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Abstract

In this paper, we address the channel estimation problem for multiple-input multiple-output (MIMO) multi-relay
systems exploiting measurements collected at the destination only. Assuming that the source, relays, and destination
are multiple-antenna devices and considering a three-hop amplify-and-forward (AF)-based training scheme, new
channel estimation algorithms capitalizing on a tensor modeling of the end-to-end communication channel are
proposed. Our approach provides the destination with the instantaneous knowledge of all the channel matrices
involved in the communication. Instead of using separate estimations for each matrix, we are interested in a joint
estimation approach. Two receiver algorithms are formulated to solve the joint channel estimation problem. The first
one is an iterative method based on a trilinear alternating least squares (TALS) algorithm, while the second one is a
closed-form solution based on a Kronecker least squares (KRLS) factorization. A useful lower-bound on the channel
training length is derived from an identifiability study. We also show the proposed tensor-based approach is applicable
to two-way MIMO relaying systems. Simulation results corroborate the effectiveness of the proposed estimators and
provide a comparison with existing methods in terms of channel estimation accuracy and bit error rate (BER).
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1 Introduction
Cooperative communications have been considered as
a promising concept to improve the link performance
in modern wireless communication systems due to spa-
tial diversity gains, enhanced coverage, and increased
capacity [1-4]. In this context, relaying has been com-
monly accepted as a key technique to improve system
performance by overcoming channel impairments, such
as fading, shadowing, and path loss, in wireless fading
channel environments [4-6]. By resorting to relay-assisted
cooperation, multiple wireless links between mobile sta-
tions and base stations are established to create a vir-
tual multiple-input multiple-output (MIMO) system [7].
In the simplest relay processing strategy, the relay sta-
tions amplify and forward the received data towards the
base station. In this work, we adopt amplify-and-forward
(AF) relaying due to its simplicity of implementation [5].
This strategy is preferable when fixed relay stations have
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a limited computation capacity as opposed to the base
station.
The overall link reliability of cooperative diversity

schemes strongly depends on the accuracy of channel
state information (CSI) associated with the multiple hops
involved in the overall communication. Moreover, the use
of common precoding techniques at the source and/or
relays generally requires instantaneous CSI knowledge of
the different channels to optimize transmission [8,9]. In
practice, however, the CSI is unknown and has to be
estimated with the aid of training sequences [10,11]. For
two-hop relaying systems, the associated channel matri-
ces can be estimated in separate LS estimation stages that
operate sequentially at the destination [10]. When the
communication involves additional hops, such a sequen-
tial LS estimation approach still applies by using addi-
tional transmission phases. The main problem is that
channel estimation errors accumulate across the consec-
utive stages. In [11], a closed-form solution was pro-
posed for the joint estimation of the channel matrices
in a two-hop MIMO relaying system, avoiding error
propagation.
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A few recent works have developed efficient receiver
algorithms based on tensor analysis for channel esti-
mation and/or symbol detection in cooperative systems
[12-16]. In [12], a training sequence-based channel esti-
mation algorithm is proposed for two-way relaying sys-
tems with multiple antennas at the relays. Recently [14],
a channel estimation algorithm based on parallel factor
(PARAFAC) model [17,18] was developed for two-hop
MIMO relay systems. The approach allows estimation of
the channel matrices associated with both hops by resort-
ing to training sequences. Other few recent works have
developed tensor-based receivers for one-way two-hop
cooperative systems [13,15,16]. In particular, the approach
of Ximenes et al. [16] assumes a Khatri-Rao space-time
(KRST) coding [19] at the source node, and a semi-blind
receiver is proposed by assuming the existence of a direct
link between the source and the destination.
The approach of Roemer and Haardt and Rong et al.

[12,14] allows a joint estimation of the channel matrices
by resorting to training sequences. With the idea of avoid-
ing the use of training sequences at the users’ and relays’
transmissions, the work [13] proposed a blind receiver
for uplink multiuser cooperative diversity systems based
on a PARAFAC model for the received signal. However,
[13] is limited to a clustered relaying scenario, where
relays belonging to the same cluster have the same spa-
tial signature. The common feature of all these works is
on the assumption of only two hops (source-to-relays and
relays-to-destination). To further extend the coverage area
and combat channel impairments such as path-loss and
shadowing, it may be advantageous to introduce an addi-
tional hop along with an extra communication phase by
means of three-hop relaying [5]. We highlight that the
interest of the proposed work is on the joint channel
estimation problem (i.e., joint channel and symbol estima-
tion is not addressed here). The joint channel estimation
problem was addressed in [12] for a two-way relaying sys-
tem and in [14] for a one-way two-hop system. From a
tensor modeling viewpoint, the common feature of both
works is on the use of the PARAFAC model. Herein, we
focus on a one-way three-hop multi-relay system, while
resorting to a PARATUCK2 model to derive the proposed
algorithms.
In this work, novel channel estimators are proposed for

MIMO multi-relay systems. Assuming that the source,
relays, and destination are multiple-antenna devices and
considering a three-hop AF-based training scheme, new
channel estimation algorithms capitalizing on a multi-
linear structure of the end-to-end communication chan-
nel are proposed. The proposed approach is based on a
PARATUCK2 tensor model [20] of the data collected at
the destination only, which allows the channel matrices
to be jointly estimated at the destination. Two receiver
algorithms are formulated to solve the channel estimation

problem. The first one is an iterative channel estima-
tion method based on a trilinear alternating least squares
(TALS) algorithm derived from a PARATUCK2 tensor
model of the received data, while the second one is a
closed-form solution based on a Kronecker least squares
(KRLS) factorization. The proposed approach provides
an extension of the idea recently proposed in [14] to a
more general scenario with two-tier relaying usingMIMO
AF relays. Identifiability of the channel matrices is also
examined in this work, and a useful lower-bound on the
channel training length is derived. In contrast to con-
ventional pilot-assisted LS channel estimation, where the
channel matrices are estimated separately in consecutive
stages, our proposed algorithms make a more efficient
use of cooperative diversity by providing a joint estima-
tion of all the channel matrices. As will be clear later,
such a joint channel estimation is possible due to the
use of the tensor approach to model the end-to-end
system.
In comparison with conventional (multi-stage) LS chan-

nel estimation [10], the proposed tensor-based estimators
have two distinguishing features: i) they avoid accumu-
lation of channel estimation errors since all the channel
matrices are estimated simultaneously (either iteratively
or in closed-form), and ii) they can operate under less
restrictive (and more flexible) conditions on the required
number of antennas at the relays and/or destination,
as will be clear from our identifiability analysis. Our
approach also includes the PARAFAC-based channel esti-
mator of [14] as a particular case. We also show that the
proposed tensormodeling approach copes with a two-way
MIMO multi-relaying communication system, where the
TALS and KRLS channel estimators can be applied.
This paper is organized as follows. In section 2, the

system model and working assumptions are described.
Section 3 formulates the proposed approach. The data
model is recast using tensor analysis, and the two chan-
nel estimation algorithms (TALS and KRLS) are derived.
Identifiability of the channel matrices is also examined in
this section. In section 4, we provide an extension of the
proposed tensor-based signal model to a two-way MIMO
relaying scenario. Numerical results are presented and
discussed in section 5, and the conclusions are drawn in
section 6.
Notation: Scalars are denoted by lowercase letters

(a, b, . . .), vectors as lowercase boldface letters (a, b, . . .),
matrices as uppercase boldface letters (A,B, . . .), and ten-
sors as calligraphic letters (A,B, . . .). AT and A† stand
for transpose and pseudo-inverse of A, respectively. To
retrieve the element (i, j) of A, we use a(i, j). The ith row
of A ∈ C

I×R is denoted as A(i,:) while its rth column is
denoted by A(:,r). The operator Di (A) forms a diagonal
matrix out of the ith row of A. The Khatri-Rao (colum-
nwise Kronecker) product between A ∈ C

I×R and B ∈
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C
J×R, i.e., A � B = [

A(:,1) ⊗ B(:,1), . . . ,A(:,R) ⊗ B(:,R)

] ∈
C
IJ×R.

2 Systemmodel
We consider a three-hop MIMO AF communication sys-
tem where the source node transmits information to the
destination node with the aid of R1 relays in the first tier
and R2 relays in the second tier. As shown in Figure 1, the
source and destination nodes are equipped with Ns ≥ 2
and Nd ≥ 2 antennas, respectively, and half-duplex relays
are considered. The qth relay of tier 1, which receives
data from the source node, is equipped with Iq antennas,
q = 1, . . . ,R1, while the pth relay of tier 2, which receives
data from tier 1 relays, is equipped with Jp antennas, p =
1, . . . ,R2. The total number of antennas that transmit in
second and third phases are denoted byN1 = I1+· · ·+IR1
and N2 = J1 + · · · + JR2 , respectively.
Some key assumptions are now given: (i) relays are

synchronized at the symbol level. More specifically, the
timing offset is assumed to be within one symbol period,
so that timing information is acquired only through some
form of (rough) coarse synchronization; (ii) fading is
assumed to be frequency flat, and the data block size is
smaller than the channel coherence time so that the chan-
nel is considered as time invariant; (iii) the direct links
between the source (resp. tier 1 relays) and the destination
node are not availablea. This situation is evidenced in the
current uplink of IEEE 802.16j.

2.1 Data model
The communication between source and destination is
accomplished in three hops. In the first hop, the modu-
lated signal vector us (t) ∈ C

Ns×1 is transmitted to R1
relays. The received signal at the qth relay of tier 1 can be
written as

y(q)
sr (t) = H(q)

sr us (t) + v(q)
sr (t) (1)

where y(q)
sr (t) ∈ C

Iq×1 is the received signal vector at
the qth relay of tier 1, H(q)

sr ∈ C
Iq×Ns is the MIMO

channel between the source and the qth tier 1 relay, and
v(q)
sr (t) ∈ C

Iq×1 is an additive noise vector. Noise samples
are modeled as independent and identically distributed
complex Gaussian random variables with zero mean and
unit variance.
In the second hop, the source stops transmission and

all the R1 relays of tier 1 amplify their received signals
with diagonal AF matrices G(1), . . . ,G(R1) and simultane-
ously forward the resulting signals to the tier 2 relays. The
received signal vector at the pth relay of tier 2 is then given
by

y(p)
rr (t + 1) =

R1∑
q=1

H(p,q)
rr G(q)y(q)

sr (t) + v(p)
rr (t + 1) (2)

whereH(p,q)
rr ∈ C

Jp×Iq is the MIMO channel linking the R1
tier 1 relays to R2 tier 2 relays, while v(p)

rr (t + 1) ∈ C
Ip×1

denotes the corresponding noise vector. In the third hop,
the source and all tier 1 relays are silent, while the tier 2
relays process the received signal vector with the diagonal
AF matrices J(1), . . . , J(R2) and forward their amplified sig-
nals to the destination. The received signal vector at the
destination is then given by

yrd(t + 2) =
R2∑
p=1

H(p)
rd J(p)y(p)

rr (t + 1) + vrd(t + 2), (3)

whereH(p)
rd ∈ C

Nd×Jp is theMIMO channel linking the pth
tier 1 relay to the destination, and vrd(t + 2) ∈ C

Nd×1 the
corresponding additive noise term.
Let us define the multi-relay (block) channel matrices

Hrd
.=

[
H(1)

rd , . . . ,H
(R2)
rd

]
∈ C

Nd×N2 , (4)

Hrr
.=

⎡
⎢⎣

H(1,1)
rr · · · H(1,R1)

rr
...

...
...

H(R2,1)
rr · · · H(R2,R1)

rr

⎤
⎥⎦ ∈ C

N2×N1 , (5)

HT
sr

.=
[
H(1)T

sr , . . . ,H(R1)T
sr

]
∈ C

Ns×N1 , (6)

Figure 1 Block diagram of the considered MIMOmulti-relay system.
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and let G .= bdiag
[
G(1), . . . ,G(R1)

] ∈ C
N1×N1 and J .=

bdiag
[
J(1), . . . , J(R2)

] ∈ C
N2×N2 be the two diagonal matri-

ces that collect the AF coefficients of the overall multi-
relay system. Using these definitions, and using (1) and (2),
we can rewrite (3) as follows:

yrd(t + 2) = HrdJHrrGHsrus (t) + vrd (t + 2) , (7)

where vrd (t + 2) = vsr (t) + vrr (t + 1) + vrd (t + 2) is
the total noise at the destination, which contains the fil-
tered noise contributions from the multiple relays, with
vsr (t) = HrdJHrrGvsr, vrr (t + 1) = HrdJvrr (t + 1),
vrr (t + 1) .=

[
v(1)T
rr (t + 1) , . . . , v(R2)T

rr (t + 1)
]T ∈ C

N2×1,

vsr (t)
.=

[
v(1)T
sr (t) , . . . , v(R1)T

sr (t)
]T ∈ C

N1×1.
Note that, since this work is concerned with channel

estimation, the AF matrices G and J cannot be optimized
at the transmission (source and relays). Therefore, for sim-
plicity, we have assumed that these matrices are diagonal.
The use of non-diagonal AF matrices in the proposed
approach is left for a future work. Note also that, once
the channels are estimated, the design of full AF matrices
can be done, e.g., based on the SVD of the channel matri-
ces, following the idea of [9] or on the mean-square error
(MSE) criterion [21]. If simplified AF schemes are used,
where only power allocation is done, G and J are diagonal
matrices, the coefficients of which can be designed as a
function of themean channel and noise powers [5] or opti-
mized from power allocation strategies, as shown recently
in [22].

2.2 Conventional LS estimation method
The simplest approach to estimate the effective channel
Heff = HrdJHrrGHsr (including the amplifying factors)
is based on training sequences. If separate estimations of
the multi-relay channels Hrd, Hrr, and Hsr are required,
for instance, to optimize the source precoding matrix
and the relays’ AF matrices, three separate LS estima-
tion stages should operate sequentially at the destination.
The method would work similarly to that of Kong and
Hua [10]. Denote S0 ∈ C

Ns×L0 as the training sequence
matrix sent by the source node, while S1d ∈ C

N1×L1 and
S2d ∈ C

N2×L2 are the training sequence matrices sent
by the relays at tiers 1 and 2, respectively. Assume that
orthogonal training sequences are used in all stages, which
implies training sequences of length L0 ≥ Ns, L1 ≥ N1 and
L2 ≥ N2 at the source, tier 1 and tier 2 relays, respectively.
In the first stage, S2d is transmitted from all tier 2 relays
to the destination. The LS estimate of Hrd is obtained
as

Ĥrd = Y1SH2d, (8)

where Y1 ∈ C
Nd×L2 is the received signal matrix at the

destination during the first training stage. In the second

stage, S1d is transmitted from all tier 1 relays to the des-
tination via AF processing at the tier 1 relays. Defining
Y2 ∈ C

Nd×L1 as the data received from tier 1 relays at
the second training stage, an LS estimate of Hrr can be
obtained as

Ĥrr = (
ĤrdJ

)† Y2SH1d. (9)

Finally, S0 is transmitted from the source to the destina-
tion via the two tiers of relays. The destination collects the
received data in Y3 ∈ C

Ns×L0 . An estimate of Ĥsr is then
found as

Ĥsr = (
ĤrdJĤrrG

)† Y3SH0 . (10)

This method requires 6 transmission phases to provide
the destination with all the channel matrices (1 phase
for estimating Hrd, 2 phases for estimating Hrr and 3
phases for estimating Hsr). Note that the channel esti-
mation errors accumulate across the consecutive stages,
due to the dependency between successive channel esti-
mates. Moreover, this method requires Nd ≥ N2 ≥
N1 for the uniqueness of the LS estimates of Ĥrr and
Ĥsr. In the following, we adopt a different path to solve
this problem by capitalizing on tensor analysis. The idea
is to provide the destination with a joint estimate of
all the partial channels Hrd, Hrr, and Hsr by exploit-
ing the tensor structure of the end-to-end signal model.
The proposed approach allows channel estimation to be
performed under less restrictive conditions on the num-
ber Nd of receive antennas at the destination compared
with the conventional LS estimator, while avoiding error
accumulation.

3 Proposed approach
In order to derive the proposed channel estimators, we
first recast the formulation of the system model by resort-
ing to multi-way (tensor) analysis. First, let us divide the
overall training period into K time blocks. In every time
block, the same training sequence matrix S0 ∈ C

Ns×L0

is transmitted by the source node. In the kth time block,
the relays of tiers 1 and 2 use the AF matrices Gk and
Jk , respectively, k = 1, . . . ,K . Let us define E ∈ C

K×N1

and F ∈ C
K×N2 as channel training matrices such that

Dk(E)
.= Gk and Dk(F)

.= Jk , where Dk(·) forms a diag-
onal matrix out of the kth row of its matrix argument.
Otherwise stated, the rows of E (resp. F) hold the AF
coefficients of the R1 (resp. R2) relays associated with
the different time blocks. Then, the signal received at
the destination during the kth time block can be written
as:

Yk = HrdDk (F)HrrDk (E)HsrS0 + Vk , (11)
k = 1, . . . ,K ,
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where Vk = HrdDk (F)HrrDk (E)Vsr,k + HrdDk (F)Vrr,k ,
Vsr,k ∈ C

N1×L0 is the noise matrix at the relays during the
kth time block, Vrr,k ∈ C

N2×L0 is the noise matrix at the
second hop relays for the k-th time block, and Vrd , k ∈
C
Nd×L0 is the noise matrix at the destination for the kth

time block.
Regarding the structure of the channel training matri-

ces E ∈ C
K×N1 and F ∈ C

K×N2 , unless otherwise stated,
their columns are chosen as length-K random sequences
following a uniform distribution between [−1, 1]. These
sequences are defined beforehand and known at the des-
tination node. With such a choice, the signals transmitted
by the relays across the K time blocks have random phases
and are subject to limited power fluctuations. Clearly, this
design is not optimal for minimizing the mean square
error of the channel estimation. Determining an optimum
design for these matrices is a difficult problem and is not
pursued in this work. Nevertheless, extensive computer
simulations have demonstrated that this choice yields very
good results. For convenience, we will come back later to
the problem of choosing E and F from a channel iden-
tifiability viewpoint. A more elaborated design of these
matrices will be then proposed.
Upon reception of the data matrix Yk , k = 1, . . . ,K ,

an unstructured estimate of the end-to-end channel dur-
ing the kth time block is first obtained at the destination.
Multiplying both sides of (11) with the known training
sequence matrix SH0 yields

Ĥk = YkSH0 ∈ C
Nd×Ns

= HrdDk (F)HrrDk (E)Hsr + VkSH0 , (12)

k = 1, · · · ,K . Let us introduce

Ĥk = Hk + VkSH0 , (13)

where

Hk = HrdDk (F)HrrDk (E)Hsr, k = 1, . . . ,K , (14)

is the matrix-of-interest that represents the effective end-
to-end channel, Vk is the total noise matrix, and H̃k
is the noisy observation of Hk . We can assemble the
set {H1, · · · ,HK } to form a three-way array, or a third-
order tensor, H ∈ C

Nd×Ns×K , whose dimensions are Nd
(first dimension), Ns (second dimension), and K (third
dimension).
Equation (14) corresponds to a PARATUCK2 model of

the (noiseless) tensor H [23]. The PARATUCK2 model
has first appeared in [20]. A more comprehensive formu-
lation is given in [23], which also details an alternating
least squares procedure for estimating its matrix factors.

Here, we show that this tensor model can be exploited to
derive novel channel estimators for a cooperative MIMO
relaying system.
Now, let us define

H[1]
.= [vec (H1) , · · · , vec (HK )] ∈ C

NdNs×K (15)

where H[1] is a matrix ‘unfolding’ for the tensor H
obtained by stacking column-wise its K slices. Define also

Wk = Dk (F)HrrDk (E) ∈ C
N2×N1 . (16)

Substituting (14) into (15), and applying property
vec (ACB) = (

BT ⊗ A
)
vec(C), we get

H[1] =
(
HT

sr ⊗ Hrd
) [

vec (W1) , · · · , vec (WK )
]

=
(
HT

sr ⊗ Hrd
)
diag (vec (Hrr))

(
ET � FT

)
(17)

where

ET � FT =
[
ET

(1,:) ⊗ FT(1,:), · · · ,ET
(K ,:) ⊗ FT(K ,:)

]
∈ C

N2N1×K ,

(18)

E(k,:) ∈ C
1×N1 (resp. F(k,:) ∈ C

1×N2 ) denote the kth
row of E (resp. F), and � is the Khatri-Rao (columnwise
Kronecker) product.
Applying property vec

(
Adiag(x)B

) = (
BT � A

)
x, we

get from (17) the following expression:

vec(H[1]) = �1vec (Hrr), (19)

where

�1 =
[(

ET � FT
)T �

(
HT

sr ⊗ Hrd
)]

∈ C
NDNsK×N1N2 .

(20)

In addition to the matrix unfolding H[1], it is useful
to define two other matrix unfoldings, which collect the
information of tensorH. Therefore, let us now define

H[2]
.=

⎡
⎢⎣

H1
...

HK

⎤
⎥⎦ ∈ C

NdK×Ns , H[3]
.=

⎡
⎢⎣
HT

1
...

HT
K

⎤
⎥⎦ ∈ C

NsK×Nd .

(21)

From (14) and (16), it follows that

H[2] =
⎡
⎢⎣

HrdW1
...

HrdWK

⎤
⎥⎦Hsr =

⎡
⎢⎣
Hrd

. . .
Hrd

⎤
⎥⎦

⎡
⎢⎣

W1
...

WK

⎤
⎥⎦Hsr

(22)
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and

H[3] =
⎡
⎢⎣
HT

srWT
1

...
HT

srWT
K

⎤
⎥⎦HT

rd =
⎡
⎢⎣
HT

sr
. . .

HT
sr

⎤
⎥⎦

⎡
⎢⎣
WT

1
...

WT
K

⎤
⎥⎦HT

rd

(23)

or, more compactly,

H[2] = (IK ⊗ Hrd)�2Hsr, (24)

H[3] =
(
IK ⊗ HT

sr

)
�3HT

rd, (25)

where

�2 =
⎡
⎢⎣
W1
...

WK

⎤
⎥⎦ ∈ C

N2K×N1 , �3 =
⎡
⎢⎣
WT

1
...

WT
k

⎤
⎥⎦ ∈ C

N1K×N2 .

(26)

3.1 Identifiability of channel matrices
Identifiability of Hsr, Hrr, and Hrd in the LS sense
from H[1], H[2], and H[3] (see Equations (19), (24), and
(25)), respectively, requires that �1 =

[(
ET � FT

)T �(
HT

sr ⊗ Hrd
)] ∈ C

NDNsK×N1N2 , Z[2]
.= (IK ⊗ Hrd)�2 ∈

C
NdK×N1 and Z[3]

.= (
IK ⊗ HT

sr
)
�3 ∈ C

NsK×N2 be full
column-rank. These requirements come from the fact that
�1, Z[2], and Z[3] must be left-invertible, from which the
following necessary conditions are obtained:

NdNsK ≥ N1N2, NdK ≥ N1, NsK ≥ N2. (27)

From the three inequalities and from the fact that we
must have K ≥ 2, the lower bound on the number K of
time blocks necessary for identifiability is given by

K ≥ max
(⌈

N1N2
NdNs

⌉
,
⌈
N1
Nd

⌉
,
⌈
N2
Ns

⌉
, 2

)
, (28)

where �x� is equal to the smallest integer that is greater
than or equal to x.
Note that the identifiability of the channel matrices

Hsr, Hrr, and Hrd from the unstructured channel ten-
sor H will ensure that the compound channel Hc =
HrdHrrHsr ∈ C

Nd×Ns is strictly unique. Note also that
conditions NdNsK ≥ N1N2 and NdK ≥ N1 are clearly
much less restrictive in terms of the required number Nd
of antennas at the destination node, in comparison with

the conventional three-step LS estimator that requires
Nd ≥ N2 ≥ N1. Otherwise stated, estimation of the partial
channels can be done even in situations where the number
of receive antennas is much less than the number of relay
antennas (provided that K satisfies condition (28)). This
situation may arise in scenarios with denser deployments
of relay stations, where the total number of relay anten-
nas exceeds those of source and/or destination antennas.
As shown by these inequalities, the possibility of afford-
ing fewer receive antennas is compensated by an increase
on the number K of training blocks, which represents a
trade-off.
Condition (28), although necessary, is not sufficient for

identifiability. Since Z[2]
.= (IK ⊗ Hrd) �2 ∈ C

NdK×N1

and Z[3]
.= (

IK ⊗ HT
sr
)
�3 ∈ C

NsK×N2 , additionally, must
have rank(�2) = N1 and rank(�3) = N2, i.e., both �2 ∈
C
N2K×N1 and �3 ∈ C

N1k×N2 must be full column-rank.
Otherwise, Z[2] and Z[3] will be rank-deficient, even if (28)
is respected.
Let us assume that the partial channels Hsr, Hrr,

and Hrd are full rank matrices, which is a reason-
able assumption when the wireless links are assumed to
undergo scattering-rich multipath propagation. The fol-
lowing corollaries can then be obtained:

C1 If N1 = N2, identifiability of the partial channels is
guaranteed for N1 ≤ Ns and N2 ≤ Nd ;

C2 If N1 = 1, identifiability of the partial channels is
guaranteed for N2 ≤ Nd and N2 ≤ K ;

C3 If N2 = 1, identifiability of the partial channels is
guaranteed for N1 ≤ Ns and N1 ≤ K .

Remark: For the first corollary, we can note that if N1 ≤
Ns and N2 ≤ Nd, then HT

sr ⊗ Hrd is full column-rank,
which ensures that �1 ∈ C

NDNsK×N2 is full column-rank
due to its Khatri-Rao product structure [24]. Likewise,
�2 ∈ C

N2K×N1 and �3 ∈ C
N1k×N2 are also full column-

rank in this case, guaranteeing the identifiability of the
channel matrices. Regarding the second corollary, it cor-
responds to a special case of our system model where the
first relay tier reduces to a single-antenna relay. In this
case, satisfyingN2 ≤ Nd andN2 ≤ K ensures that�1,Z[2],
and Z[3] are all full column-rank, so that the three par-
tial channels are identifiable. The same reasoning is valid
for the third corollary, which is analogous to the second
one.

3.2 Essential uniqueness
Let

{
Ĥsr, Ĥrr, Ĥrd

}
be an alternative set of matrices yield-

ing the same unstructured channel tensor H satisfying
the PARATUCK2 model (14). If Hsr, Hrr, and Hrd are
full rank and the identifiability conditions (27) are sat-
isfied, then Ĥsr, Ĥrr, and Ĥrd are essentially unique.
In this case, we have Ĥsr = �srHsr, Ĥrd = Hrd�rd
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and Ĥrr = �(2)
rr Hrr�

(1)
rr , where the following relation

holds:(
�sr�

(1)
rr

)
⊗

(
�rd�

(2)
rr

)
= IN1N2 . (29)

Note that permutation ambiguity does not exist due
to the knowledge of the training matrices E and F. The
relation (29) can be obtained by replacing the alternative
solutions ̂̄Hsr, Ĥrd, and Ĥrr into (14) and then applying
some basic manipulations using properties of the Kro-
necker product. Equation (29) turns into the following
relations: �rd�

(2)
rr = αIN2 and �sr�

(1)
rr = (1/α)IN1 , where

α is an arbitrary scalar factor. These two relations come
from the fact that the Kronecker product between any two
diagonal matrices is equal to the identity matrix if and
only if these diagonal matrices are (scaled) identity matri-
ces that compensate each other. Consequently, Hsr, Hrr,
andHrd can be recovered in an essentially unique manner
up to scaling factors. The scaling ambiguity can be elim-
inated by normalizing the first column of Hsr or the first
row of Hrd to one. Since these ambiguities compensate
each other, the compound channel is strictly unique and
we have Ĥc = ĤrdĤrrĤsr = HrdHrrHsr = Hc.

3.3 Trilinear alternating least squares algorithm
The TALS algorithm is an iterative estimation method
that alternates among the LS estimations of the chan-
nel matrices Hsr, Hrr, and Hrd by fitting a PARATUCK2
model from the noisy matrices H̃[i] = H[i] + V[i], i =
1, 2, 3. Note that the noise term V[i] is constructed in a
way analogous toH[i], i = 1, 2, 3, following Equations (15)
and (21), respectively. The AF training matrices E and F
are assumed to be known at the destination and are fixed
during the estimation process. From (19), (24), and (25),
we respectively obtain the following linear optimization
problems:

argmin
vec(Hrr)

∥∥vec (
H̃[1]

) − �1vec(Hrr)
∥∥2
F , (30)

argmin
Hsr

∥∥H̃[2] − (IK ⊗ Hrd)�2Hsr
∥∥2
F , (31)

argmin
Hrd

∥∥∥H̃[3] −
(
IK ⊗ HT

sr

)
�3HT

rd

∥∥∥2
F
. (32)

These LS estimation problems can be solved alternately
by estimating one channel matrix at each time, while fix-
ing the other matrices to their values obtained in previous
estimation steps. Therefore, each iteration of the algo-
rithm has three estimation steps. The algorithm starts by
randomly initializing two out of the three channel matri-
ces and proceeds until convergence. In the following, a
summary of the TALS algorithm is provided.

TALS algorithm (direct estimation ofHsr,Hrr, andHrd)

1. Set n = 0;
Initialize randomly Ĥrr (n = 0) and Ĥrd (n = 0) ;
Using (16) and (26), construct �̂2(n = 0) and
�̂3(n = 0), respectively;

2. n ← n + 1;
3. Find an estimate of Hsr using (22), by solving the LS

problem

argmin
Hsr

∥∥H̃[2] − (
IK ⊗ Hrd

)
�2Hsr

∥∥2
F

the solution of which at the nth iteration is given by

Ĥsr (n) = [(
IK ⊗ Ĥrd (n−1)

)
�̂2 (n−1)

]†H̃[2]

4. Find an estimate of Hrd using (23), by solving the LS
problem

argmin
Hrd

∥∥∥H̃[3] −
(
IK ⊗ HT

sr

)
�3HT

rd

∥∥∥2
F

the solution of which at the nth iteration is given by

ĤT
rd (n) =

[(
IK ⊗ ĤT

sr (n)
)

�̂3 (n−1)
]†
H̃[3]

5. Find an estimate of hrr
.= vec (Hrr) using (17), by

solving the LS problem

argmin
hrr

∥∥∥∥vec (
H̃[1]

) −
[(

ET � FT
)T �

(
HT

sr ⊗ Hrd
)]

× hrr
∥∥2
F

the solution of which at the nth iteration is given by

ĥrr(n) =
[(

ET � FT
)T �

(
ĤT

sr (n) ⊗ Ĥrd (n)
)]†

× vec
(
H̃[1]

)
6. Rebuild �̂2(n) and �̂3(n) and repeat Steps 2 to 5 until

convergence.

Define e(n) = vec
(
H̃[1]

) −
[(
ET � FT

)T �
(
ĤT

sr(n)⊗
Ĥrd(n)

) ]
ĥrr(n). The sum of squared residuals (SSR) at

the end of the nth iteration is defined as SSR(n) =
eH(n)e(n). We declare the convergence of the algorithm
when |SSR(n) − SSR(n − 1)| ≤ 10−6, meaning that the
model reconstruction error does not significantly change
between two successive iterations.
Generally, the ALS algorithm is sensitive to the initial-

ization, and convergence to the global minimum can be
slowwhen all thematrix factors of themodel are unknown
[25]. However, in our case, we have observed that
convergence to the global minimum is always achieved
(e.g., within 10 to 30 iterations for medium-to-high SNRs)
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due to the knowledge of the AF training matrices E
and F.

3.4 Kronecker least squares algorithm
We now derive a closed-form solution to our channel
estimation problem by exploiting the mixed Kronecker/
Khatri-Rao factorization structure of the matrix unfolding
H[1] defined in (17). Starting from (13), the noisy version
of (15) is given by:

Ĥ[1] = H[1] + (
SH0 ⊗ INd

)
V[1], (33)

where V[1] = [vec(V1), . . . , vec(VK )]∈ C
NdNs×K . Let Z =

ET � FT ∈ C
N1N2×K denote the combined AF training

matrix and assume that ZZH = IN1N2 . Multiplying both
sides of (33) by ZH , we have:

X̂[1]
.= Ĥ[1]ZH + (

SH0 ⊗ INd

)
V[1]ZH (34)

where X̂[1] = X[1] + (
SH0 ⊗ INd

)
V[1]ZH . From (17), we

have:

X[1] =
(
HT

sr ⊗ Hrd
)
diag (vec (Hrr)) . (35)

Our goal is to directly identify the channel matrices
from (35). However, let us first address the determin-
istic design of the AF training matrices E and F such
that ZZH .= (

ET � FT
) (
ET � FT

)H = IN1N2 . Assuming
K ≥ N1N2, this condition is satisfied by designing Z, for
instance, as a discrete Fourier transform (DFT) matrix.
Having fixed the structure of Z, we are left with the prob-
lem of factorizing this matrix as the Khatri-Rao product
between ET and FT . This problem can easily be solved by
means of K rank-one matrix factorizations, which admit
unique solutions. Note that the kth column of Z can be
written as

Z(:, k) = (E(k, :) ⊗ F(k, :))T ∈ C
N1N2×1, k = 1, . . . ,K .

Defining a rank-one matrix Z̃k
.= unvec(Z(:, k)) ∈

C
N2×N1 , it follows that

Z̃k = (F(k, :))T E(k, :),

from which E(k, :) and F(k, :) can be determined as the
unique right and left singular vectors of Z̃k , k = 1, . . . ,K .
Note that the proposed design, although not optimized
to minimize the mean square error of the channel esti-
mation, ensures that the noise characteristics in (33) will
not be changed when Ĥ[1] is post-multiplied by ZH (i.e.,
inverse DFT transformation).
Coming back to the channel estimation problem, from

(35), let us define xn1,n2 ∈ C
NsNd×1 as the [ (n1 − 1)N2 +

n2]-th column ofX[1] ∈ C
NsNd×N1N2 , n1 = 1, . . . ,N1, n2 =

1, . . . ,N2. Note that

xn1,n2 =
(
HT

sr(:, n1) ⊗ Hrd(:, n2)
)
hrr(n2, n1) (36)

Defining X̃n1,n2
.= unvec(xn1,n2) ∈ C

Nd×Ns as a rank-one
matrix obtaining by reshaping, we have

X̃n1,n2 = hrr (n2, n1)Hrd(:, n2)Hsr(n1, :) (37)

Consider the singular value decomposition (SVD) of
X̃n1,n2 :

X̃n1,n2 = Un1,n2�n1,n2VH
n1,n2 (38)

n1 = 1, . . . ,N1, n2 = 1, . . . ,N2. (39)

From the rank-one property of X̃n1,n2 , we have:

Ĥ(n2)
rd (:, n2) = Un1,n2(:, 1), n1 = 1, . . . ,N1, (40)

Ĥ(n1)
sr (n1, :) = (Vn1,n2(:, 1))T , n2 = 1, . . . ,N2, (41)

ĥrr(n2, n1) = λn1,n2(1, 1). (42)

Final estimates ofHrd(:, n2) andHsr(:, n1) can be obtained
by averaging over the N1 and N2 independent estimates,
respectively:

Ĥrd(:, n2) = 1
N1

N1∑
n1=1

Ĥ(n1)
rd (:, n2), (43)

Ĥsr(n1, :) = 1
N2

N2∑
n2=1

Ĥ(n2)
sr (n1, :), (44)

with

Ĥrd = [
Ĥrd(:, 1), . . . , Ĥrd(:,N2)

]
, (45)

Ĥsr = [
Ĥsr(:, 1), . . . , Ĥsr(:,N1)

]T , (46)

Ĥrr =
⎡
⎢⎣

λ1,1(1, 1) · · · λN1,1(1, 1)
...

...
...

λ1,N2(1, 1) · · · λN1,N2(1, 1)

⎤
⎥⎦ . (47)

Note that the columns of the estimated Ĥsr and Ĥrd have
unit energy while each entry of Ĥrr concentrates all the
energy of the wireless link connecting the source node to
the destination node via a given tier 1-tier 2 relay pair.
Such an interpretation is useful for designing transmit and
receive spatial filters for system optimization as well as for
power allocation purposes.
Discussion: The KRLS algorithm involves the computa-

tion of N1N2 SVDs to provide rank-one approximations
for the matrices X̂1,1, . . . , X̂N1,N2 , of dimensions Nd × Ns,
which are constructed from the N1N2 columns X̂[1]. The
distinguishing feature of the KRLS-based estimator is on
the closed-form solution to the problem, as opposed to the
TALS algorithm that consists of iterative LS estimation
steps, which implies a higher computational complexity.
However, note that the KRLS algorithm is only applica-
ble under the condition K ≥ N1N2, which is necessary
for Z = ET � FT to have orthogonal rows, leading to
(35). In contrast, the TALS algorithm can operate under a
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much lower bound on K, as discussed in Section 3.1. This
is clearly a trade-off between both estimators in terms of
identifiability conditions and computational complexity.
As will be shown in the next section, both estimators pro-
vide satisfactory performances, and the choice of the best
estimator is rather dependent on the design constraints of
the system. For instance, we can say that the TALS estima-
tor is preferable if processing power at the receiver is not
too limited, as is often the case with base station recep-
tion in outdoor micro- or macro-cells. The KRLS solution
would be more likely chosen in indoor scenarios, where
channel coherence time is long enough to allow for higher
values of K.

4 Extension to two-wayMIMO relaying systems
In the previous sections, we have focused on a multi-relay
cooperative scheme, where transmission is directed in one
direction, i.e., from a specific source to a specific desti-
nation via two tiers of multiple relays. In this section, we
show that the same modeling approach can be extended
to a two-way MIMO relaying scenario, where pilot/data
transmission takes place in both directions. In the first
phase, two sources simultaneously transmit their data to
the multiple relays. Note that, in the two-way case, the
relays of each tier receive a superposition of Ns1 + Ns2
signals coming from sources 1 and 2. In the second and
third phases, inter-relay communication takes place.More
specifically, in phase two, tier 1 relays transmit signals
towards tier 2 relays, while tier 1 relays stay silent. In phase
three, the opposite happens. Finally, in the fourth commu-
nication phase, all the relays transmit to the two sources,
and each one of them receives a superposition of N1 +N2
signals.
In the first transmission phase, we assume that training

symbol matrices S1 ∈ C
Ns1×L and S2 ∈ C

Ns2×L are trans-
mitted from sources 1 and 2, respectively. We omit the
additive noise terms for convenience of presentation. The
signal received at the ith relay tier is given by:

X(i) = Hs1riS1 + Hs2riS2 = H(i)S, i = 1, 2, (48)

where H(i) .= [
Hs1ri Hs2ri

] ∈ C
Ni×(Ns1+Ns2 ), and S .=

[ ST1 ST2 ]T ∈ C
(Ns1+N2)×L. The training sequence Si cho-

sen by source i, is designed to satisfy the following
conditions:

(i) SiSHi = INi , i = 1, 2,
(ii) S1SH2 = 0N1×N2 .

A possible construction satisfying these two conditions
is based on the normalized DFT matrix of size L× (Ns1 +
Ns2), with L ≥ Ns1 + Ns2 . This design allows the sources
to eliminate the self-interference generated by their own
transmission, when receiving the signal back from the
relays.

In the second and third phases, where inter-relay com-
munications happen, the signal received at the relays of
tier i from the relays of tier j, (i, j) = {(1, 2), (2, 1)}, can be
written as:

Z(i)
k = HrjriDk(Ej)X(j)

= HrjriDk(Ej)H(j)S, (49)

k = 1, . . . ,K , where Hrjri ∈ C
Ni×Nj is the MIMO channel

linking the relays of tier j at transmission to the relays of
tier i at reception, (i, j) = {(1, 2), (2, 1)}. Note that chan-
nel reciprocity in the inter-relay communications is not
a necessary assumption which means that we may have
Hr1r2 �= Hr2r1 .
Finally, in the fourth transmission phase, the signals

received at sources 1 and 2 are post-multiplied by SH2 and
SH1 , respectively, to accomplish self-interference elimina-
tion, yielding

Y(1)
k =

(
Hr1s1Dk(F1)Z

(1)
k

)
SH2 +

(
Hr2s1Dk(F2)Z

(2)
k

)
SH2

= Hr1s1Dk(F1)Hr2r1Dk(E2)Hs2r2︸ ︷︷ ︸
tier 2 → tier 1 relay path

+ Hr2s1Dk(F2)Hr1r2Dk(E1)Hs2r1︸ ︷︷ ︸
tier 1 → tier 2 relay path

= H̄(1,1)Dk(F̄1,2)G(1)
rr Dk(Ē2,1)H̄(1,2), k = 1, . . . ,K ,

(50)

and

Y(2)
k =

(
Hr1s2Dk(F1)Z

(1)
k

)
SH1 +

(
Hr2s2Dk(F2)Z

(2)
k

)
SH1

= Hr2s2Dk(F2)Hr1r2Dk(E1)Hs1r1︸ ︷︷ ︸
tier 1 → tier 2 relay path

+ Hr1s2Dk(F1)Hr2r1Dk(E2)Hs1r2︸ ︷︷ ︸
tier 2 → tier 1 relay path

= H̄(2,1)Dk(F̄2,1)G(2)
rr Dk(Ē1,2)H̄(2,2), k = 1, . . . ,K ,

(51)

where

H̄(1,1) .= [Hr1s1 Hr2s1 ]∈ C
Ns1×(N1+N2) (52)

H̄(1,2) .= [HT
s2r2 H

T
s2r1 ]

T ∈ C
(N1+N2)×Ns2 (53)

H̄(2,1) .= [Hr2s2 Hr1s2 ]∈ C
Ns2×(N1+N2) (54)

H̄(2,2) .= [HT
s1r1 H

T
s1r2 ]

T ∈ C
(N1+N2)×Ns1 (55)

G(1)
rr

.= blockdiag
(
Hr2r1 Hr1r2

) ∈ C
(N1+N2)×(N1+N2) (56)

G(2)
rr

.= blockdiag
(
Hr1r2 Hr2r1

) ∈ C
(N1+N2)×(N1+N2) (57)

F̄i,j
.= [Fi Fj] , Ēi,j

.= [Ei Ej] , (i, j) = {(1, 2), (2, 1)}. (58)
Therefore, we can conclude that the signals received at

sources 1 and 2 in the considered two-wayMIMO relaying
scenario (Equations (50) and (51)) follows a PARATUCK2
model. By analogy with the noiseless part of the one-way
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signal model (14), we have the following correspondences
between the factor matrices:

(Hrd,Hsr,Hrr) ←→
(
H̄(1,1), H̄(1,2),G(1)

rr

)
(E,F) ←→ (

F̄1,2, Ē2,1
)

(source 1) (59)

(Hrd,Hsr,Hrr) ←→
(
H̄(2,1), H̄(2,2),G(2)

rr

)
(E,F) ←→ (

F̄2,1, Ē1,2
)

(source 2) (60)

Consequently, the tensor-based channel estimation
algorithms proposed in the previous section can be
equally applied at each source to estimate the channels
H̄(i,1), H̄(i,2) and G(i)

rr , i = 1, 2, from Equations (50) and
(51), respectively. If reciprocity is assumed in the two-way
relay channels, we have:

Hrisi = HT
siri , i = 1, 2 (61)

Hrisj = HT
sjri , (i, j) = {(1, 2), (2, 1)}, (62)

Hrirj = HT
rjri , (i, j) = {(1, 2), (2, 1)}, (63)

which in turn implies H̄(1,1) = (
H̄(2,2))T = Hs1 , H̄(1,2) =(

H̄(2,1))T = Hs2 , and G(1)
rr =

(
G(2)
rr

)T = G. In this parti-
cular case, the PARATUCK2models (50) and (51) become
essentially equal, i.e., they depend on the same unknown
channel matrices Hs1 , Hs2 , and G to be estimated. Note,
however, that such a reciprocity is not a necessary
assumption of our modeling approach, which can be used
in the general case of non-symmetrical two-way MIMO
relay channels.

5 Numerical results
We now present computer simulation results for assess-
ing the performance of the proposed channel estima-
tor in selected system configurations. The estimator’s
performance is evaluated in terms of the normalized
mean square error (NMSE) of the estimated chan-
nel matrices. From the estimated channels, the per-
formance in terms of bit error rate (BER) is calcu-
lated by assuming a linear receive filter. The BER and
NMSE curves are plotted as a function of the over-
all signal-to-noise ratio (SNR) at the destination. This
SNR is given by the ratio between the powers of the
useful signal component and the noise component in
Equation (11). For each simulated SNR value, the results
represent an average over L = 5, 000 Monte Carlo
runs. At each run, the channel coefficients are drawn
from a circularly symmetric complex-valued Gaussian
distribution with zero-mean and unit variance, while the
transmitted symbols are drawn from a BPSK sequence.
The SNR level at the tier 1 and tier 2 relays are assumed to
be 30 dB above the SNR level at the destination.

For purposes of performance evaluation, the scaling
ambiguities affecting the estimates of the channel matri-
ces are removed by assuming the first column of Hsr
and first row of Hrd contain all one elements, simi-
larly to [11,14]. These scaling ambiguities can be deter-
mined as follows. First, we find �sr = D1

(
ĤT

sr
)
and

�rd = D1
(
Ĥrd

)
. Then, applying property (AB) ⊗ (CD) =

(A ⊗ C) (B ⊗ D) yields (�sr ⊗ �rd)
(
�(1)

rr ⊗ �(2)
rr

) =
IN1N2 , from which we obtain �(1)

rr ⊗ �(2)
rr = �−1

sr ⊗
�−1

rd . A solution to this relation is then found as �(1)
rr =[

D1
(
ĤT

sr
)]−1 and �(2)

rr = [
D1

(
Ĥrd

)]−1.
In Figure 2, we depict the NMSE performance for the

compound channel of our proposed estimators in compar-
ison with the conventional LS estimator. The parameters
are Ns = 2, N1 = 4, N2 = 4, Nd = 6, K = 16,
L0 = 30, and the number of transmitted data symbols
is N = 1000. We can see that TALS and KRLS have
similar performances, which are considerably better than
the conventional (three-stage) LS estimator. The worst
performance of the LS estimator comes from the error
accumulation across successive channel estimation stages,
which degrades its overall NMSE performance.
Figure 3 shows the NMSE performance of our proposed

estimators in comparison with the two-hop bilinear alter-
nating least squares (BALS) estimator of Rong et al. [14].
This estimator is a special case of the proposed one, where
only one tier of relays is used. In this case, model (11)
reduces to

Yk = HrdDk (E)HsrS0 + Vk , (64)
k = 1, . . . ,K ,

and the channel matrices Hsr and Hrd are estimated
by means of a BALS algorithm. The parameter setting
is the same as that of Figure 2. It can be seen the
proposed estimator operates satisfactorily, being able to
effectively estimate the three channel matrices. Figure 3
also indicates the proposed estimator performs close
to the BALS estimator operating in a two-hop system.
A small performance degradation is observed, which
is due to the presence of an additional AF transmis-
sion phase of our three-hop system, resulting in a
higher overall noise contribution at the destination. Note
also that the TALS estimator involves three estimation
steps while the BALS one has two estimation steps
only.
Figure 4 shows the BER performance of a linear zero

forcing (ZF) receiver designed from the estimated chan-
nel matrices, which are obtained from the TALS, KRLS,
or the conventional LS estimators. The ZF receiver oper-
ates on data block collected in the received data matrix
Y ∈ C

KNd×N . The length of the data block is N = 100
symbols, and the remaining system parameters are the
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Figure 2 NMSE of estimated compound channel Hc. Proposed estimators (TALS and KRLS) vs. conventional LS estimator.

same as those of the previous experiment. The ZF filter
output is given by:

ŜZF =
⎡
⎢⎣

HrdD1 (F)HrrD1 (E)Hsr
...

HrdDK (F)HrrDK (E)Hsr

⎤
⎥⎦
†

Y. (65)

This figure shows similar BER performances for TALS
and KRLS, which are better than that of the conventional
LS algorithm. This result corroborates the effectiveness of

our channel estimators when used with linear receiver for
symbol detection. In Figure 5, we evaluate the impact of
the number of relay antennas on the BER performance of a
linear ZF detector using the proposed TALS channel esti-
mator. The fixed system parameters are Ns = 2, Nd = 6,
L0 = 30, and K = 10. It can be seen that the BER per-
formance is considerably improved as the number of relay
antennas is increased, corroborating the expected gains of
cooperative diversity. Although not plotted in this figure,
the BER curves of the KRLS estimator are similar to those
obtained with the TALS one.

Figure 3 NMSE of estimatedHsr and Hrd. Proposed estimators (TALS and KRLS) vs. conventional LS estimator.
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Figure 4 BER performance of linear ZF detector (TALS and KRLS). BER performance of a linear ZF detector at the destination designed from the
estimated channel matrices (TALS and KRLS).

Figure 6 depicts the performance of the ZF receiver
designed from the perfect CSI for all channel matrices.
Two parameter settings are considered, where Nd = 2
and 4, respectively. The other system parameters are fixed
to Ns = 2, N1 = N2 = 3, L0 = 6, and K = 9.
First, it can be seen that the BER performances are con-
siderably improved as the number of antennas at the
destination is increased, owing to the higher spatial diver-
sity, as expected. From these results, we also find that the

TALS and KRLS estimators provide similar results and,
more interestingly, their performances are close to that of
the perfect CSI case. For instance, for a target BER of 10−1,
the SNR gap with respect to the perfect CSI case is less
than 2 dB.

6 Conclusions
We have proposed channel estimation algorithms for
MIMO AF multi-relay systems. The proposed estimators

Figure 5 BER performance of linear ZF detector (TALS) versus the number of relay antennas.
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Figure 6 BER performance of linear ZF detector versus the number of antennas at the destination. BER performance of a linear ZF detector
as a function of the number of antennas at the destination (TALS and KRLS).

are designed to provide the destination (base station) with
the instantaneous CSI of all the channels involved in the
communication. In contrast to conventional pilot-assisted
channel estimation, the proposed algorithmsmake a more
efficient use of cooperative diversity by providing a joint
estimation of all the channel matrices thanks to the use of
a tensor modeling of the end-to-end system. Such a joint
estimation can be accomplished either iteratively (using
TALS) or in closed-form (using KRLS). Our numerical
results corroborate the effectiveness of the proposed algo-
rithms. The TALS estimator has a higher computational
complexity than the KRLS one due to its iterative nature.
On the other hand, the minimum condition for operation
of KRLS (K ≥ N1N2) is more restrictive than the identi-
fiability conditions of TALS, which implies more training
(i.e., higher number of time blocks) to carry out the joint
channel estimation. Both algorithms are suitable to the
joint channel estimation problem, and a particular choice
is mostly dictated by practical system requirements. We
have also provided an extension of the proposed approach
to two-way MIMO multi-relay system and verified that
such an extension results in the same tensor model as the
one-way scenario. Consequently, the proposed algorithms
can be applied to one- and two-way multi-relay MIMO
schemes.

Endnote
aSince our focus is on the relay channel, direct links are

not considered for simplicity. However, the idea proposed
in this work can be easily extended to include direct links.
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