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Abstract

A new technique is proposed to reduce the computational complexity of the multiple signal classification (MUSIC)
algorithm for direction-of-arrival (DOA) estimate using a uniform linear array (ULA). The steering vector of the ULA is
reconstructed as the Kronecker product of two other steering vectors, and a new cost function with spatial aliasing at
hand is derived. Thanks to the estimation ambiguity of this spatial aliasing, mirror angles mathematically relating to
the true DOAs are generated, based on which the full spectral search involved in the MUSIC algorithm is highly
compressed into a limited angular sector accordingly. Further complexity analysis and performance studies are
conducted by computer simulations, which demonstrate that the proposed estimator requires an extremely reduced
computational burden while it shows a similar accuracy to the standard MUSIC.

Keywords: Multiple signal classification (MUSIC), Direction-of-arrival (DOA) estimation, Spatial aliasing, Steering
vector reconstruction

1 Introduction
Direction-of-arrival (DOA) estimation using a sensor
array has been an important topic that arises in many
fields such as radar, sonar, passive localization, and
wireless communication [1, 2]. Over several decades,
numerous outstanding algorithms including maximum-
likelihood (ML) [3], multiple signal classification (MUSIC)
[4], estimation of signal parameters via rotational invari-
ance technique (ESPRIT) [5], and subspace fitting [6]
have been developed to estimate the DOA of narrow-
band sources. Among state-of-the-art parameter estima-
tion techniques, the MUSIC algorithm which can offer a
so-called super-resolution probability for two sufficiently
closely spaced sources is one of the most popular one.
The primary advantage of the MUSIC algorithm over the
other subspace-based methods is distinguished by its easy
implementation with arbitrary geometries [7, 8]. However,
since the standard MUSIC involves a subspace decom-
position step and a tremendous spectral search step, the
computational complexity of MUSIC is usually expensive,
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and a variety of low-complexity approaches have been
proposed to reduce this computational burden.
The research in [9] and [10] suggest that the spec-

tral search step dominates the complexity of the MUSIC
algorithm, therefore, avoiding the spectral search step or
limiting the range for this spectral search becomes the
key to reducing the complexity of MUSIC, and numerous
modifications of the standard MUSIC have been pre-
sented from this point of view. For example, when the
array geometry satisfies the rotational invariant prop-
erty, DOAs can be computed without spectral search
by the well-known ESPRIT method. Although ESPRIT
saves a much lower complexity, it sacrifices a signif-
icant estimation accuracy as compared to MUSIC on
the other hand. Another premising search-free method
is the root-MUSIC algorithm [11], which can be taken
as a special extension of MUSIC with uniform linear
arrays (ULAs). Using the Vandermonde sturcture of a
ULA, the root-MUSIC algorithm transforms the MUSIC
function into a polynomial and finds signal DOAs by
rooting instead of spectral search. Although root-MUSIC
has been extended to nonuniform linear arrays (NULAs)
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[12–17], and has an improved computational load and
threshold performances as compared to the standard
MUSIC [18], the former usually requires to find all the
roots of a polynomial whose order is about twice of the
number of sensors. Therefore, the computational burden
of root-MUSIC is in fact much higher than expected,
especially when large numbers of sensors are used (Fig. 1).
An outstanding structural (instead of algorithmic)

method is recently proposed to overcome the complex-
ity problem that arises in the famous ML DOA estima-
tor [19]. The algorithm is based on a complex doubly
scaled aperture nested array (DSANA) which can gen-
erate spatial aliasing (also known as ambiguous DOAs)
in the ML spectral. The spatial aliasing is used to highly
compress the full grid search into small angular sectors
to reduce significant computational burden, and unique
determination of DOA is finally obtained by implement-
ing the ML algorithm with different sub-arrays selected
from DSANA. Following this idea, we propose in this
paper a new method with a uniform linear array (ULA)
to reduce the computational complexity of the MUSIC
algorithm. Unlike DSANA, the array geometry in this
work is much simpler and more popular in practice. Fur-
thermore, the proposed technique can be used to reduce
the complexity of both MUSIC and ML while that in
[19] cannot be used for MUSIC directly (since imple-
menting MUSIC on DSANA requires the number of any
sub-arrays selected from DSANA being larger than that
of sources).
The proposedmethod starts at reconstructing the steer-

ing vector of a ULA as the Kronecker product of two other
steering vectors, which has been successfully used in two-
dimensional (2D) polarization estimate [20], MIMO radar
[21], and nested array [22]. Using the Kronecker prod-
uct, the high-cost MUSIC function is further reformu-
lated as an eigenvector-based optimization problem, and
a new low-complexity cost function with spatial aliasing

is derived. Due to the ambiguous DOAs caused by spa-
tial aliasing, the full spectral search is finally compressed
into a limited angular sector, and hence a significant com-
putational burden as compared to the standard MUSIC is
saved.
The outline of this paper is as follows. The narrow-band

signal model and the conventional MUSIC algorithm are
introduced in Section 2. In Section 3, the steering vector
of a ULA that used in the standardMUSIC is firstly recon-
structed as two other steering vectors, based on which
the proposed low-complexity cost function with spatial
aliasing is addressed. The characteristics of this spatial
aliasing are analyzed, and the compressed spectral range
is discussed in detail finally in this section. The complex-
ity of our method is analyzed in Section 4, and simulation
results are conducted to validate the effectiveness of new
method in Section 5.

2 Signal model and standardMUSIC
Assume that L narrowband signals with unknown
DOAs simultaneously impinge from far-field on a
ULA with omnidirectional antenna elements indexed by
{0, 1, 2, . . . ,M − 1}, as shown in Fig. 1, the received signal
can be written in matrix form as [1–19]

x(t) = A (θ) s(t) + n(t) (1)

where A (θ) = [a(θ1), a(θ2), . . . , a(θL)] � A is the M × L
matrix of the signal direction vectors and

a(θ) �
[
1, e−j·2π · d

λ
·sin θ , e−j·2·2π · d

λ
·sin θ , . . . ,

e−j·(M−1)·2π · d
λ
·sin θ

]T (2)

is theM × 1 steering vector, s(t) is the L× 1 source wave-
forms, and n(t) is the M × 1 sensor noise. In addition,
j �

√−1, λ is center wavelength, d is array interval, and
(·)T is transpose.

Fig. 1 Uniform linear array ofM sensors with interval d
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Given N snapshots of the received signals
{x(1), x(2), . . . , x(N)}, the main task of DOA estimation
is to determine the incident signal angles {θ1, θ2, . . . , θL},
provided that the total number of signals L is detected
in advance. This task can be equivalently regarded as
the estimation of a set of steering vectors as a set of
directions and that of steering vectors are related in a
one-to-one correspondence [19]. The study follows will
focus on the angle estimation of the incident signals to
simplify the DOA estimation problem with the assump-
tion that the number of signals has been detected in
advance.
Almost all of the existent super-resolution DOA estima-

tors need to compute the covariance of x(t), which is given
by

R = E
[
x(t)xH(t)

] = ARsAH + σ 2
n IM. (3)

In practical applications, the theoreticalR is unavailable,
and it is usually estimated by {x(1), x(2), . . . , x(N)} as

R̂ = 1
N

N∑
t=1

x(t)xH(t) (4)

where Rs = E[ s(t)sH(t)] is the L × L signal covariance
matrix, IM isM × M identity matrix, σ 2

n is noise variance,
E[ ·] is mathematical expectation, and (·)H is Hermitian
transpose. The eigenvalue decompositions (EVDs) of the
theoretical R given in (3) and the practical estimated R̂
given in (4) can be defined, respectively, in a standard way
as

R = Vs�sVH
s + Vn�nVH

n

R̂ = V̂s�̂sV̂H
s + V̂n�̂nV̂H

n
(5)

where
Vs = [v1, . . . , vK ]
Vn = [vK+1, . . . , vM]
�s = diag {π1, . . . ,πK }
�n = diag {πK+1, . . . ,πM}
V̂s = [̂v1, . . . , v̂K ]
V̂n = [̂vK+1, . . . , v̂M]
�̂s = diag {π̂1, . . . , π̂K }
�̂n = diag {π̂K+1, . . . , π̂M}

(6)

with the subscripts s and n standing for the signal and
noise subspace, respectively.
Using the facts span (Vs) ⊥ span (Vn) and span (A) =

span (Vs), the MUSIC algorithm suggests to estimate
DOAs by spectral search

minθ PMUSIC(θ) � aH(θ)V̂nV̂H
n a(θ)

s.t. θ ∈ [−π/2,π/2] (7)

to find the L peaks of PMUSIC(θ) which indicate source
DOAs. The advantage of the MUSIC algorithm over the

other subspace-based methods is its easy implementa-
tion and high resolution [7, 8]. However, the complexity
of the spectral search step is typically substantially high
since for each point, the product aH(θ)V̂nV̂H

n a(θ) has to
be computed [9].

3 The proposed algorithm
3.1 Steering vector reconstruction
Let us consider the number of sensorsM. For anyM > L,
if M is not a prime number and M � 4, we can find two
integersM1 andM2 that satisfy

M = M1 · M2, M1 � 2,M2 � 2. (8)

Define z � e−j·2π · d
λ
·sin θ , the steering vector a(θ) given

in (2) can be rewritten as

a(θ) =

⎡
⎢⎢⎢⎢⎣

1
z
z2
· · ·

zM1·M2−1

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 × 1
1 × z
· · ·

1 × zM1−1

· · · · · · · · · · · · · · · · · · · · ·
zM1 × 1
zM1 × z

· · ·
zM1 × zM1−1

· · · · · · · · · · · · · · · · · · · · ·
· · ·

· · · · · · · · · · · · · · · · · · · · ·
z(M2−1)·M1 × 1
z(M2−1)·M1 × z

· · ·
z(M2−1)·M1 × zM1−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� b(θ) ⊗ c(θ) (9)

where ⊗ denotes the Kronecker product and

b(θ) =

⎡
⎢⎢⎢⎢⎣

1
zM1

z2·M1

· · ·
z(M2−1)·M1

⎤
⎥⎥⎥⎥⎦
, c(θ) =

⎡
⎢⎢⎢⎢⎣

1
z
z2
· · ·

zM1−1

⎤
⎥⎥⎥⎥⎦
. (10)

It can be seen from (9) and (10) that a(θ) can be recon-
structed as the Kronecker product of b(θ) and c(θ), where
b(θ) and c(θ) can be regarded as the steering vectors of
two ULAs withM2 andM1 sensors, respectively. The dif-
ferences between the two steering vectors b(θ) and c(θ) is
that the array interval for c(θ) is d while that for b(θ) is
M1d.
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3.2 Proposed cost function
Now, substituting (9) into (7), the MUSIC algorithm can
be rewritten as

min
θ

PMUSIC(θ) = [b(θ) ⊗ c(θ)]H V̂nV̂H
n [b(θ) ⊗ c(θ)]

= cH(θ)Q̂θc(θ)

s.t. θ ∈ [−π/2,π/2]
(11)

where

Qθ �
[
b(θ) ⊗ IM1

]H VnVH
n

[
b(θ) ⊗ IM1

]
. (12)

It can be concluded from (11) that searching the minima
of PMUSIC(θ) over θ ∈ [−π/2,π/2] is equivalent to finding
the optimal solution of c(θ) that minimizes the product
cH(θ)Q̂θc(θ).
Noting that ‖c(θ)‖2 = cH(θ)c(θ) = M1, we now define

two vector sets C1 and C2 as follows

C1 �
{
c ∈ C

M1×1|cHc = M1
}

(13)

C2 �

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
c ∈ C

M1×1|c =

⎡
⎢⎢⎢⎢⎣

1
z
z2
· · ·

zM1−1

⎤
⎥⎥⎥⎥⎦
,

z = e−j·2π · d
λ
·sin θ , θ ∈

[
−π

2
,
π

2

]
⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
. (14)

Clearly, for any vector c1 ∈ C1, we must have cH1 c1 =
M1. On the other hand, for each θ ∈ [−π/2,π/2], we can
compute c2 =[ 1, z, z2, . . . , zM1−1]T using z = e−j·2π · d

λ
·sin θ ,

and vector c2 must also satisfy cH2 c2 = M1. This indicates
that any vector in C2 must be in the form of a steering
vector while that in C1 may not be. Therefore, we have

C2 ⊂ C1. (15)

Tominimize cH(θ)Q̂θc(θ), we can search over the entire
angle set [−π/2,π/2] to find an appropriate angle θ0
which satisfies cH(θ0)Q̂θ0c(θ0) = min. In other words,
the MUSIC algorithm can be directly reformulated as the
following optimization problem

min cH(θ)Q̂θc(θ)

s.t. c(θ) ∈ C2. (16)

However, the above optimization problem is in fact
identical to the standardMUSIC and there is no reduction
on the computational complexity.
To reduce the complexity, we note that for a given Qθ

computed by a given angle θ , the minimizing task of
cH(θ)Q̂θc(θ) can be performed over C1 instead of C2
since we have C2 ⊂ C1. This means that we can omit

the parameter θ and let c = c(θ). Hence, the MUSIC
algorithm can be equivalently reformulated as the follow-
ing optimization problem

min cHQ̂θc
s.t. c ∈ C1. (17)

The differences between (16) and (17) are that both Q̂θ

and c(θ) must be considered as functions of θ in the for-
mer while in the latter, we only need to consider Q̂θ for
each θ ∈ [−π/2,π/2]. The derivation follows indicate
that this can lead to a significant complexity reduction as
compared to the standard MUSIC.
Using the Lagrange multiplier technique with respect

to the restriction cHc = M1, we obtain the following
Lagrangian

f [c] = cHQθc − ξ
[
cHc − M1

]
(18)

where ξ is the Lagrange multiplier.
Setting the gradient of (18) with respect to c to zero

yields

Qθc = ξc. (19)

Equation (19) can be identified as the characteristic one
for matrix Qθ . Thus, ξ is an eigenvalue of Qθ and c is the
eigenvector that associated with ξ . Since cHc = M1, it
follows from (19) that

cHQθc = ξcHc = M1ξ . (20)

Therefore, minimizing cHQ̂θc is in fact equivalent to
finding ξ̂min, i.e, finding the minimum eigenvalue of Q̂θ .
Additively, the optimized solution for c, i.e., copt, is equiv-
alent to the associated eigenvector respect to ξ̂min. Hence,
copt can be given as follows

copt = γ̂
Q̂θ

min (21)

where γ̂
Q̂θ

min is the eigenvector associated with ξ̂min.
Substituting (21) into (11), DOAs can finally estimated

by

min
θ

P̂(θ) =
[
γ̂
Q̂θ

min

]H
Q̂θ

[
γ̂
Q̂θ

min

]

s.t. θ ∈ 	 (22)

where 	 ⊂ [−π/2,π/2] is a limited angular sector, which
is to be discussed in the subsection that follows.

3.3 Search range compression
In this subsection, we show source DOAs can be effi-
ciently estimated by spectral search over only a limited
angular sector 	 instead of [−π/2,π/2]. Hence, a signifi-
cant complexity is reduced as compared to MUSIC.
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Recall the maximum inter-element spacing criterion of
an array, which is defined as [19]

dmax = λ

2 |sin θmax| (23)

where θmax is the maximum searching angle. Because a
ULA scans at most ±90◦, the element spacing of such an
array must be less than half of the wavelength; otherwise,
the impinging signals will result in estimation ambiguous.
This phenomenon happens when there are replica DOAs
θre producing the same optimized solution for c(θ) as the
true DOAs θge such that

copt
(
θge

) = copt (θre) . (24)

Since the array interval of b(θ) is M1 times that of c(θ),
the relationship between θre and θge is

M1
2

sin θge + k = M1
2

sin θre (25)

or equivalently given by

θre = sin−1
[
sin θge + 2k

M1

]
(26)

where k is an integer. As |sin θ | ≤ 1, different integer
values of k will be given according to θge as follows

M1
2

[−1 + sin θge
]

< k <
M1
2

[
1 − sin θge

]
. (27)

The maximum searching angle without estimation
ambiguity can be determined by inserting dmax = M1λ/2
into (23) as

θmax,re = sin−1
(

1
M1

)
. (28)

Therefore, the compressed searching range	 is given by

	 =
[
− sin−1

(
1
M1

)
, sin−1

(
1
M1

)]
. (29)

The above analysis implies that searching P(θ) over
	 will reduce L candidate angles

{
θ̂
ge
1 , θ̂ge2 , . . . , θ̂geL

}
, with

which the other M1L ones
{
θ̂ re1 , θ̂ re2 , . . . , θ̂ reM1L

}
can be

computed immediately by (26). Finally, the L source DOAs
can be obtained efficiently by selecting L angles among{
θ̂ re1 , θ̂ re2 , . . . , θ̂ reM1L

}
that minimize aH(θ)V̂nV̂H

n a(θ).

3.4 Summary of the new algorithm
Detailed steps for implementing the proposed algorithm
are summarized in Algorithm 1.
Figure 2 is conducted to show more clearly the imple-

mentations of the new method. First, it is computed by
(29) that

	 = [− sin−1 (1/3) , sin−1 (1/3)
] ≈ [−19.47◦, 19.47◦] .

Next, two candidate angles θ re11 = −9.6◦ and θ re21 =
−1.4◦ are found by searching P̂(θ) over only 	, and the

Fig. 2 Direction finding by the proposed method, SNR = 20 dB,
N = 200,M1 = M2 = 3. Two sources at θ1 = 30◦ and θ2 = 40◦ ,
half-wavelength ULA with nine sensors

Algorithm 1 The proposed algorithm
Require: {̂x(t)}Nt=1: N snapshots of array output vector.
1: Use {̂x(t)}Nt=1 to get R̂ by (4) and compute V̂n by (5) ;
2: Choose appropriate integersM1 andM2 according to

(8) and compute 	 by (29);
3: for each θ ∈ 	 do
4: Calculate Q̂θ and find smallest eigenvector γ̂

Q̂θ

min;
5: Compute P̂(θ) by (22);
6: end for
7: Find the L angles

{
θ̂
ge
1 , θ̂ge2 , . . . , θ̂geL

}
minimizing P̂(θ);

8: Calculate theM1L angles
{
θ̂ re1 , θ̂ re2 , . . . , θ̂ reM1L

}
by (26);

9: Select the LDOAs among
{
θ̂ re1 , θ̂ re2 , . . . , θ̂ reM1L

}
bymin-

imizing the product ‖aH(θ)V̂n‖2;
10: return the L estimated source DOAs.

other four ones are computed by using (26) as follows

k = 1, θ re12 = sin−1 [
sin(−9.6◦) + 2/3

] ≈ 29.99◦

k = −1, θ re13 = sin−1 [
sin(−9.6◦) − 2/3

] ≈ −56.45◦

k = 1, θ re22 = sin−1 [
sin(−1.4◦) + 2/3

] ≈ 39.95◦

k = −1, θ re23 = sin−1 [
sin(−1.4◦) − 2/3

] ≈ −43.71◦.

Finally, we calculate the numerical values of the cost
function at all candidate angles in Table 1, from which we
can conclude that the product ‖aH(θ)V̂n‖2 get its L = 2
minimum values at angles θ re12 = 29.99◦ and θ re22 = 39.95◦.
Since the total number of signals L is supposed to be
detected in advance, the above two angles are selected as
the estimated DOAs, which match the true angles.
Remarks:
(1) Note that the eigenvector γ̂

Q̂θ

min may not be necessar-
ily in the form of a steering vector. Consequently, the
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Table 1 Numerical values of product ‖aH(θ)V̂n‖2 at all
candidate angles

Candidate angles −56.45◦ −43.71◦ −9.6◦ −1.4◦ 29.99° 39.95°

‖aH(θ)V̂n‖2 8.7873 8.8731 8.8810 8.7873 2.89e-05 1.63e-05

True or virtual Virtual Virtual Virtual Virtual True True

optimized solution copt may not be in the form of a
steering vector either. This means that we may have
copt ∈ C1 but copt /∈ C2. However, since Qθ is com-
puted by a given angle θ using (12), DOA information
are contained is in bothQθ and copt. Therefore, signal
DOA can be successfully estimated by (19). �

(2) The proposed method uses Vn to construct its spec-
trum, which is similar to MUSIC. Hence, the maxi-
mum number of sources which can be identified by
the new algorithm is L < M, which shows an out-
standing advantage over the ADSANS-ML method
[19]. An example is given in Fig. 3 to illustrate this
more clearly. �

(3) It is the last step in Algorithm 1 that helps the
proposed method to select the true angles from the
computed candidate angles in various scenarios. An
example for selecting true sources in the case where
all the three true angles map to the same candidate
angles is given in Fig. 4. Note that each of the three
true angles has six candidate DOAs, which can be
computed by using (26). Also note that the three true
angles share the same ambiguous angles. To select
the true angles, the values of ‖aH(θ)V̂n‖2 are com-
puted in Table 2. Because the number of signals L = 3
is supposed to be detected in advance, the true angles

Fig. 3 The maximum number of resolvable sources by the proposed
method. SNR = 30 dB,N = 500,M1 = 2,M2 = 3. Five sources at
θ1 = −36◦ , θ2 = −20◦ , θ3 = −10◦ , θ4 = 10◦ , and θ5 = 28◦ ,
half-wavelength ULA with six sensors

Fig. 4 Scenario in which some of the true sources map to the same
candidate angles. SNR = 10 dB,N = 200,M1 = 6,M2 = 2. Three
sources at θ1 = 5◦ , θ2 = 24.87◦ and θ3 = 48.92◦ , half-wavelength
ULA with 12 sensors

can be easily selected by selecting the L = 3 angels
that minimize ‖aH(θ)V̂n‖2. �

(4) The compressed spectral search by the proposed
method is in fact resulted from the ambiguousDOAs,
which is similar to the RV-MUSIC [8], C-MUSIC
[10], and DSANA-ML [19] algorithms. Therefore,
techniques suggested by C-MUSIC and DSANA-ML
can be directly exploited for the proposed method to
solve closely spaced candidate DOAs. �

4 Complexity analysis
Using the fast subspace decomposition (FSD) technique
[23], the complexity of MUSIC is given by [8, 10]

CMUSIC = M2 (L + 2) + J(M + 1)(M − L) flops (30)

where J is the number of sample points in [−π/2,π/2].
For each point in 	, the new method has to compute

three items including Q̂θ , the singular valued decompo-
sition (SVD) of Q̂θ and P̂(θ). Since there are at most M2
non-zeros in each column of b(θ) ⊗ IM1 , the computation
of Q̂θ requires M2 (M − L) (M1 + M2) flops. As Q̂θ is of
dimensions M1 × M1 and we only need to find γ̂

Q̂θ

min, the
SVD of Q̂θ costs M2

1 flops [24]. Note that the width of 	

is 2 sin−1 (1/M1) and for each point in 	 and computing
P̂(θ) needsM2

1 + M1 flops.
On the other hand, each true source generate M1

ambiguous DOAs. Therefore, the total number of candi-
date angles generated by the proposed method is M1L.
For each candidate angle, we need to compute the prod-
uct, which costs (M + 1)(M − L) flops. Therefore, the
complexity for solving the ambiguous DOAs is given by
M1L(M + 1)(M − L).
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Table 2 Angle selecting for Fig. 4

Simulated angles θ1 = 5◦ , θ2 = 24.87◦ , θ3 = 48.92◦

Candidate angles −65.90◦ −35.42◦ −14.25◦ 5° 24.86° 48.92°

‖aH(θ)V̂n‖2 11.9990 11.9990 11.9990 1.02e-04 1.15e-04 1.17e-04

True or virtual Virtual Virtual Virtual True True True

Based on the above analysis, the total complexity of the
proposed method is given by

CProposed = M2 (L + 2) + sin−1 (1/M1)

90
J × [

2M2
1 + M1

+M2 (M − L) (M1 + M2)
] + M1L(M + 1)

× (M − L) flops. (31)

Figure 5 plots the complexity as functions of the num-
ber of sensors. It is seen from the figure that the pro-
posed method costs a heavier complexity as compared
to MUSIC for M1 = 2, with which 	 reaches its maxi-
mum width. AsM1 increases, 	 gets smaller, and the new
method costs significantly reduced complexities as com-
pared to MUSIC. This implies that largerM1 yields lower
complexity. Since the number of ambiguous DOAs equals
to M1, larger M1 also leads to more ambiguities. Hence,
M1 cannot be chosen too large in practice.

5 Performance study
Simulations with 500 independent Monte Carlo trials are
conducted to assess the mean square error (MSE) perfor-
mance of the proposed method, where the MSE is defined
as

MSE � 1
500

500∑
i=1

(
θ̂i − θ

)2 (32)

with θ and θ̂i presenting the true and the estimated DOA
of the ith trial, respectively. Five algorithms including

Fig. 5 Complexity versus the number of sensors, J = 180, L = 2

MUSIC [4], ESPRIT [5], C-MUSIC with β = 2 angu-
lar sectors [10], U-MUSIC [25], RV-MUSIC [8], and the
unconditional Cramér-Rao Lower Bound (CRLB) [26] are
also applied for references.
To see clearly the performance of the proposed algo-

rithm, Fig. 6 plots MSE against the SNR, in which a
half-wavelength ULA with M = 12 sensors is used to
locate L = 2 sources at θ1 = 30◦ and θ2 = 40◦. Since
the two parameters M1 and M2 for the proposed method
satisfy M = M1 · M2, different combinations for the two
parameters are considered to provide further insights into
the new method. In addition, the number of snapshots is
fixed as N = 500 and the SNR varies from a wide range
from SNR = −20 dB to SNR = 20 dB in the simulation.
It is seen clearly from Fig. 6 that the proposed method

shows a similar accuracy to the standard MUSIC and
RV-MUSIC, which is much better than the ESPRIT and
C-MUSIC techniques. It is also seen from the figure that
the MSEs of the new method decrease slightly as M1
increases. However, the newmethod still performs closely
to MUSIC withM1 = 4. Since CMUSIC/CProposed

∣∣M1=4 ≈
23976/7699 ≈ 3.11 (J = 180), we can conclude that
the proposed method trades off MSE by complexity effi-
ciently.
To verify the efficiency of the developed method

and the computational complexity analysis in Section 4,
we compare the simulation times costed by the stan-
dard MUSIC and the proposed method with different
choices for the parameter M1. In the simulation, we fix

Fig. 6MSE versus the SNR,N = 500, two sources at 30◦ and 40◦ ,
half-wavelength ULA with 12 sensors
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Fig. 7 Simulation time against the number of sensors, SNR = 20 dB,
N = 200, a fine search grid 0.11◦ for MUSIC and the proposed
method, two sources at 30◦ and 40◦ , half-wavelength ULA

SNR = 20 dB,N = 200 and a fine search grid 0.11◦
is applied for spectral search in both MUSIC and the
proposed method. The simulations presented here are
performed by running the MATLAB codes in the same
environment on a personal computer whose CPU config-
urations and RAM are given by Intel(R) Core(TM) Duo
T5870 2.0 GHz and 1 GB, respectively.
It is seen clearly from Fig. 7 that the proposed method

costs a much smaller simulation time than the stan-
dard MUSIC. It is also seen from the figure that as
M1 increases, the simulation time of the new method
decreases dramatically, which matches the complexity
comparison results of Fig. 5. It can be concluded from
these observations that the proposed method shows
an obvious computational efficiency advantage over the
standard MUSIC.

6 Conclusions
We have proposed a new computationally efficient algo-
rithm for DOA estimate. The key idea behind is to recon-
struct the steering vector of a ULA as the Kronecker
product of the two other steering vectors, leading to a
limited spectral search with a significantly reduced com-
plexity as compared to MUSIC. Simulations demonstrate
that the newmethod has a very closeMSE performance to
MUSIC. Future research should be focused on extending
the proposed method to arbitrary arrays.
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