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Abstract

Signal processing on graphs extends signal processing concepts and methodologies from the classical signal
processing theory to data indexed by general graphs. For a bandlimited graph signal, the unknown data associated
with unsampled vertices can be reconstructed from the sampled data by exploiting the spatial relationship of graph
signal. In this paper, we propose a generalized analytical framework of unsampled graph signal and introduce a
concept of diffusion operator which consists of local-mean and global-bias diffusion operator. Then, a diffusion
operator-based iterative algorithm is proposed to reconstruct bandlimited graph signal from sampled data. In each
iteration, the reconstructed residuals associated with the sampled vertices are diffused to all the unsampled vertices
for accelerating the convergence. We then prove that the proposed reconstruction strategy converges to the original
graph signal. The simulation results demonstrate the effectiveness of the proposed reconstruction strategy with
various downsampling patterns, fluctuation of graph cut-off frequency, robustness on the classic graph structures,
and noisy scenarios.
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1 Introduction
Recent years have witnessed an enormous growth of
interest in efficient paradigms and techniques for repre-
sentation, analysis, and processing of large-scale datasets
emerging in various fields and applications, such as sensor
and transportation networks, social networks and eco-
nomic networks, and energy networks [1, 2]. The irregular
structure is the most important characteristic of those
large-scale datasets, which limits the applicability of many
approaches used for small-scale datasets. This big data
problem motivates the emerging field of signal processing
on graphs.
Signal processing on graphs extends the classical sig-

nal processing techniques and paradigms to the irregular
domain [3–5]. Graphs are useful representation tools for
representing large-scale datasets with geometric struc-
tures. The relational structure of large-scale dataset is rep-
resented with graph, in which data elements correspond
to the vertices, the relationship between data elements
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is represented by the edge, and the strength of relation-
ship is reflected in the edge weight. The graph signal can
be regarded as a vector signal which contains the spa-
tial relationship of the vertices. Due to the complicated
relationship and large data volume, it is necessary to trans-
form the original graph signal to small-scale modality. The
downsampling can be treated as any decrease in dimen-
sion via an operator, and conversely, the interpolation can
be treated as any increase in dimension via an opera-
tor. The main purpose of downsampling method is that
the original graph signal may be reconstructed through
its entries on only a subset of the vertices by exploiting
the character of smoothness. Pesenson in [6] established
a Paley-Wiener function based sampling theory on com-
binatorial graphs. He proposed a concept of uniqueness
set for downsampling and gave a sufficient condition that
the downsampling set needs to satisfy for unique recon-
struction. For the reconstruction of sampled graph signal,
the main methodology of current algorithms is to extend
the Papoulis-Gerchberg algorithm [7, 8] from the classi-
cal regular domain to the graph irregular domain. S. K.
Narang in [9] proposed an iterative least square recon-
struction (ILSR) algorithm for reconstructing bandlimited
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graph signal from partially observed samples. ILSR adopts
the method of projection onto convex sets (POCS) to iter-
atively project the sampled data onto the downsampling
subspace and the low-pass filtering subspace. In [10, 11],
X. Wang proposed a concept of local-set and two local-set
based iterative reconstruction algorithms (IWR and IPR)
for recovering the sampled bandlimited graph signal. The
local-set is formed by partitioning the graph into several
disjoint subgraphs. iterative propagating reconstruction
(IPR) is also an iterative reconstruction algorithm based
on the philosophy of POCS. Compared with ILSR, IPR
propagates the reconstructed residual associated with the
sampled vertex to the unsampled vertices in the respective
local-sets. Given the benefit which is obtained from the
propagating of reconstructed residual, IPR has faster con-
vergence than ILSR. However, the graph signals associated
with the unsampled vertices are influenced by all the sam-
pled vertices in graph, which should not be limited in the
local-set. Besides, since the differences among the recon-
struction residuals associated with the unsampled vertices
cannot be ignored, the even propagation may not be able
to achieve the assignment.
Related works on downsampling and reconstruction of

graph signals include the methods proposed in [12, 13]. In
[12], the authors proposed a sampling theory and recon-
structionmethod on graphs for bandlimited graph signals.
The sampling theory proposed in [12] focuses on the
graph adjacency matrix and non-iterative reconstruction
method. In [13], the authors proposed a sampling aggrega-
tion method for the graph signals, where the observations
are aggregated to one vertex. Different from them, we
focus on the iterative reconstruction method for bandlim-
ited graphs in this paper.
The main contribution of this paper is that we present

a generalized analytical framework of graph signals asso-
ciated with the unsampled vertices to further improve
the convergence rate of bandlimited graph signal recon-
struction. We decompose the graph signals associated
with the unsampled vertices into three components, i.e.,
the extrapolated component, the local-mean diffusion
component, and the global-bias diffusion component.
Based on this scheme, we propose an iterative diffusion
operator-based reconstruction algorithm. The correspon-
dence between the proposed algorithm and the current
reconstruction algorithms (ILSR and IPR) is also analyzed,
which will be helpful to future works on the reconstruc-
tion of bandlimited graph signal. Besides, the theoretical
analysis for the proposed iterative reconstruction algo-
rithm is also presented. Then, we demonstrate the per-
formance of the proposed algorithm and the current
algorithms with various downsampling patterns, fluctua-
tion of graph cut-off frequency, robustness on the classic
graph structures, and noisy scenarios. Finally, we adopt
the temperature data of the USA and the electricity

consumption data of Shandong province of China as the
examples of real-world data to test the performance of
reconstruction algorithms. The simulation results show
that a better performance of the proposed algorithm can
be achieved.
The rest of this paper is organized as follows. In

Section 2, the previous works of downsampling and
reconstruction for bandlimited graph signal are briefly
reviewed. In Section 3, we propose the concept of diffu-
sion operator and its corresponding iterative reconstruc-
tion algorithm. In Section 4, we analyze and prove the
convergence of the proposed algorithm. In Section 5, we
demonstrate the proposed algorithm by using the syn-
thetic and real-world data on various graphs. In Section 6,
conclusions are drawn.

2 The previous work for downsampling and
reconstruction

A simple, connected, and undirected graph G = (V ,E)

is a collection of vertices V and edges E, with V =
{1, 2, . . . ,N} representing the set of vertices of the graph
and E = {

wi,j, ∀i, j ∈ V
}
representing the set of edges con-

necting vertex i and j with weight wij, where wii = 0. The
adjacency matrix of the graph is defined as A

(
i, j

) = wij.
The degree di of a vertex i is defined as the sum of the
weights of the edges connected to the vertex i. The degree
matrix of the graph is a diagonal matrix defined as D =
diag {d1, d2, . . . , dN }. The Laplacian matrix of the graph is
defined as L = D − A. The normalized Laplacian matrix
L is a symmetric positive semi-definite matrix and can be
decomposed as

L = D−1/2LD−1/2 = U�UT =
N∑

i=1
λiuiuTi , (1)

where UT denotes the transpose of Laplacian eigenvector
U, � = diag{λ1, λ2, . . . , λN } is a diagonal matrix of real
Laplacian eigenvalues ordering as λ1 ≤ λ2 ≤ · · · ≤ λN ,
and its corresponding orthogonal set of Laplacian eigen-
vectors denoted as U = {u1,u2, . . . ,uN }, with ui is the ith
column vector of Laplacian eigenvector matrix.
For example, the Minnesota path graph is shown in

Fig. 1, which contain 2642 vertices and 6606 edges. A
graph signal f is represented as a vector mapping f : V →
RN , such that f (i) is the value of the signal on vertex i.
f̂i =< f ,ui > is the graph Fourier transform (GFT) of f.
Similar with the Fourier transform in classical signal pro-
cessing, graph Fourier transform performs the expansion
of a graph signal into a Laplacian eigenvector basis of sig-
nals [14]. The eigenvectors and eigenvalues of the Lapla-
cian matrix provide a spectral interpretation of the graph
signal. For more concise comparison, the eigenvalues of
the Laplacian matrix can be regarded as the graph fre-
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Fig. 1 The sampled and unsampled vertices on the Minnesota path graph

quency and form the spectrum of graph, and the Laplacian
eigenvectors that correspond to a frequency λm are called
the graph frequency component corresponding to themth
frequency.

2.1 Downsampling of a bandlimited graph signal
Downsampling on graphs can efficiently extract valuable
information by exploiting the spatial relationship of graph
structure. If the GFT of a graph signal has support only
in frequency [ 0,w), the graph signal is regarded as ban-
dlimited in the range of [ 0,w), with the w is called the
graph cut-off frequency [6, 15]. The space of bandlimited
graph signal is often called Paley-Wiener space (PWS) and
is denoted as

PWω (G) =
{
f : f̂ (λ) = 0, if λ ≥ w

}
, (2)

where λ denotes the Laplacian eigenvalue and f̂ (λ)

denotes the graph frequency component corresponding to
λ. We denote S as a downsampling set of the vertices of
the graph, and Sc = V\S denotes its complementary set.
The purpose of downsampling operation is to select valu-
able vertices to form the downsampling set S. The concept
of uniqueness set is defined in [6], which provides a suffi-
cient condition for exact reconstruction from the sampled
graph signal. A subset of vertices S ⊂ V is a uniqueness set
in PWS, if for any two signals g, h, the fact that they coin-
cide on S implies they coincide on V : g (S) = h (S) ⇒
g = h.
Currently, there are two solutions for finding an appro-

priate downsampling set. In [16], the author formulates
a greedy heuristic algorithm to obtain an estimation of
the optimal downsampling set. In [11], the author pro-
poses a local-set based downsampling forming algorithm.

The graph is divided into disjoint subgraphs and each
subgraph selects one vertex as the downsampling vertex,
which is called one-hop sampling method. The one-hop
sampling method is a rather economical and efficient
choice of downsampling set forming method when there
is no restriction on the number of vertices in the down-
sampling set or no location-limited of downsampling ver-
tices. In Fig. 1, we adopt the one-hop sampling method to
form the downsampling set, where the sampled vertices
are denoted as the red-star-vertices and the unsampled
vertices are denoted as the blue-roundness-vertices.

2.2 Reconstruction of a bandlimited graph signal
The main methodology of the reconstruction algorithm
is to establish the relationship between the sampled ver-
tices and the unsampled vertices according to the spa-
tial structure of graph. In classical signal processing, the
authors in [7, 8] propose an iterative extrapolation strategy
(Papoulis-Gerchberg Algorithm) for reconstructing the
original signal. The basic idea of Papoulis-Gerchberg algo-
rithm lies in alternatingly imposing the initially known
values in the time domain and the finite support con-
straint in the frequency domain, until convergence is
reached. The iterative process of Papoulis-Gerchberg
algorithm can be written as follows

f c0 = PcT f
c

f ck+1 = PcT f
c + (

I − PcT
)
F−1
c PcwFcf ck

(3)

where f c denotes the classical continuous signal, PcT
denotes the time domain downsampling operator, I
denotes the identity operator, Pcw denotes the frequency
domain cut-off operator, and Fc and F−1

c represent the
classical Fourier transform and classical Fourier inverse
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transform, respectively. In each iteration, the Papoulis-
Gerchberg algorithm replaces the downsampling part of
the estimated reconstruction signal f ck by the actual known
segment and then combines the extrapolation segment to
form the next iterative signal. In other words, at kth iter-
ation, the solution f ck is obtained from f ck−1 and satisfies
the two constraints of time domain downsampling and
frequency domain bandlimited.
According to the principle of Papoulis-Gerchberg

Algorithm, an iterative least square reconstruction (ILSR)
algorithm is proposed in [9, 17] for the signal process-
ing on graphs. At each iteration, ILSR resets the signal
samples on the downsampling set S to the actual given
samples and then projects the graph signal onto the low-
pass filtering subspace. Denote PT as the vertex domain
downsampling operator and fd as the sampled graph sig-
nal, then the downsampling process can be represented as
follows

fd = PT f ⇒ fd (S) = f (S) and fd
(
Sc

) = 0. (4)

Besides, the vertex domain downsampling operator PT is
a diagonal matrix

PT = diag {1S} (5)

where 1S is the set indicator vector, whose ith entry is
equal to one, if i ∈ S, or zero otherwise. The iterative
process of ILSR can be written as follows

f0 = F−1PwF fd
f Lk+1 = F−1PwF

(
f Lk + (

fd − PT f Lk
)) (6)

where f Lk denotes the kth iterative reconstructed residual
of ILSR, Pw denotes the graph frequency cut-off operator,
w denotes the graph frequency domain cut-off frequency,
and F and F−1 denote the graph Fourier transform and
inverse transform, respectively. At the first iteration, the
initial reconstructed graph signal f0 is obtained by project-
ing the sampled graph signal fd onto the low-pass filtering
subspace. In this paper, we define the difference between
the graph signal f and the sampled reconstructed graph
signal fk as the reconstructed residual f sk , i.e., f

s
k = f − fk .

Moreover, the reconstructed graph signal fk is denoted by
f Lk for ILSR and f Pk for IPR. In [10, 11], the author pro-
poses a local-set based IPR algorithm. In each iteration,
IPR adopts a local propagative operator to locally and
evenly propagate the reconstructed residual. The iterative
process of IPR is shown as follows

f0 = Qw

(
∑

v∈S
f (v)δN(v)

)

f Pk+1 = f Pk + Qw

(
∑

v∈S
(f (v) − f Pk (v))δN(v)

) (7)

where f Pk denotes the kth iterative reconstructed graph
signal of IPR, Qw (·) is a graph frequency domain cut-off

operator, δN(v) = (δN(v)(1), δN(v)(2), . . . , δN(v)(N))T with
δN(v)(m) = 1 only when m ∈ N(v). According to Eq. (7),
IPR first propagates the reconstructed residual locally and
evenly to the local-set that each sampled vertex belongs
to and then projects the new signal onto the low-pass fil-
tering subspace. Since IPR propagates the reconstructed
residual in the local-set at each iteration, IPR converges
faster than ILSR. However, IPR only focus on the propa-
gating of reconstructed residual within the local-sets. In
the next section, we propose a diffusion operator based
iterative reconstruction strategy, which extends the recon-
structed residual to more generalized diffusion.
Different from the POCS method, the sampling theory

proposed in [12] recovers the sampled graph signal by
employing an interpolation operator � = Uw(PTUw)−1,
where w denotes the bandwidth of bandlimited graph sig-
nal, U denotes the eigenvector matrix of graph adjacency
matrix A, Uw denotes the first w columns of U , and PT
denotes the sampling operator. In this paper, we follow the
methodology of the POCS method.

3 The diffusion operator-based reconstruction
strategy

In this section, we establish a generalized analysis frame-
work of the graph signals associated with the unsampled
vertices. The concept of local-mean and global-bias diffu-
sion operator is firstly defined. Then, we propose an iter-
ative diffusion operator-based reconstruction algorithm.
Discussions on the current reconstruction algorithms are
also included in this section.

3.1 The generalized analytical framework of unsampled
graph signal

The essence of the reconstruction algorithm is to estab-
lish the relationship between the sampled vertices and the
unsampled vertices according to the spatial correlation.
However, the current research does not pay much atten-
tion to the component analysis of graph signals associated
with the unsampled vertices. In this paper, we analyze
the graph signals associated with the unsampled vertices
from the perspective of mean and bias and then establish a
generalized analytical framework of unsampled graph sig-
nal. The bandlimited graph signal is smooth, where the
graph signals associated with the vertices vary slowly in
comparison to the neighboring vertices [3]. In Section 2,
the reconstruction residual is defined as the difference
between the actual graph signal and the reconstructed
graph signal. Due to the fact that the actual graph signal
and the reconstructed graph signal are both bandlimited,
the reconstructed residual is also bandlimited. Thus, it
can be seen that the reconstructed residuals associated
with vertices vary slowly in comparison to the neighboring
vertices. This important property may allow the diffusion
of reconstructed residuals associated with the sampled
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vertices to the unsampled vertices, since we only know the
reconstructed residuals associated with sampled vertices
at each iteration of POCS method. Thus, we decompose
the actual graph signals associated with the unsampled
vertices as

facu = frec + fres (8)

where facu denote the actual graph signals associated with
the unsampled vertices, frec denote the extrapolated graph
signal obtained by projecting onto the low-pass filter-
ing subspace, and fres denote the diffused reconstructed
residuals obtained from the sampled vertices. Since ILSR
directly projects the sampled signal onto the low-pass fil-
tering subspace, it can be seen that fres are set to zeros and
facu is only obtained from frec. In IPR, the reconstructed
residuals associated with sampled vertices are copied and
assigned to the vertices in the corresponding local-set, and
then the projection procedure is conducted. It can be seen
that the vertices within the local-set have the same value
of reconstructed residuals. It may not fit into the prop-
erty of actual reconstructed residuals associated with the
unsampled vertices. Besides, practically the graph signal
associated with every vertex is either directly or indirectly
influenced by all the vertices in a graph, which should not
be limited in the local-set. Thus, for the purpose of accu-
rate analysis, we decompose the diffused reconstructed
residuals fres into two components, and Eq. (8) can be
rewritten as

facu = frec + fmean
res + f biasres . (9)

where fmean
res denote the local-mean component of the dif-

fused reconstructed residuals, and f biasres denote the global-
bias component of the diffused constructed residuals. The
motivation of the diffused reconstructed residual decom-
position is that we expect to establish three-layer analyti-
cal framework for the unsampled graph signals. The first
layer of unsampled graph signal is obtained by project-
ing the sampled graph signal onto the low-pass filtering
subspace, which is frec. The second layer of unsampled
graph signal is obtained from the reconstructed resid-
ual of adjacent sampled vertices, which is fmean

res . For the
local-mean component, the reconstructed residuals asso-
ciated with the sampled vertices are regarded as the mean
of local region around the sampled vertices and are dif-
fused from sampled vertices to their adjacent unsampled
vertices. The third layer of unsampled graph signal is
obtained by the reconstructed residual of all the sampled
vertices, which is f biasres . The main purpose of the global-
bias component is that the graph signals associated with
the unsampled vertices are influenced by all the sampled
vertices in graph. The global-bias component is expected

to further exploit the reconstructed residuals associated
with the sampled vertices, which is beneficial to accelerate
the convergence of reconstruction. Besides, the global-
bias component is also used to form the differences among
the graph signals associated with the unsampled vertices,
since the local-mean component assigns the same value
of reconstruction residuals from the sampled vertices to
their adjacent vertices. The collaboration of the local-
mean component and global-bias component is expected
to approximate the actual reconstructed residuals associ-
ated with the unsampled vertices by further exploiting the
smoothness of the bandlimited graph signals.
Besides, Eq. (9) can be regarded as the composition

model of unsampled graph signal of ILSR, when fmean
res and

f biasres are set to zeros. Similarly, Eq. (9) can be regarded
as the composition model of unsampled graph signal of
IPR, when f biasres is set to zero. The frec of IPR and ILSR are
both obtained by directly projecting the sampled graph
signal onto the low-pass filtering subspace. Based on the
decomposition, in the following parts of this section, we
will propose two diffusion operators (the local-mean dif-
fusion operator and the global-bias diffusion operator) to
achieve the local-mean diffusion and global-bias diffusion
of reconstruction residuals associated with the sampled
vertices.

3.2 The local-mean diffusion operator
In this part, the concept of local-mean diffusion operator
is introduced. Then, discussions on the local-mean diffu-
sion operator and local propagation are also included in
this part.
According to the decomposition model of (9), the sec-

ond layer of unsampled graph signal is the local-mean
diffusion component. In this part, we proposed a local-
mean diffusion operator, which is used to assign the
reconstructed residual from the sampled vertices to their
adjacent unsampled vertices, to achieve the local-mean
diffusion operation. Denote by ρ (v, S) the fewest distance
of an unsampled vertex v from the downsampling set S,
i.e., the fewest number of edges in a shortest path from v
to a vertex in the downsampling set S. Besides, we assume
that the fewest distance of a sampled vertex from the
downsampling set is zero.

Definition 1 (The local-mean diffusion operator) For
a given reconstructed residual f s = [

f s1 , f
s
2 , . . . , f

s
N

]T , we
define the local-mean diffusion operator Pm as

f mean
res = Pmf s =

r∑

i=1
δiBif s

where f mean
res is an N-by-1 vector and denotes the local-

mean component of reconstructed residual, Bi = CAi, C is
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a diagonal matrix with the diagonal element as the recip-
rocal of the degree of the corresponding vertex, A denotes
the adjacency matrix of graph, i denotes the fewest number
of edges in a shortest path from an unsampled vertex to a
vertex in the downsampling set S, r denotes the maximal
number of hop between sampled vertex and unsampled
vertex on the graph, and δi denotes δ-function of ρ with
entries

δi (u,u) =
{
1, i = ρ (u, S) ;
0, otherwise.

In other words, δi is a diagonal matrix with the diagonal
element as the ρ (u, S) of corresponding vertex u.

Indeed, an underlying idea behind the local-mean dif-
fusion operator is to incorporate the structure of the
adjacency matrix into the local-mean diffusion operation
of reconstructed residual. In definition 1, we employ the
powers of the adjacency matrix A to sequentially diffuse
the reconstructed residuals associated with the sampled
vertices to the adjacency unsampled vertices. Besides, C
is used to obtain the weighted value of diffused recon-
structed residual.
In [11], the authors propose an operation G firstly to

propagate the reconstructed residual in respective local-
sets and then projects the combinatorial signal onto the
low-pass filtering subspace. The first step of G provides a
solution to propagate the reconstructed residuals associ-
ated with the sampled vertices with the help of local-sets.
In this paper, we redefine the first propagating step of
G as Gp. It can be seen that Gp can be regarded as a
special case of local-mean diffusion operation based on
local-set. Thus, it is easy to see that Gp and Pm achieve
the same performance with the precondition of local-set,
but Pm can diffuse the reconstructed residuals in the more
comprehensive scenarios.

3.3 The global-bias diffusion operator
The main motivation of the global-bias component is that
the graph signals associated with the unsampled vertices
are influenced by all the sampled vertices in graph, which
should not be limited in the local region. Besides, the
global-bias component is used to provide the difference
of reconstructed residual of local region. In this part, we
propose a global-bias diffusion operator, which is used to
establish the relationship between one sampled vertex and
all unsampled vertices, to achieve the global-bias diffusion
operation.
We firstly analyze the diffusion character of single ele-

ment of reconstructed residuals and then extend to all
the elements of the downsampling set. Assuming that all
the values of reconstructed residual are zeros except at
the first vertex, that is, only the first vertex is selected

as the sampled vertex. Then, the reconstructed resid-
ual can be represented as f s = [

f s (1) , 0, . . . , 0
]T , where

f s (1) denotes the reconstructed residual resided on the
first vertex and f̂ s = [

u11f s (1) ,u12f s (1) , . . . ,u1Nf s (1)
]T

denotes graph frequency component. Since the graph sig-
nal is band-limited, we assume that there are m graph
frequency components within the bandwidth w, that is,
f̂ s = [

u11f s (1) , . . . ,u1mf s (1) , 0, .., 0
]T . Then, to trans-

form f̂ s from the graph frequency domain to the vertex
domain and denote f̃ s as the new presentation, which can
be written as follows

f̃ s (i) = ui1 f̂ s (1) + . . . + uimf̂ s (m) + 0 + . . . + 0
= ui1u11f s (1) + . . . + uimu1mf s (1) + 0 + . . . + 0
= (ui1u11 + . . . + uimu1m) f s (1)

=
m∑

j=1
uiju1jf s (1)

(10)

It can be seen that Eq. (10) establishes the relationship
of reconstructed residual between the first vertex and all
the unsampled vertices. Then, we can extend the same
assumption to the every element of downsampling set S.
Thus, from the perspective of the single unsampled vertex,
its estimated reconstructed residual is the sum of diffused
reconstructed residuals of all the sampled vertices. Denote
f̄ s (i) as the estimated reconstructed residual of the ith
unsampled vertex, which can be written as follows

f̄ s (i) =
∑

h∈S
f̃ s (h)

=
∑

h∈S

m∑

j=1
uijuhjf s (h)

(11)

The global-bias diffusion process can be understood
from two aspects. From the perspective of sampled vertex,
the reconstructed residual of the single sampled vertex
is diffused to all the unsampled vertices. From the per-
spective of unsampled vertex, the estimated reconstructed
residual of the single unsampled vertex is the sum of
diffused reconstructed residuals of all the sampled ver-
tices. Then, based on the discussion above, we define the
global-bias diffusion operator to diffuse the reconstructed
residual to all the unsampled vertices.

Definition 2 (The global-bias diffusion operator) For
a given reconstructed residual f s = [

f s1 , f
s
2 , . . . , f

s
N

]T , we
define the global-bias diffusion operator Pb as

f biasres = Pbf s = U ′U ′′f s

where f biasres is an N-by-1 vector and denotes the global-bias
diffusion component of estimated reconstructed residual,
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U ′ denotes the modified Laplacian eigenvector matrix
which the rows corresponding to the sampled vertices are
set to the zero sequence and the columns corresponding to
out of the bandwidth w are set to the zero sequence, and
U ′′ denotes the modified Laplacian eigenvector matrix in
which the rows corresponding to the unsampled vertices are
set to the zero sequence and the columns corresponding to
out of the bandwidth w are set to the zero sequence.

In each iteration, the global-bias diffusion operator Pb
diffuses the iterative reconstructed residual from the sam-
pled vertices to all the unsampled vertices.

3.4 The diffusion operator-based reconstruction
algorithm

In this part, we propose a diffusion operator based itera-
tive reconstruction (IGDR) algorithm.

Definition 3 (The diffusion operator) For a given recon-
structed residual f s = [

f s1 , f
s
2 , . . . , f

s
N

]T , we define the
diffusion operator Pd as

fres = Pdf s

= (Pm + Pb) f s

=
( r∑

i=1
δiBi + U ′U ′′

)

f s

where Pm denotes the local-mean diffusion operator, and
Pb denotes the global-bias diffusion operator.

In each iteration, the diffusion operator diffuses the
reconstructed residuals from the sampled vertices to the
unsampled vertices, where the local-mean diffusion oper-
ator diffuses the reconstructed residual associated with
the sampled vertices to their adjacent unsampled vertices
and the global-bias diffusion operator diffuses the recon-
structed residual associated with the sampled vertices to
the all unsampled vertices. According to the discussion
above, we propose a diffusion operator based reconstruc-
tion algorithm (IGDR), and its process can be written as
follows

f0 = F−1PwF fd (12)

f Gk+1 = F−1PwF
(
f Gk +

(
fd − PT f Gk

)

+ (I − PT )Pd
(
fd − PT f Gk

)) (13)

where f Gk denotes the kth iterative reconstructed signal
of IGDR,

(
fd − PT f Gk

)
denote the reconstructed resid-

ual on the downsampling set, and (I − PT )Pd
(
fd − PT f Gk

)

denote the reconstructed residual is diffused from the
downsampling set to the non-downsampling set by the
diffused operator.

3.5 Discussion
ILSR, IPR, and IGDR followed the methodology of POCS,
and the sampled data are iteratively projected onto the
downsampling subspace and low-pass filtering subspace.
The difference of ILSR, IPR, and IGDR lies in the way of
their dealing with the reconstructed residual. For ILSR,
the sampled signal is directly projected onto the low-pass
filtering subspace. For IPR, the reconstructed residuals
associated with the sampled vertices are firstly copied
and propagated to the unsampled vertices in the corre-
sponding local-sets, and then the signal is projected onto
the low-pass filtering subspace. For IGDR, the diffusion
operation of reconstructed residuals consists of two com-
ponents, which are local-mean diffusion operation and
global-bias diffusion operation. The local-mean diffusion
operation is that the reconstructed residuals associated
with the sampled vertices are diffused to the their adjacent
vertices. The global-bias diffusion operation establishes
the diffusion relationship between one sampled vertex and
all the unsampled vertices. The local-mean diffusion oper-
ation is used to form the basic component of estimated
reconstructed residuals associated with the unsampled
vertices, due to one sampled vertex has stronger relation-
ship with the adjacent vertices than others. The global-
bias diffusion operation is used to form the differences
of estimated reconstructed residuals associated with the
unsampled vertices in the local region. The collaboration
of the local-mean diffusion operation and global-bias dif-
fusion operation is used to accelerate the convergence of
reconstruction. The illustration of the iterations of the
three algorithms is shown in Fig. 2.
Besides, it can be seen that ILSR can be regarded as

a special case of IGDR, when the local-mean diffusion
component and global-bias diffusion component are set
to zeros. Similarly, IPR can be regarded as a special case
of IGDR, when the local-mean diffusion component is
designed by the local-set and the global-bias diffusion
component is set to zero.

4 The analysis of iterative error and convergence
In this section, we present the theoretical analysis of con-
vergence for the proposed iterative reconstruction algo-
rithm.

Proposition 1 The bandlimited graph signal f can be
reconstructed from its downsampling set S by IGDR, for
a given graph cut-off frequency w, the reconstructed error
bound of IGDR is

ηk+1 <
∥∥F−1PwF (I − PT ) (I − PdPT )

∥∥k · η0 (14)
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Fig. 2 Illustration of the iterations of the three algorithms

if satisfying

(√
((2Jmax + 1) α1 + 2Rmaxw) + √

α2
)

< 1 (15)

where ηk denotes the k-th iterative error, F and F−1

denote the graph Fourier transform and the inverse graph
Fourier transform, respectively, w denote the graph cut-off
frequency, PT denotes the downsampling operator which
chooses the sampled vertices and pads the unsampled ver-
tices with zeros, Pw denote the graph frequency cut-off
operator, I denotes the identity operator, and Pd is diffu-
sion operator. The notation Rmax, Jmax, α1, and α2 are the
parameters of graph signal and the downsampling set, and
the detailed explanation can be seen in proof.

Proof : The proof is postponed to Appendix.

5 The simulation results
In this section, we adopt the Minnesota path graph [18]
as the graph structure to demonstrate the performance of
proposed algorithm and current algorithms, which is eval-
uated from the convergence rate, sensitivity with graph
cut-off frequency, the influence on the different down-
sampling set, and the robustness with additive noise. We
use the synthetic data as the bandlimited graph signal on
the Minnesota path graph, and the process is shown as
follows:

1. Generate a random Gaussian signal on graph.
2. Transform the graph signal into graph spectral

domain by graph Fourier transformation and remove
the frequency components higher than the given
graph cut-off frequency.

3. Transform the graph signal from the graph spectral
domain to the vertex domain.

The Minnesota path graph is shown in Fig. 1. The pro-
posed algorithm and the current algorithms are compared
on the three classic graph structures for demonstrating
the robustness. We also use the real-world data, which are
the temperature (2014.1.1) of 94 cities of the USA and the
electricity consumption data (2015) of Shandong province
of China, to test the performance of the proposed recon-
struction algorithm. Moreover, since IPR needs the help
of local-set, we use one-hop sampling method to form the
downsampling set for fair comparison. Besides, we define
the concept of relative error. Let x denote a vector and x̃
denote the estimated value of x, then the relative error is
defined by ε = ∥∥x̃ − x

∥∥ /‖x‖ .

5.1 The convergence performance
In this part, we compare the performance of itera-
tive reconstruction for ILSR, IPR, and IGDR. We adopt
the maximum degree division based one-hop sampling
method to form the downsampling set, and the number
of vertices in the downsampling set is 873. The graph
cut-off frequency is set to 0.45 (the range of normalized
graph frequency is from 0 to 2). Moreover, the con-
vergence of reconstruction algorithms on the random
downsampling set is also considered. For the random
downsampling set, 873 vertices are selected completely
at random among all the vertices. Since IPR needs the
help of local-set, in this experiment, we only consider
the performance of ILSR and IGDR. The convergence
curves of ILSR, IPR, and IGDR are illustrated in Fig. 3.
It is obvious that the convergence rate of the proposed
IGDR is improved compared with the current iterative
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Fig. 3 The convergence curves of ILSR, IPR, and IGDR

reconstruction algorithms. Besides, it can be seen that
the convergence is faster by using the maximum degree
division based one-hop sampling set than the random
downsampling set.

5.2 Graph cut-off frequency
Since the main methodology of current reconstruction is
iteratively projecting on the downsampling subspace and
low-pass filtering subspace, the graph cut-off frequency
is a crucial quantity. In this simulation, the effect on the
variation of the graph cut-off frequency is investigated.
The downsampling set is formed by the one-hop sampling
method, and the number of vertices in the downsam-
pling set is 873. The graph cut-off frequency varies from
0.4 to 0.5, which the step size is 0.005. Figure 4 shows
the final relative error of 10 iterative reconstructions for

ILSR, IPR, and IGDR. It can be seen that IGDR has much
higher recovery accuracy than the current iterative recon-
struction algorithms via the variation of graph cut-off
frequency.

5.3 Robustness with additive noise
This simulation focuses on the robustness against the
additive noise of IGDR and the current reconstruction
algorithms. The independent and identically distributed
Gaussian sequence is involved in the observation of
sampled graph signal. We adopt the one-hop sampling
method to form the downsampling set, and the number
of vertices in the downsampling set is 873. The signal
to noise ratio (SNR) is considered with 20 and 40 dB.
The graph cut-off frequency is set to 0.45. Moreover, the
convergence of reconstruction algorithms on the random

Fig. 4 The reconstructed performance of ILSR, IPR, and IGDR for different graph cut-off frequency
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downsampling set is also considered. For the random
downsampling set, 873 vertices are selected completely
at random among all the vertices. Since IPR needs the
help of local-set, in this experiment, we only consider the
performance of ILSR and IGDR. The performances are
illustrated in Fig. 5. It can be seen that all the algorithms
have almost the same reconstructed performance against
the additive noise, but IGDR holds the fastest conver-
gence. Besides, it can be seen that the convergence is faster
by using the maximum degree division based one-hop
sampling set than the random downsampling set.

5.4 Robustness with different downsampling sets
The choice of downsampling set may affect the per-
formance of convergence and robustness. We use three
different downsampling sets to reconstruct the same ban-
dlimited graph signal. The graph cut-off frequency is set
to 0.3. The first downsampling set is the maximum degree
division based one-hop sampling set, which is formed
by the algorithm in [11] and with 873 sampled vertices.
The second downsampling set is followed by the min-
imum degree based greedy algorithm in [19], with 923
sampled vertices. The greedy algorithm is to iteratively
remove connected vertices with the smallest degrees from
the original graph into the new subset, until the cardinality
of the new subset reaches the given maximal cardinality
or there is no connected vertex. This greedy algorithm
can be regarded as a solution of uniform sampling. For
the third downsampling set, 923 vertices are selected com-
pletely at random among all the vertices. Since IPR need
the help of local-set and the second and third downsam-
pling set do not contain local-set, in this experiment, we
only consider the performance of ILSR and IGDR. The
convergence curves of the three downsampling sets using
ILSR and IGDR are shown in Fig. 6. It can be seen that

the convergence is faster by using the maximum and min-
imum degree division-based downsampling set than the
randomly selected downsampling set. The convergence of
IGDR is faster than ILSR by using all the three downsam-
pling sets. We can find that the different downsampling
set may influence on the convergence rate. Besides, all
the three reconstruction algorithms follow the methodol-
ogy of projection onto convex sets. The unsampled data
are extrapolated by alternatively projecting the sampled
data onto the downsampling subspace and low-pass filter-
ing subspace. The cornerstone of this method is the close
relationship between the sampled data and unsampled
data. Based on the theory of signal processing on graphs,
the edge denotes the relationship of vertices, which also
denotes the relationship of graph signal. That is, the ver-
tex has stronger relationship with its adjacent vertices
than others. Thus, from the perspective of experience,
if the sampled vertices and the unsampled vertices are
uniformly distributed on the graph, the reconstruction
algorithm may present more efficient performance than
others. The results of this simulation may support this
analysis.

5.5 The performance on three classic graph structures
We demonstrate the performance of IGDR on three clas-
sical graph structures: the Erdos-Renyi graph, the small-
world graph, and the scale-free graph. The Erdos-Renyi
graph is a random graph with a certain connection prob-
ability for each edge. We generate a 40-vertices Erdos-
Renyi graph, in which the probability of edge connecting
is 0.1. The small-world structure is a typical graph in
which most vertices are not neighbors of one another,
but most vertices can be reached from every other by
a small number of hops or steps. We adopt the Watts-
Strogatz model [20] to generate a small-world graph

Fig. 5 Convergence curves of ILSR, IPR, and IGDR with additive noise
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Fig. 6 Convergence curves of ILSR and IGDR with different downsampling sets

with 100 vertices. The scale-free graph is a graph whose
degree distribution follows a power law. We generate a
100-vertices scare-free network according to the Barabasi-
Albert model [21]. The graph cut-off frequency is set
to 0.5 for all three graph structures. The downsampling
set is formed by the one-hop sampling method for all
the three graphs. For eliminating the random effect of
all three graph structures, each simulation result is aver-
aged over 100 random network topologies, and one of
those graph structures is shown in Fig. 7a–c. Figure 8

shows the relative error for ILSR, IPR, and IGDR on
the three graph structures. It is obvious that IGDR has
steady performance for different graph structures and
has also lower relative error than other reconstruction
algorithms.

5.6 Sensitivity with imprecise knowledge of graph cut-off
frequency

For a bandlimited graph signal, the graph cut-off fre-
quency is a crucial quantity during the reconstruction and

Fig. 7 The structures of three classic graphs and weather station of the USA
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Fig. 8 The performance of reconstruction for ILSR, IPR, and IGDR on classic graph structure

is known as a priori knowledge. In the actual applications,
the graph cut-off frequency may be an imprecise value
rather than ground truth. In this simulation, the effect
on the imprecise knowledge of graph cut-off frequency
is investigated. The downsampling set is formed by the
one-hop sampling method, and the number of vertices
in the downsampling set is 873. The actual graph cut-off
frequency is set to 0.35. The imprecise values of graph
cut-off frequency are set to 0.3 and 0.4, which are smaller
and larger than the actual value. Figure 9 shows the
reconstruction performances of ILSR, IPR, and IGDR. It
can be seen that the relative error of smaller-value is larger
than the larger value and actual value. The simulation
results show that the current reconstruction algorithms
and the proposed algorithm have the same performances

on the imprecise knowledge of graph cut-off frequency,
and the smaller value of the imprecise knowledge of graph
cut-off frequency has more sensitive than the larger value.

5.7 Real-world data
In this simulation, real-world data is used to test the
performance of the proposed reconstructed algorithm.
As an example of real-world data, we adopt the daily
temperature data (2014.1.1) which measured by the 94
weather stations across the USA. The data is collected
by the National Climatic Data Center [22]. We represent
these stations with an undirected two-nearest neighbor
graph, in which every weather station corresponds to a
vertex and is connected to two closest weather stations
by edges. The graph is shown in Fig. 7d. We use one-hop

Fig. 9 The reconstructed performance of ILSR, IPR, and IGDR for the imprecise knowledge of graph cut-off frequency
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Fig. 10 The performance of reconstruction for ILSR, IPR, and IGDR with the temperature data

sampling method to form the downsampling set, and the
number of vertices in the downsampling set is 31. Since
temperature data varies slowly across the graph, most of
the graph signal’s energy is concentrated in the low fre-
quencies. The graph cut-off frequency can be estimated
by the following two respects: projecting the historical or
snapshot data onto the graph frequency domain and the
convergence condition in Proposition 1. Thus, the graph
cut-off frequency is set to 0.65. In Fig. 10, we can find
that IGDR has much faster convergence than the current
algorithms.
As another example of real-world data, the electricity

consumption (2015) of Shandong province of China is
selected. The data is provided by the Shandong statistical
yearbook (2015) [23]. The graph structure consists of 17
vertices, which are 17 cities of Shandong providence. The

edge of graph structure denotes the electric power trans-
mission line between the two cities. The graph structure
is shown in Fig. 11a. We use one-hop sampling method to
form the downsampling set, and the number of vertices
in the downsampling set is 7. The graph cut-off frequency
is set to 0.55. In Fig. 11b, it can be seen that IGDR
has much faster convergence than current reconstruction
algorithms.

6 Conclusions
In this paper, the problem of the bandlimited graph signal
reconstruction was studied. We established a generalized
analytical framework of graph signals associated with the
unsampled vertices. We defined a concept of diffusion
operator, which consists of local-mean diffusion oper-
ator and global-bias diffusion operator. Employing the

Fig. 11 a The power grid graph of Shandong province of China. b The performance of reconstruction for ILSR, IPR, and IGDR with the electricity
consumption data
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diffusion operator, we proposed an iterative algorithm to
reconstruct the unknown data associated with the unsam-
pled vertices from the observed samples. In each iteration,
the reconstructed residuals associated with the sampled
vertices are diffused to all the unsampled vertices. We
also presented the analysis of iterative reconstructed error
and convergence of the proposed algorithm. The simu-
lation results are showed that the techniques presented
in this paper perform beyond the current reconstruction
algorithms. Moreover, the main purpose of this paper is
to present a generalized model to accelerate the conver-
gence rate of reconstruction algorithm. The design of the
local-mean diffusion operator and global-bias diffusion
operator according to the character of network topology
and graph signals can be investigated in the future work.

Appendix
Proof : The key notation used in the proof is shown in

Table 1.

Table 1 Key notation used in the proof

Symbol Description

Pw The graph frequency cut-off operator

w The graph cut-off frequency

S The downsampling set

V The set of vertices of the graph

E The set of edges connecting vertices

F The graph Fourier transform

F−1 The inverse graph Fourier transform

PT The downsampling operator

u, v The vertex

Pd The diffusion operator

f A bandlimited graph signal

Pm The local-mean diffusion operator

Pb The global-bias diffusion operator

K (u) The local-diffused unsampled vertices set of the sampled
vertex u

d (v) The degree of the vertex v

α1,α2 The downsampling parameter

M The cardinality of the downsampling vertices set

N The cardinality of the graph vertices set

Y The cardinality of the eigenvalue less than the graph cut-off
frequency

HK(u) The maximal distance from sampled vertex u to other
vertices within K (u)

XK(u) The cardinality of K (u)

Rmax The maximal value of the product of XK(u) and HK(u) in
graph

J (u) The degree operator of K (u)

Jmax The maximal value J (u) in graph

The graph frequency cut-off operator is defined as the
diagonal matrix Pw = diag {1w}, where 1w is the set indica-
tor vector, whose ith entry is equal to one, if i ∈ [ 0, w), or
zero otherwise (the range of normalized graph frequency
is from 0 to 2). Thus, it can be seen that Pw remove the
high-frequency components ([w, 2]). Since only [ 0,w) of
the energy of graph signal can be preserved, F−1PwF
is a contraction mapping. The downsampling operator
is defined as a diagonal matrix PT = diag {1S}, where
1S is the set indicator vector, whose ith entry is equal
to one, if i ∈ S, or zero otherwise. Due to only the
non-downsampling vertices are preserved, (I − PT ) is a
contraction mapping. Besides, let f denote a bandlimited
graph signal and its graph cut-off frequency is w. Notice
that F−1PwF f = f and fd = PT f , we have,

ηk+1 = ∥∥fk+1 − f
∥∥

=
∥∥∥F−1PwF

(
f Gk +

(
fd − PT f Gk

)
+ (I − PT )

Pd
(
fd − PT f Gk

))
− f

∥∥∥

=
∥∥∥F−1PwF

(
f Gk +

(
fd − PT f Gk

)
+ (I − PT )

Pd
(
fd − PT f Gk

)
− f

)∥∥∥

<

∥∥∥
(
f Gk +

(
fd − PT f Gk

)
+ (I − PT )

Pd
(
fd − PT f Gk

)
− f

)∥∥∥

=
∥∥∥
((

f Gk − f
)

−
(
PT f Gk − PT f

)
− (I − PT )

Pd
(
PT f Gk − PT f

))∥∥∥

=
∥∥∥
((

f Gk − f
)

− PT
(
f Gk − f

)
− (I − PT )

PdPT
(
f Gk − f

))∥∥∥

=
∥∥∥
(
(I − PT ) (I − PdPT )

(
f Gk − f

))∥∥∥

<

∥∥∥(I − PdPT )
(
f Gk − f

)∥∥∥

(16)

The diffusion operator Pd consists of the local-mean dif-
fusion operator Pm and the global-bias diffusion operator
Pb. We have

‖I − PdPT‖ = ‖I − (Pm + Pb)PT‖
= ‖(I − PmPT ) − PbPT‖
≤ ‖I − PmPT‖ + ‖PbPT‖ (17)

We first analyze the character of ‖I − PmPT‖. Accord-
ing to the analysis in Section 3.2, the local-mean diffusion
operator Pm assign the signal from sampled vertices to
their adjacent unsampled vertices. Let f denote a ban-
dlimited graph signal, S denote the downsampling set, and
K (u) denote the local-diffused unsampled vertices set of
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the sampled vertex u by the local-mean diffusion operator.
Then, we have

∥∥(I − PmPT ) f
∥∥2 = ∥∥f − PmPTf

∥∥2

=
∑

m∈S

∣∣f (m)
∣∣2

︸ ︷︷ ︸
a

+
∑

u∈S

∑

v∈K(u)

∣∣∣∣f (v) − 1
d (v)

f (u)

∣∣∣∣

2

︸ ︷︷ ︸
b

(18)

where d (v) denote the degree of the vertex v. It can be
seen that the part a of Eq. (18) is the downsampling part
of

∥∥f
∥∥2, then

∑

m∈S

∣∣f (m)
∣∣2 = ∥∥PT f

∥∥2

= α1
∥∥f

∥∥2 (19)

where α1 denote the proportion of quadratic sum of graph
signals associated with sampled vertices in the quadratic
sum of graph signals associated with all the vertices, i.e.,

α1 =
∑

u∈S

∣∣f (u)
∣∣2

∑

v∈V

∣∣f (v)
∣∣2

It can be seen that the range of α1 is from 0 to 1. The value
of α1 approximates to M

N , when the graph signal f is very
smooth. For the part b of Eq. (18), we have

∑

u∈S

∑

v∈K(u)

∣∣∣∣f (v) − 1
d (v)

f (u)

∣∣∣∣

2

=
∑

u∈S

∑

v∈K(u)

(
1

d (v)

)2∣∣d (v) f (v) − f (u)
∣∣2

=
∑

u∈S

∑

v∈K(u)

(
1

d (v)

)2∣∣d (v) f (v) − d (v) f (u) + d (v) f (u) − f (u)
∣∣2

=
∑

u∈S

∑

v∈K(u)

(
1

d (v)

)2∣∣d (v)
(
f (v) − f (u)

) + (d (v) − 1) f (u)
∣∣2

=
∑

u∈S

∑

v∈K(u)

∣∣∣∣
(
f (v) − f (u)

) + d (v) − 1
d (v)

f (u)

∣∣∣∣

2

≤
∑

u∈S

∑

v∈K(u)

(∣∣f (v) − f (u)
∣∣ +

∣∣∣∣
d (v) − 1
d (v)

f (u)

∣∣∣∣

)2

≤ 2
∑

u∈S

∑

v∈K(u)

(
∣∣f (v) − f (u)

∣∣2 +
∣∣∣∣
d (v) − 1
d (v)

f (u)

∣∣∣∣

2
)

= 2
∑

u∈S

∑

v∈K(u)

∣∣f (v) − f (u)
∣∣2

︸ ︷︷ ︸
c

+ 2
∑

u∈S

∑

v∈K(u)

∣∣∣∣
d (v) − 1
d (v)

f (u)

∣∣∣∣

2

︸ ︷︷ ︸
d

(20)

We first discuss the character of the part c of Eq. (20).
There is always a shortest path within K (u) from any
local-diffused unsampled vertex v ∈ K (u) to sampled ver-
tex u, which is denoted as (v, v1, v2, . . . , vr−1,u). Then, we
have
∣∣f (v) − f (u)

∣∣2 = ∣∣f (v) − f (v1) + . . . + f (vr−1) − f (u)
∣∣2

≤ (∣∣f (v) − f (v1)
∣∣ + . . . + ∣∣f (vr−1) − f (u)

∣∣)2

≤ HK(u)

(∣∣f (v) − f (v1)
∣∣2 + . . . + ∣∣f (vr−1)

−f (u)
∣∣2

)

(21)

where HK(u) denote the maximal distance from sampled
vertex u to any local-diffused unsampled vertex within
K (u). For each local-diffused unsampled vertex v ∈ K (u),
the path to the sampled vertex u is not longer than HK(u).
Let XK(u) denote the cardinality of K (u). The maximal
distance within K (u) is counted for no more than XK(u)

times. Then, we have
∑

v∈K(u)

∣∣f (v) − f (u)
∣∣2 ≤ XK(u)HK(u)

∑

(i, j)∈E, i, j∈{K(u)∪u}

∣∣f (i) − f
(
j
)∣∣2

Let Rmax denote the maximal value of the product of
XK(u) and HK(u) in graph, i.e.,

Rmax = max
u∈S

XK(u)HK(u)

Thus, we have
∑

u∈S

∑

v∈K(u)

∣∣f (v) − f (u)
∣∣2 ≤ Rmax

∑

(i,j)∈E

∣∣f (i) − f
(
j
)∣∣2

= Rmaxf TLf
= Rmaxf TU�UTf
= Rmax f̂ T�f̂

= Rmax
∑

λp≤w
λp

∣∣∣f̂ (p)
∣∣∣
2

≤ Rmaxw
∥∥f

∥∥2 (22)

where V denotes the set of vertices of the graph and E
denotes the set of edges connecting vertices. Since f is
bandlimited, the components of f̂ associated with the fre-
quencies higher than the graph cut-off frequency w are
zero. Then, we analyze the character of the part d of
Eq. (20). J (u) is denoted as

J (u) =
∑

v∈K(u)

(
d (v) − 1
d (v)

)2

and let Jmax denote the maximal value of J (u), i.e.,

Jmax = max
u∈S

J (u)
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Thus, considering Eq. (19), we have

∑

u∈S

∑

v∈K(u)

∣∣∣∣
d (v) − 1
d (v)

f (u)

∣∣∣∣

2
=

∑

u∈S
J (u)

∣∣f (u)
∣∣2

≤ Jmax
∑

u∈S

∣∣f (u)
∣∣2

= Jmax
∥∥PT f

∥∥2

= Jmaxα1
∥∥f

∥∥2 (23)

Combining (18), (19), (22), and (23), we have
∥∥(I − PmPT ) f

∥∥2 ≤ α1
∥∥f

∥∥2 + 2Rmaxw
∥∥f

∥∥2 + 2Jmaxα1
∥∥f

∥∥2

= ((2Jmax + 1) α1 + 2Rmaxw)
∥∥f

∥∥2 (24)

Then, we analyze the character of ‖PbPT‖. According to
the explanation in Section 3.3, the global-bias diffusion
operation first projects the reconstructed residual associ-
ated with the downsampling set onto the low-pass filtering
subspace, then preserves the non-downsampling set of
new signal. Thus, we have PbPT = (I − PT )F−1PwFPT .
Due to (I − PT ), F−1PwF , and PT are contraction map-
ping, it can be seen that (I − PT )F−1PwFPT is contrac-
tion mapping, i.e.,

∥∥(I − PT )F−1PwFPT f
∥∥ <

∥∥F−1PwFPTf
∥∥

<
∥∥PT f

∥∥

<
∥∥f

∥∥

Let α2 denote the proportion of quadratic sum of PbPT f
in the quadratic sum of graph signal f. Therefore,

∥∥PbPT f
∥∥2 = α2

∥∥f
∥∥2 (25)

It can be seen that the range of α2 is from 0 to 1. Since PT
and Pw are the known parameter, the value of α2 can be
obtained according to graph signal and downsampling set.
Besides, the value of α2 approximates to

(
(N−M)

N
Y
N

M
N

)
,

when the graph signal f is very smooth. Then, combining
(17), (24) and (25), we have

∥∥(I − PdPT ) f
∥∥ ≤ √

((2Jmax + 1) α1 + 2Rmaxw)
∥∥f

∥∥

+ √
α2

∥∥f
∥∥

=
(√

((2Jmax + 1) α1 + 2Rmaxw) + √
α2

)

∥∥f
∥∥

(26)

Therefore, the operation (I − PdPT ) is a contraction
mapping, if

(√
((2Jmax + 1) α1 + 2Rmaxw) + √

α2
)

< 1 (27)

Thus, for a given graph cut-off frequency, if satisfying
the condition of (27), we have

ηk+1 =
∥∥∥f Gk+1 − f

∥∥∥

<

∥∥∥
(
f Gk − f

)∥∥∥

= ηk

It can be seen that IGDR reduces the reconstructed
error at each iteration step. Then, the reconstructed error
bound of IGDR satisfies

ηk+1 <
∥∥F−1PwF (I − PT ) (I − PdPT )

∥∥k · η0

and Proposition 1 is proved.
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