform to achieve joint scratch detection, restoration
and de-noising. In blotch restoration stage, we take full
advantages of inter- and intra-frame discontinuity and use
nonparametric inpainting.

Although our work gets outstanding performances,
there still exists some problems for further investigation
in future work. In our model, blotch is modeled as multi-
plicative noise, so that the parameter g is binary. However,
in practical situation, some blotches are semi-transparent
in the movie. How to design a more practical model for the
degradation of movie is one of our future works. On the
other hand, the values of some parameters in our system
are empirical.

(1) Based on the experimental results of four films from
Chinese film archive (over 4,000 frames), the configura-
tion of L, t; and ¢, in de-blotching step achieves satisfying
results for blotch restoration. However, we still need to
investigate more evidence to support the configuration of
them.

(2) In de-scratching and de-noising phase of our system,
the quantization step 7, the stop criterion and the multi-
plicative constant of the threshold value in the de-noising
step are fixed. We think that the selection of T" may have
a strong relationship with the intensity of scratch in the
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movie. For example, the value of T may not be global.
To different regions, the quantization step can be adap-
tive according to the maximum value of the scratch in
the region. According to noise level and image content,
the stop criterion and the multiplicative constant of the
threshold value in the de-noising step should be adap-
tive as well. In this article, they are fixed to be 3 and 0.8,
respectively. We think that the estimation of the variance
of noise can provide the selection of them with a useful
prior knowledge. It is reasonable to think that the values
of them should be increase with the variance of noise. In
summary, establishing an adaptive strategy for the choice
of these parameters will be one of our future work.

Competing interests
The authors declare that they have no competing interests.

Acknowledgements

This article was supported in part by the NSFC (60932006, 61025005,
61001145, 61102098), RFDP (20090073110022), postdoctoral foundation of
China 20100480603, 201104276, postdoctoral foundation of Shanghai
11R21414200 and the 111 Project (B07022).

Received: 30 November 2011 Accepted: 6 June 2012
Published: 3 July 2012

References

1. DL Donoho, Denoising by soft-thresholding. IEEE Trans. Inf. Theory. 41(3),
613-627 (1995)

2. SGChang, B Yu, M Vetterli, Adaptive wavelet thresholding for image
denoising and compression. IEEE Trans. Image Process. 9(9), 1532-1546
(2000)

3. MAT Figueiredo, RD Nowak, An EM algorithm for wavelet-based image
restoration. IEEE Trans. Image Process. 12(8), 906-916 (2003)

4. F Luisier, T Blu, M Unser, A new SURE approach to image denoising:
interscale orthonormal wavelet thresholding. IEEE Trans. Image Process.
16(3), 593-606 (2007)

5. M Bertalmio, V Caselles, A Pardo, Movie denoising by average of warped
lines. IEEE Trans. Image Process. 16(9), 2333-2347 (2007)

6. A Buades, B Coll, ) Morel, Nonlocal image and movie denoising. Int. J.
Comput. Vis. 76(2), 123-139 (2008)

7. NBose, N Ahuja, Superresolution and noise filtering using moving least
squares. |[EEE Trans. Image Process. 15(8), 2239-2248 (2006)

8. KDabov, A Foi, V Katkovnik, K Egiazarian, Image denoising by sparse 3D
transform-domain collaborative filtering. IEEE Trans. Image Process. 16(8),
2080-2095 (2007)

9. JMairal, F Bach, J Ponce, G Sapiro, A Zisserman, in IEEE 12th International
Conference on Computer Vision, Non-local sparse models for image
restoration. (Kyoto, Japan, 2009), pp. 2272-2279

10. L Shao, H Zhang, G de Haan, An overview and performance evaluation of
classification-based least squares trained filters. IEEE Trans. Image Process.
17(10), 1772-1782 (2008)

11. L Shao, JWang, | Kirenko, G de Haan, Quality adaptive least squares filters
for compression artifacts removal using a no-reference bloc visibility
metric. J. Vis. Commun. Image Represent. 22, 23-32 (2011)

12. AC Kokaram, in IEEE International Conference on Multimedia Computing
and Systems, Removal of line artefacts for digital dissemination of
archived film and video. (Florence, Italy, 1999), pp. 245-249

13.  AC Kokaram, On missing data treatment for degraded video and film
archives: a survey and a new Bayesian approach. [EEE Trans. Image
Process. 13(3), 397-415 (2004)

14. V Bruni, D Vitulano, A Kokaram, in Proceedings of the 3rd International
Symposium on Image and Signal Processing and Analysis, Line scratches
detection and restoration via light diffraction. (2003), pp. 5-10

15. V Bruni, D Vitulano, A generalized model for scratch detection. IEEE Trans.
Image Process. 13, 44-50 (2004)



Xu et al. EURASIP Journal on Advances in Signal Processing 2012, 2012:132
http://asp.eurasipjournals.com/content/2012/1/132

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33

34

35.

36.

37.

38.

39.

40.

MJ Nadenau, SK Mitra, in Time-Varying Image Processing and Moving Object
Recognition, Blotch and scratch detection in image sequences based on
rank ordered differences. (Florence, Italy, 1997), pp. 27-35

M Haindl, J Filip, in Proc. IEEE International Conference on Pattern
Recognition, Fast restoration of colour movie scratches. (Quebec, Canada,
2002), pp. 269-272

L Joyeux, S Boukir, B Besserer, in Fifth IEEE Workshop on Applications of
Computer Vision, Film line scratch removal using Kalman filtering and
Bayesian restoration. (Palm Springs, America, 2000), p. 8

L Maddalena, A Petrosino, Restoration of blue scratches in digital image
sequences. Image Vis. Comput. 26(10), 1314-1326 (2008)

S Muller, J Buhler, C Thebault, | Doser, O Neisse, in 16th IEEE International
Conference on Image Processing (ICIP), Scratch detection supported by
coherency analysis of motion vector fields. (Cairo, Egypt, 2009), pp. 89-92
F Stanco, G Ramponi, L Tenze, in 5th COST 276 Workshop, Removal of
semi-transparent blotches in old photographic prints, (Prague, Czech,
2003)

F Stanco, G Ramponi, A de Polo, in EUROCON 2003. Computer as a Tool. The
IEEE Region 8, vol. 2, Towards the automated restoration of old
photographic prints: a survey. (Ljubljana, Slovenia, 2003), pp. 370-374

A Licsar, L Czuni, in IEEE International Conference on Image Processing, vol. 2,
Trainable post-processing method to reduce false alarms in the detection
of small blotches of archive films. (Genoa, Italy, 2005), pp. 562-565

MK Gullu, O Urhan, S Erturk, Blotch detection and removal for archive film
restoration. AEU-Int. J. Electron. Commun. 62(7), 534-543 (2008)

AC Kokaram, in IEE Seminar on Digital Restoration of Film and Video
Archives, Advances in the detection and reconstruction of blotches in
archived film and video. (London, UK, 2001), pp. 1-7

L Demanet, Curvelets, wave atoms, and wave equations, Thesis of
California Institute of Technology, 2006

L Demanet, L Ying, Wave atoms and sparsity of oscillatory patterns. Appl.
Comput. Harmon. Anal. 23(3), 368-387 (2007)

I Selesnick, R Baraniuk, N Kingsbury, The dual-tree complex wavelet
transform. [EEE Signal Process. Mag. 22(6), 123-151 (2005)

RC Gonzalez, RE Woods, Digital Image Processing (Publishing House of
Electronics Industry, Prentice Hall, Beijing, 2002)

E Nezhadarya, RK Ward, A new scheme for robust gradient vector
estimation in color images. IEEE Trans. Image Process. 20(8), 2211-2220
(2011)

NA Otsu, A threshold selection method from gray-level histograms. IEEE
Trans. Syst. Man Cybern. 9, 62-66 (1979)

W Hardle, Nonparametric and Semiparametric Models. Springer Series in
Statistics (Springer, New York, 2004)

H Takeda, S Farsiu, P Milanfar, Kernel regression for image processing and
reconstruction. IEEE Trans. Image Process. 16(2), 349-366 (2008)

X Jing, LP Chau, An efficient three-step search algorithm for block motion
estimation. IEEE Trans. Multimed. 6(3), 435-438 (2004)

D Zoran, Y Weiss, in IEEE 12th International Conference on Computer Vision,
Scale invariance and noise in natural images. (Kyoto, Japan, 2010), pp.
2209-2216

CTang, X Yang, G Zhai, in [EEE 12th International Conference on Multimedia
Expo, Dual-transform based noise estimation. (Melbourne, Australia,
2012), accepted

M Elad, JL Starck, P Querreb, D Donoho, Simultaneous cartoon and
texture image inpainting using morphological component analysis
(MCA). Appl. Comput. Harmon. Anal. 19(3), 340-358 (2005)

JM Fadili, JL Starck, M Elad, D Donoho, Mcalab: reproducible research in
signal and image decomposition and inpainting. IEEE Des. Test. 12, 44-63
(2010)

Z Wang, HR Sheikh, AC Bovik, Objective Video Quality Assessment. The
Handbook of Video Databases: Design and Applications (CRC Press, Boca
Raton, 2003), pp. 1041-1078

Z Wang, A Bovik, H Sheikh, E Simoncelli, Image quality assessment: from
error visibility to structural similarity. IEEE Trans. Image Process. 13(4),
600-612 (2004)

doi:10.1186/1687-6180-2012-132

Cite this article as: Xu et al: Automatic movie restoration based on wave
atom transform and nonparametric model. FURASIP Journal on Advances in
Signal Processing 2012 2012:132.

Page 19 of 19

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Immediate publication on acceptance

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com




	Abstract
	Keywords

	Introduction
	Signal model of movie
	Hybrid noise model
	The analysis of noise, scratch and blotch

	Joint de-scratching and de-noising
	Overview of wave atom transform
	The features of wave atom transform to represent scratch
	Nested thresholding in wave atom domain
	Algorithm 1. The nested thresholding scheme

	Blotch detection and restoration
	Blotch detection
	Blotch restoration

	Implementation details and experimental results
	Noise estimation and de-noising
	Scratch restoration
	Objective quality evaluation
	Overall performances of de-scratching, de-noising and de-blotching in old movie

	Conclusions and future work
	Competing interests
	Acknowledgements
	References

