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Abstract

in this multistatic passive radar system.

The target tracking using multistatic passive radar in a digital audio/video broadcast (DAB/DVB) network with
illuminators of opportunity faces two main challenges: the first challenge is that one has to solve the
measurement-to-illuminator association ambiguity in addition to the conventional association ambiguity between
the measurements and targets, which introduces a significantly complex three-dimensional (3-D) data association
problem among the target-measurement illuminator, this is because all the illuminators transmit the same carrier
frequency signals and signals transmitted by different illuminators but reflected via the same target become
indistinguishable; the other challenge is that only the bistatic range and range-rate measurements are available while
the angle information is unavailable or of very poor quality.

In this paper, the authors propose a new target tracking algorithm directly in three-dimensional (3-D) Cartesian
coordinates with the capability of track management using the probability of target existence as a track quality
measure. The proposed algorithm is termed sequential processing-joint integrated probabilistic data association
(SP-JIPDA), which applies the modified sequential processing technique to resolve the additional association
ambiguity between measurements and illuminators. The SP-JIPDA algorithm sequentially operates the JIPDA tracker
to update each track for each illuminator with all the measurements in the common measurement set at each time.
For reasons of fair comparison, the existing modified joint probabilistic data association (MJPDA) algorithm that
addresses the 3-D data association problem via “supertargets” using gate grouping and provides tracks directly in 3-D
Cartesian coordinates, is enhanced by incorporating the probability of target existence as an effective track quality
measure for track management. Both algorithms deal with nonlinear observations using the extended Kalman
filtering. A simulation study is performed to verify the superiority of the proposed SP-JIPDA algorithm over the MJIPDA

Keywords: Multistatic passive radar, DAB/DVB, MJIPDA, SP-JIPDA, Track management

1 Introduction

In a multistatic passive radar system, illuminators of
opportunity such as radio or television transmitters can
be used. The transmitted signals are not under the con-
trol of the receiver; thus, the receiver can remain hidden.
One can measure the time difference of arrival (TDOA)
and Doppler shift between signal received directly from
the illuminator and delayed copies from potential targets.
As the receiver and transmitter in the multistatic passive
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radar system are completely separated, the receiver
therein just needs to process the received signals while it
has to service the transmitter in a feedback manner and
consumes much more power in some other radar systems;
therefore, the multistatic passive radar system is more
economic. Due to the non-cooperative illuminator trans-
mits low RF signals, the chance to detect stealth and low
altitude targets increases [1]; however, this causes prob-
lem in that measurement of the azimuth angle is often of
very poor quality or not even available at some extreme
situations. Therefore, in this multistatic passive radar sys-
tem, the range and range rate are measured while the angle
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information is assumed to be unavailable, due to the low
RF frequencies of the illuminating signals.

In this paper, we focus on target tracking from prepro-
cessed detections originating from the television or radio
broadcasting signals that are modulated according to the
digital audio broadcasting (DAB) or digital video broad-
casting (DVB) standards [2, 3]. The using of the DAB/DVB
signals delivers numbers of advantages compared to that
of analog signals: such as, the improved detection perfor-
mance [4], the more effective signal processing process
[5], and the more easily estimated multipath. As a result,
a couple of widely spaced transmitters that broadcast the
DAB/DVB signals on the same carrier frequency with
each responsible for a small and overlapping subscriber
footprint, are used to cover a large surveillance space.

However, there are two main challenges in this mul-
tistatic passive radar system with a DAB/DVB network.
One is that there is a new association ambiguity between
the measurements and the illuminators on top of the
conventional ambiguity between the measurements and
targets, which results in three-dimensional (3-D) data
association and adds significant data association complex-
ity. This is because all illuminators in this system transmit
the same frequency broadcasting signals and it is not avail-
able for the receiver to differentiate the received signals
from the different illuminators’ signals. The other chal-
lenge is that more than one illuminator is needed to locate
a single target due to the absence of angle information,
which inevitably generates a lot of ghosts.

There has been numbers of research focused on the
problems in this multistatic passive radar system with
DAB/DVB networks. The track-before-detect (TBD) algo-
rithms [6, 7] that estimate the target positions directly
from the unprocessed DAB/DVB signals can be used
to solve the association measurements since the target
is observed over several consecutive scans and hence
reducing the number of possible associations. The TBD
algorithms ensure better detection and estimation perfor-
mance than conventional algorithms at the price of an
increased computational load, while the empirical tech-
niques can be adopted to reduce the complexity of the
TBD algorithms, one can refer to [8—10], therein, the pro-
posed algorithms have a complexity linear in the number
of integrated scans and in the time on target. As opposed
to from the unprocessed signals, most other researchers
focus on the target position estimation from the pre-
processed detections (measurements), which require less
computation source over the TBD algorithms but have
to address the data association problem. The authors in
[11] propose a multi-dimensional assignment approach
to solve the transmitter ambiguity for bistatic range,
range rate, and precise azimuth measurements. In [12],
the authors propose a multi-hypothesis tracking (MHT)-
based three-stage approach that includes primary tracking
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directly on the measurements and a two-dimensional
(2-D) estimate to address the association problem that
is later resolved into 3-D. Another algorithm employ-
ing the likelihood ratio test to remove “ghost” tracks is
investigated in [13]. Recently, Choi et al. [14, 15] pro-
pose two groups of algorithms for multitarget track-
ing directly in the Cartesian coordinates. One group
consists of the extended Kalman filter (EKF) and
unscented Kalman fitler (UKF) [16] based modified joint
probabilistic data association (MJPDA) to resolve the
additional ambiguity between measurements and illu-
minators, while the other group consists of the boot-
strap particle filter (BPF) and auxiliary particle filter
(APF) [17] based data association under the probabilistic
multi-hypothesis tracker (PMHT) measurement model.
However, these preprocessed-detection-based tracking
algorithms neglect providing an effective track quality
measure for track management, which motivates the
authors to consider the probability of target existence
as a track quality measure for multitarget tracking from
preprocessed detections.

This paper focuses on the multitarget tracking algo-
rithms directly in three-dimensional (3-D) Cartesian
coordinates using the preprocessed detections. Moti-
vated by the techniques presented in [18] and [19, 20].
The authors propose a new algorithm entitled sequen-
tial processing-joint integrated probabilistic data associ-
ation (SP-JIPDA) which provides tracks directly in 3-D
Cartesian coordinates, and enable the track management
using the probability of target existence as a track qual-
ity measure. To the best knowledge of the authors, the
only existing multitarget tracking algorithms directly in 3-
D Cartesian coordinates under the multistatic DAB/DVB
passive radar system are proposed in [14, 15], they are
the modified joint probabilistic data association (MJPDA)
and the particle filtering under the probabilistic multi-
ple hypothesis (PMHT) model, with the MJPDA deliv-
ers more robust tracking performance and requires less
computational resources. However, both of the exiting
algorithms neglect providing an efficient track quality
measure for track management. Therefore, in order to
compare the proposed algorithm (SP-JIPDA) to the exit-
ing algorithms, the MJPDA algorithm is enhanced by
incorporating the probability of target existence as a
track quality measure for track management, and termed
modified joint integrated probabilistic data association
(MJIPDA). The proposed SP-JIPDA algorithm avoids the
extra data association ambiguity between the measure-
ments and illuminators, and moreover, the measurement
information from various illuminators is utilized in a more
effective way and delivers much better tracking perfor-
mance compared with the MJIPDA algorithm.

The paper is organized as follows. Section 2 describes
the problem statement, and the modified JIPDA algorithm
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is presented in Section 3. Section 4 investigates the
sequential processing JIPDA algorithm and the simula-
tion is implemented in Section 5, with the conclusions in
Section 6.

2 Problem statement

The tracking algorithms presented in this paper are based
on the infinite sensor resolution and point target assump-
tions. Denote a track or a potential target followed by a
certain track by superscript 7, of which the interpretation
is clear from the context.

2.1 Target

Let x; denote the random existence event for a tar-
get being followed by track 7 at time k. The event x;/
propagates as a Markov process [21-23]. Denote the
trajectory state with position and velocity components
in 3-D Cartesian coordinates of target r at time k by
xp =[x x*17, with x* = [x7(k) y (k) z"(]T
and x;”" = [&7(k) §7(k) Z° (k)]T. The trajectory state is
assumed to propagate linearly by

SR SR (1)

where v is the white Gaussian noise sequence with zero
mean and covariance Qg, and F denotes the state transi-
tion matrix, which is calculated by

1T
S @)

where T is the sampling interval between two consecu-
tive scans, ® denotes the Kronecker product and I3 is the
identity matrix of size 3. For reasons of simplicity, as well
as better concentrating on the essence of problems caused
by multitarget tracking in clutter for a multistatic passive
radar system under the DAB/DVB network, we assume a
constant velocity target trajectory model. There have two
feasible methods to face with the possible target trajectory
changes: one is to increase the value of target trajec-
tory plant noise covariance matrix (Qy) when the target
trajectory changes slightly, therein, the increased plant
noise covariance is able to account for certain amount
of mismatch between the assumed trajectory model and
the actual one. However, if the target trajectory changes
dramatically or even maneuvers among different motion
models, one can resort to the interactive multiple model
(IMM) algorithm [24], which performs well on systems
characterized by multiple models of target behavior.

Each existing target 7 at time k creates at most one
detection with probability of detection Pp. In this multi-
static passive radar system of DAB/DVB network, there
exist multiple illuminators located at x; = [xg ys z5]7
for s = 1,---,N; and only one receiver located at
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Xy = [%, 9r z-]7, the receiver can measure bistatic range
vk and range rate y at time k, which are given by

) ®3)

7 (6o xs) = [ = + [ =

(x” —xv) TX/Z’V
I = x|

TP T z,v
(xk Xs) Xk . (4)

) = 7 —x]
k S

Thus, the observation with respect to illuminator s is
given as

zi = I, (X[, Xs) + Wi, (5)

where z; = Yk ]‘/k] Tr hi(xlz’ Xs) = [ yk(x}i» Xs) yk(xlz, xs)]T,
and wy is the white Gaussian noise sequence with zero
mean and covariance Ry, uncorrelated with the plant
noise sequence v; . At each time , the receiver receives a
random set of measurements Z; without prior informa-
tion on the origin of each measurement. Each measure-
ment has only one resource, either a target or clutter, but
it can be originated from any illuminator. Denote the set
of measurements up to and including time k by Z¥ =
{ZF1, Z), and let Z; ; denote the ith measurement of Z;.

2.2 Clutter

At each scan, the sensor received a random number of
clutter (false) measurements. The number of clutter mea-
surements in the surveillance space is usually modeled by
a Poisson distribution [24] with somehow known inten-
sity, which is termed as the clutter measurement density.
Denote the clutter measurement density of measurement

Z; ; by the shortcut py ; 2 p(Z ;). Assume the volume of
the surveillance space at time k is V%, thus the probability
that the number of the clutter measurements equals m in
Vi at time k follows the Poisson distribution

m
= [ pridv (Q{ pk’idv>

up(m) =e ' _— (6)

m!

where the clutter measurement density px; = 1‘;“ [24, 25],
with Py and V;. denote the probability of false alarm
and the sensor resolution cell volume. As can be eas-
ily seen, the probability of false alarm impacts on the
number of clutter measurements significantly, that is, if
the probability of false alarm Py, increases, the clutter
measurement density pg; also increases, and the mean
number of clutter measurements in the surveillance space
Vi increases, which results in a increased number of
clutter measurements at each time k. In target track-
ing, the clutter measurement density is either a priori
known or estimated adaptively based on the current
measurements [26].
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2.3 Multistatic passive radar in a DAB/DVB network

As the focus of this paper is on target tracking from
detections of the preprocessed signals in the multistatic
passive radar systems of a DAB/DVB network, there
mainly exist two challenges. One is that there is a new
association ambiguity between measurements and illumi-
nators besides the conventional one between measure-
ment and targets, which results in 3-D data association
among target-measurement illuminators. This is because
each of the multiple illuminators transmits the same fre-
quency digital signal, albeit with different delays due
to the illuminator-target-receiver geometry, the fact that
received signals are composed of multiple unlabeled
delays per target, and that there is no useful information to
discriminate the origin of the measurement. As the num-
ber of 3-D association events increases dramatically [15]
even given small number of measurements, targets and
illuminators, it is computationally unrealistic to directly
implement conventional 2-D data association approaches
to resolve the 3-D data association problem in this passive
radar system.

The other challenge is due to the broadcasting signal
frequencies for passive radars and the type of receivers,
the angle information is of realistically poor quality and
target tracking using only the range and range rate with-
out angle information inevitably generates ghost tracks.
A bistatic range measurement can locate a target at an
ellipsoid in 3-D Cartesian coordinates, but for the inter-
section of two ellipsoids, which is an ellipse, a third bistatic
range measurement is necessary to possibly locate the
target, resulting in the generation of multiple ghosts. Fur-
thermore, in the presence of measurement noise and the
clutter measurement, the situation is even more severe.

In the following two sections, two track maintenance
algorithms directly in 3-D Cartesian coordinates are intro-
duced. The first presented in Section 3 is the modified
JIPDA algorithm, which is enhanced by incorporating the
probability of target existence as a track quality mea-
sure. The second algorithm, proposed in Section 4 is the
sequential processing JIPDA algorithm, which is our main
contribution of this paper.

3 Modified JIPDA (MJIPDA)

3.1 Supertarget and gate grouping

The JPDA algorithm [24] enumerates and probabilistically
evaluates every validated measurement to the target asso-
ciation event, and the target states are estimated by using
the marginal association probability. In this multistatic
passive radar system, as discussed in Section 2.3, the com-
putational cost of evaluating all possible 3-D association
events is much higher than the cost for 2-D association
events. The authors in [15] proposed a suboptimal idea
of supertarget T = {t,s}, which is a hypothetical tar-
get consisting of a pair of target T and illuminator s, and
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succeeded to recast the 3-D association among measure-
ments, targets and illuminators to a 2-D list-matching
problem between measurements and supertargets.

Given that the number of association events increases
in the number of targets (supertargets) and measurements
involved, the gate grouping concept is introduced [27].
Denote the set of gating validated measurements at time
k with respect to supertarget T by z/i , with corresponding

set cardinality N, ,f. z,fi is the ith measurement of z,i.

- T 1
Z]Z = {Zk,i € Zk . <Zk,i — hi (xlrdkfl’xS)) (S;'S)

(Zk,i — Iy <x,€|k71,xs)> < /c]

with the predicted measurement hf((xlfd k1 Xs) and its

(7)

associated covariance S,z’s with respect to supertarget T =
{r,s}, where « is the gating threshold.

The supertargets sharing at least one measurement in
their corresponding validation gates are classified as one
group. Thus, all of the 3-D association events can be sepa-
rated as groups of 2-D association events, which decreases
the number of association events on a large scale. Note
that the concept of a group here is slightly different from
the cluster, in the sense that the supertargets in differ-
ent groups are possibly from the same target since one
target can create N supertargets via combining with N
illuminators.

Table 1 gives an example of four supertargets, which
are formed by combinating two targets (1, 72) and two
illuminators (s1,s2), respectively, as well as their corre-
sponding validated measurements. There are two groups:
the first group is (71, 73) with shared validated measure-
ments (zy,Z4), the other group is (72,74) with shared
validated measurements (z1, z3).

3.2 Modified JIPDA using supertargets

The proposed modified JPDA algorithm in [15] declares
a track lost if no measurement falls within the target
gates for some consecutive scans or the gate becomes too
large. In this section, the modified JPDA is enhanced by
incorporating the probability of target existence as a track
quality measure for track management, which utilizes the
probability of target existence to confirm or terminate

Table 1 Example of supertargets

T = (11,51) T = (11,52) 73 = (12,51) T4 = (12,52)
z X v X v
2 v X v X
z3 X X v
z, v X X
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tracks, and is termed as modified joint integrated prob-
abilistic data association (MJIPDA). The MJIPDA algo-
rithm recursively calculates the hybrid track state at each
scan. Let us start the recursion from the predicted track
state of v at time k — 1, which consists of track exis-
tence event x; (discrete event) and the trajectory state x
(continuous variable),

p (X,f,x,i Zk_l) =P (X/f zk-1 )p (x,i X;,Z/‘_l) ,
(8)
with
p (X2 =N (R PR ) - ©)

The trajectory state pdf p(x; |x; ,ZF=1) is only condi-
tioned on the target existence le , and for the rest of this
paper, this conditioning is only implicit.

3.2.1 Data association

In this section, the authors present the multi-target data
association operation on one group, where the other
groups also follow the same procedure. A feasible joint
event (FJE) is an allocation of all measurements to all
supertargets in the group and satisfies that each super-
target is assigned zero or one measurement and each
measurement is allocated to zero (clutter) or one supertar-
get [24]. Let &; denote the jth FJE, where To(§;) and T1(§))
are the set of supertargets allocated no measurement and
one measurement with respect to the FJE &;, respectively.
The posterior probability of FJE &; is given by

P (51' ‘Zk) = ckfe};[(fi)(l ~ FobeP <ka|zk_l>>
£ ipk—1 plr;i 10
X tetie) <PDPGP (127 :Ok,i) ’

where Pg is the gating probability, ¢ is the normalizing
constant. P(x,f|Zk_1) = P(x,:|Zk_1) dueto T = {1,s}.

The likelihood of measurement z,T;i allocated to super-
target 7 in FJE &; is obtained by

T . 7,8 T s 7,8
. N(zk,i’ hy (xklk—l’xk)’sk )

Pri= e , (11)

where Pg is the gating probability. Denote by E(7,i) the
set of FJEs which allocates measurement i to supertarget
7, and denote the event that the selected measurement i
is the detection of supertarget T at time k by X/f,i @i=0
means no measurement is the supertarget 7 detection).
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The posterior probability that no measurement originates
from the supertarget T detection is

Pral2)= 2 (5|2

§EEB(T,0)

(12)

and the posterior probability that no measurement in the
group is supertarget T detection as well as that supertarget
T exists is

(1= PpPe) P (] |Z51)

1 — PpPGP (X,f |Zk—1)

P<ka,o

Zk )

(13)

P <ka, XZO ‘Zk> =

and the posterior probability of measurement Z/ii in the
group is supertarget T detection and supertarget T exists

) zk)z 3 P(Ejjzk),

EEE(T)

P (xf s (14)

thus, the posterior probability of supertarget T existence is
P (X/f Zk> = ZP (ka, le,t Zk).
i~0

The posterior data association probability for supertar-
get T is

(15)

PE |k
P<X/f,i’ X |Z )

P(xi 1)

Biz ZP(XIE,,' ka,Zk> = ,i>0. (16)

3.2.2 Track state update

Since each supertarget 7 is created by combing each track
7 and each illuminator s (a total of Ny illuminators), the
track state output for 7 at time k should involve all the
supertargets T originated from track 7. Let E(tr) denote
the set of supertargets that originated from track t, with
the set cardinality Nj.

zv).

2) =P (i |2)p (4
The probability density function of the track t trajectory
state is assumed to be a single Gaussian distribution,

P (2 (17)

p(xi [2) = N (x5 6y Pig ) (18)
where
N
Ko =D D bR (19)
#eE(r) j=0
and
Ni
T ~ 7 T T ST [T r
Pip= D > b (Phust xklk,j<xk|k,1) _xk|k(xk|k) :
7€E(t) j=0

(20)
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where ¢; is the renormalized factor which satisfies
N
> > ¢Bjz = 1. The mean and covariance updated by
feE(r) j=0
measurement er<,i with respect to supertarget T = (t,s)
are calculated by

[ﬁlrdkfl Plr<|k71:|’ j=0
EKFy (2, R Xy Pl 11 4) 1) > 0,
(21)

ot |-
[xk\k,i Pk\k,i]_

where EKFy is the extended Kalman filter update proce-
dure, and the predicted measurement function is / =

S T
hy (xk\kfl’x3>'
The posterior probability of target existence with
respect to track 7 at time & is obtained by

() - ¥ ol

#eE(r)

7k ) /N, (22)

4 Sequential processing JIPDA (SP-JIPDA)

The authors propose another methodology named
sequential processing JIPDA (SP-JIPDA) for target track-
ing in clutter for this multistatic passive radar system,
which avoids the association between measurements and
illuminators by sequentially processing the tracks for
each illuminator with all the measurements in the com-
mon measurement set, and then recursively calculates
the probability of target existence as a track quality mea-
sure for track management. Note that the concept of the
supertarget is not needed in this approach.

4.1 Sequential processing framework

The sequential implementation for multisensor multitar-
get tracking in clutter is introduced in [19, 20], which
processes the measurements from one sensor at a time,
and the measurements of the next sensor are then used to
further improve the intermediate state estimation. How-
ever, the measurements of different illuminators in the
multistatic passive radar system in a single frequency
(DAB/DVB) network are indistinguishable, the typical
sequential approach needs to be modified slightly. The
sequential processing method proposed in this section is
that the hybrid state of each track is updated sequen-
tially for each illuminator with all the measurements in the
common measurement set.

As shown in Fig. 1, each track state is first updated
for illuminator 1 with all of the measurements of mea-
surement set Z; to obtain the first intermediate track
state, then the intermediate track state is improved by
the sequential update for the next illuminator with the
common measurement set Z;. The track state update
is continued till its corresponding intermediate track
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state is updated for the last illuminator with the com-
mon measurement set Z;. This sequential process-
ing implementation subtly avoids the 3-D association
among measurement, target and illuminator, and tangibly
improves the track state estimation.

4.2 Sequential processing JIPDA implementation

The JIPDA [18, 28] is a multitarget tracking algorithm
with single scan data association and the capability of
track management using the probability of target exis-
tence. The sequential processing JIPDA (SP-JIPDA) algo-
rithm is implemented by sequentially operating the JIPDA
tracker to update each track t for each illuminator with
the common measurement set Z;. The proposed algo-
rithm starts the recursion with the updated probability
density function (pdf) of the track state at time k—1, which
consists of the target existence and track trajectory state,
as

p (le—l’le—l ‘Zk_l) =P (X/§—1 ‘Zk_l>l7 (xlr(—l ‘Zk_l),
(23)

where
p (x/T<—1|Zk_1) :N(xlz—1;’A‘lZ—1\k—1'Plr<—1|k_1)' (24)

The track t state at time k is updated sequentially for
each illuminator s using the common measurement set Z
in a recursive manner. The recursion includes

Track state propagation

Measurement selection and likelihood evaluation
Multitarget data association

Track state update

4.2.1 Track state propagation
The propagated track state at time k — 1 of track t with
respect to the illuminator s equals

p (xk’ (5), XL () ‘Z"‘l) =P (x,ﬁ (s) ‘Zk_l )p (x;(s) ’z"*) ,
(25)

where

, (x;(s) ’Zk—1> _ /\/(x;(s);&zlk_l(s),Pglk_l(s)).
(26)

Within the sequential processing framework, the prop-
agated track state for the first illuminator is the predicted
track state p(x, X |Z%—1), and the propagated track state
for the other illuminator s equals the posterior track state
with respect to the last illuminator p(x; (s — 1), x;(s —
1)|Z%). The propagated probability of target existence
with respect to the illuminator s is obtained by

T k—1 _
P(xk’(s>|zk1):{P(xk\Z ), s=1

P(xi(s—1)|ZF), s #1, 27)
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[lluminator 1 [lluminator 2 e [lluminator N,
Px |27 P (.x, (D] 21 )l P-x 2
g : > . . >
5 5. | Multitarget ) ) +.| Multitarget Multitarget -
PXAZ7) | joint Data P DXk DIZO) yoint Data |, _,| JointData P(i-Xi1Z7)
> > >
Association Association | | Association
: and : and and :
P Filtering . . | Filtering Filtering . ok
P-Xi |2 ). Algortihm P (), x*(l)‘Zg Algortihm | __,| Algortihm Pzx | Z I)
Z, Z, . Z,
Fig. 1 Sequential processing framework

where
T k—11Y\ __ T k—1
P(x; |Z =p11P (x4, |Z .

Here p1,1 is the probability of target existence at time k
given that it exists at time k — 1 [21], and P(x (s — 1)|Z5)
is the posterior probability of target existence with respect
to illuminator s — 1.

The propagated track trajectory state for the illuminator
s is given by

(28)

T T —
[xk\kfl’ Pk\k—l:l ’ s=1

I:)A(lrdk—l(s)’P/rdk—l(S):I = [)A(]Tdk(s _ 1)’Pl£|k(s — 1)] ,8 # 1,

(29)

where
[’A‘/qu—p P/T<|/<—1] = EKFp <§‘IT<—1|k—1’PIT<—1\k—1’F’ Qk) )
(30)

where EKFp denotes the extended Kalman filter predic-
tion procedure, and f(fdk(s — 1) and P,Tdk(s — 1) are the
posterior mean and covariance of the track trajectory state
with respect to the illuminator s — 1 at time k.

4.2.2 Measurement selection and likelihood evaluation

For the sake of saving computational resources, the mea-
surement selection procedure is performed to select a
subset of measurements z; (s) with cardinality m(s) by
each track t with respect to each illuminator s.

2 (s) =
T _
{Zk,i € Zis (Zui — I (x[pa ) (S7@) "
(Zk,i — Iy (X/Tdk,l(S);Xs)) < /c}
(31)
with
SL(s) = HE(6)PL,_, ()(HL ()" + Ry,

where Hj(s) is the Jacobian matrix of the measure-
ment function /4 (.) evaluated at f(,zl «—1(8)- Denote the ith

(32)

measurement of z; (s) by z; ;(s). Then the likelihood of
measurement z; ;(s) with respect to track t and illumina-
tor s is calculated by

N (25,690 1 (%40160,%3)  S5©)

Pa (33)

p/i_i(s) =

4.2.3 Multitarget data association

In multitarget tracking, as the measurement origins are
no longer independent, the allocation between measure-
ments and targets must be considered jointly or globally.
As the number of feasible joint events for measurement
to target allocation increases combinatorially, tracks are
separated into clusters of tracks that share selected mea-
surements. The multitarget data association operations
are performed on each cluster of tracks simultaneously
and independently. As the multitarget data association
equations can be easily found in [28], they are inter-
preted by the pseudo-function of joint multitarget data
association (JMTDA)

[P0 129, {870} .} | =MTDA
[P (2. bol,o) ]

4.2.4 Track update
The updated track state at time k of track v with respect
to the illuminator s equals

(34)

p (G 60x© |2) =P () |2)p (o |24).
(35)

where the track 7 trajectory state is approximated by a
single Gaussian,

GO A B CHOTHON SHOY
m(s)

= Y BLON (X6 9, P9
i=0

(36)
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where the track state estimate [fc,ilk i(s)’PITdk i(s)] is
expressed as, wheni =0

[’A‘IZ\/gi(s)’Plgk,i(S)] = [xli\kq(s)’l)ltqkd(s)]’

and wheni > 0, as

37)

[ﬁ,ﬁl O 1 ,w.(s)] —EKFy (z,j, 1), R XE 1 (5), PE 1 5), h;{).
(38)

This recursive procedure with respect to each track t at
time k operates for each illuminators = 1,...,Nj.

4.2.5 Trackoutput
The posterior track t state at time k is the track t state
updated for the last (N) illuminator using the common
measurement set Zy,

v ) .

(39)

p(xfx0|2°) = P (0 |28) p ()

5 Simulation validation

In this section, the numerical experiments for multitarget
tracking in a multistatic passive radar system under the
DAB/DVB network are discussed, in which the superiority
of the proposed algorithm (SP-JIPDA) over the algorithm
(MJIPDA) is validated and the track management in both
algorithms using the probability of target existence as a
track quality measure turns out to be efficient.

5.1 Scenario description in the DAB/DVB network

We consider a 3-D scenario of single DAB/DVB-network
consisting of four illuminators and one receiver, the illu-
minators and receiver are all statically located on the
ground (x—y plane). The multitarget geometry in this sce-
nario is shown in Fig. 2. Five targets are simulated with a
constant velocity. Targets 1, 2 and 3 move in a close dis-
tance and cross each other at a small intersection angle,
targets 4 and 5 start to move at the same position. All tar-
gets appear simultaneously at scan 1 except target 3 born
at scan 12, and all this five targets keep surviving until
the last scan (scan 40). Targets 1, 2, and 3 move towards
the illuminator-receiver plane while targets 4 and 5 move
apart from it.

Each pair of illuminator and receiver measure the tar-
gets independently. The probability of detection Pp of
each illuminator is modeled according the transmission
loss, which depends on the distances among illumina-
tor, target, and receiver, for simplicity, in this scenario,
the detection probability Pp is assumed equal for all tar-
gets and illuminators. In order to make the simulation
challenged, the targets moving space is corrupted with
heavy clutter measurements as shown in Fig. 3, where
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each target is measured by four pairs of illuminators-
receiver. The maximum detection bistatic range is 14 km,
and the minimum detection bistatic range is 1 km, as
well as the maximum bistatic range rate 50 m/s and min-
imum bistatic range rate —50 m/s, and the number of
clutter measurements follows a Poisson distribution and
the clutter measurements are assumed to be uniformly
distributed in this bistatic range and bistatic range rate
surveillance space. N = 100 Monte Carlo runs are per-
formed, each run has 40 scans and each scan is sampled
by 3 s. The measurement noise follows a Gaussian distri-
bution, N (r;0,0?) for the range, and N (#;0,07) for the
range rate.

5.2 Performance measure criterion

Due to the association ambiguity between measurements
and illuminators as well as the unavailability of angle infor-
mation, the track initiation using measurements in the
multistatic passive radar with the DAB/DVB network is
significantly computationally expensive and usually fails
to give satisfactory performance, thus, is outside the scope
of this paper; preliminary work can be found in [29],
wherein the track initiation performance is quite sensitive
to the clutter and target detection probability, and works
only with very small number of clutter measurements and
high target detection probability.

In this simulation, the target ground truth information
is used to initiate a track [15]. The initiated track position
and velocity are generated from the target truth position
and velocity with a certain disturbance (assumed to be a
Gaussian distribution), i.e., the initiation position of target
T is f(é'p = xé’p + N (po; 0, 012), and the initiation veloc-
ity is X" = xg"" + N (v0;0,107%0}), where x3” and x"
are the true initial target position and velocity of target t,
respectively.

5.2.1 Track management

An important performance measure for target tracking
in clutter is the track management. In this simulation,
both the MJIPDA and the SP-JIPDA algorithms calcu-
late the probability of target existence as the track quality
measure for track management. Each initiated track is
given an initial value as the probability of target existence,
which is recursively updated by the measurements in the
subsequent scans. The track management procedure con-
firms a track if its updated probability of target existence
is greater than a predefined confirmation threshold, and
it maintains the confirmed status until terminated when
the updated probability of target existence falls below a
predefined termination threshold.

Since the tracks are initialized based on the targets’
ground truth information at targets’ born time, only the
tracks following targets are initialized. In this experi-
ments, the average number of confirmed tracks (ANCT)
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Fig. 2 Targets geometry in a DAB/DVB network
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is utilized as the track management measure. It is averaged
over N Monte Carlo runs and can be obtained by

N
1 .
ANCT(N) = Y N, (40)
i=1

where N! is the number of confirmed tracks at ith Monte
Carlo run. For fair performance comparison of track
maintenance, both SP-JIPDA and MJIPDA algorithms are
given the same track management parameters (the ini-
tial probability of target existence, the track confirmation
threshold and termination threshold).

50
clutter

target 1
target 2
target 3
target 4
target 5

40t

30

oo D> +

20

Range-rate [m/s]
o
(w]

-50 =
1000 2000 4000

. I . _J
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Range [m]

Fig. 3 Example of received measurements for one scan with clutter
density p = 0.001

5.2.2 Trajectory average estimation error

The root mean square error (RMSE) is an efficient tra-
jectory average estimation error. It is averaged over all N
Monte Carlo runs and can be calculated by

RMSE(k) = (41)

where x}_is the trajectory estimation of track 7 at time k
and x is the true target state.

5.3 Numerical results

In order to verify the robustness of the proposed algo-
rithm, two cases of experiments with respect to different
environment parameters are simulated as follows:

e Case 1: detection probability Pp = 0.9, measurement
noise deviation o, = 10 m and o; = 0.1 m/s, clutter
measurement density p = 0.001 (number/m?.s~1),
Gaussian disturbance deviation o7 = 10 m.

Case 2: detection probability Pp = 0.9, measurement
noise deviation o, = 30 m and o7 = 0.3 m/s, clutter
measurement density p = 0.001 (number/m?.s~1),
Gaussian disturbance deviation o7 = 40 m.

The track management performance across the pro-
posed algorithms is compared using the average number
of confirmed tracks and is shown in Fig. 4. As can be
seen, in both cases, the proposed two algorithms suc-
ceed to confirm all the targets after several scans’ delay,
which firmly validates the probability of target existence
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Fig. 4 Average number of confirmed tracks

that recursively calculated in both algorithms is an effi-
cient track quality measure for track management. What
is more, in each case, the proposed SP-JIPDA algorithm
always delivers improved track management performance
over the MJIPDA algorithm under the given simulation
scenario, i.e., the SP-JIPDA algorithm confirms the targets
earlier and faster than the MJIPDA algorithm. In case 1,
the SP-JIPDA starts to confirm tracks at scan 2 and
thereafter takes 4 scans’ time to completely confirm four
targets; however, the MJIPDA starts to confirm tracks at
scan 4 and needs 8 scans’ time to confirm all four tar-
gets, besides, when the fifth target appears at scan 12, the
SP-JIPDA algorithm only takes 4 scans’ time to confirm it
rather than 9 scans’ time needed by the MJIPDA. In case 2,
the track management performances of both the SP-
JIPDA and MJIPDA algorithm degenerate slightly due to
the increased measurement noise and larger initialization
error compared with that of in case 1, but the SP-JIPDA

:| ==©=— SP-JIPDA (case 1)
—&A— MJIPDA (case 1)

=—#— SP-JIPDA (case 2)
|| =g MJIPDA (case 2)
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Position RMSE [m]

i i
5 10 15 20 25 30 35 40
Scan Number

Fig. 6 RMSE of target 2

algorithm still confirms the targets earlier and faster over
the MJIPDA algorithm.

Meanwhile, the position RMSEs of the confirmed tracks
that follows targets are presented in Figs. 5, 6, 7, 8, and 9,
respectively. As can be found therein, the SP-JIPDA algo-
rithm performs significantly better than the MJIPDA algo-
rithm in both cases 1 and 2. In case 1, the position RMSE
of the SP-JIPDA with respect to each target is about 1
m less than that of the MJIPDA. In case 2, the position
RMSEs of both algorithms increase significantly due to
the increased measurement noise and initialization errors,
but the SP-JIPDA algorithm still outperforms the MJIPDA
with over 2 m position estimation error less.

As a consequence, the SP-JIPDA algorithm delivers
much better tracking performance in terms of both
track management and trajectory estimation. This can
be explained by that the track state at each scan in SP-
JIPDA algorithm is improved multiple times via sequential

30
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Fig. 5 RMSE of target 1
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Fig. 7 RMSE of target 3
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Fig. 8 RMSE of target 4

updating with respect to various illuminators, wherein
the target measurements detected by different pair of
illuminator-receivers are updated by incrementally accu-
rate predicted track states at single scan; therefore, the
likelihood of target measurements obtained by the SP-
JIPDA algorithm is higher than that by the MJIPDA
algorithm, which gives a faster increasing rate of the
probability of target existence.

The execution time in experiment 1 is given in Table 2
on a PC with Intel(R) Core(TM) i7-6700 CPU 3.4 GHz
and RAM 16 GB running windows 7 and Matlab R2013a
program. As shown in Table 2, the SP-JIPDA algo-
rithm requires less computation time compared with the
MJIPDA algorithm, and both algorithms are capable of
real-time application since their execution times are much
smaller than the entire simulation time.

351
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Fig. 9 RMSE of target 5
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Table 2 Execution time [sec.]

Case 1 Case 2
MJIPDA 750 832
SP-JIPDA 620 698
Entire simulation time 12,000 12,000

6 Conclusions

This paper investigates two solutions for multitarget
tracking in clutter directly in 3-D Cartesian coordinates
using multistatic passive radar with a DAB/DVB network,
where both algorithms are capable of track management
using the probability of target existence as the track qual-
ity measure.

The MJIPDA algorithm is developed by incorporat-
ing the probability of target existence into the MJPDA
algorithm as a track quality measure for track man-
agement, and the MJPDA algorithm addresses the
target-measurement illuminator association ambiguity via
“supertargets” using gate grouping. The SP-JIPDA algo-
rithm sequentially operates the JIPDA tracker to update
each track for each illuminator with the common mea-
surement set at each scan. Compared with the MJIPDA
algorithm, the SP-JIPDA enhances the target’s track mul-
tiple times only at single scan by sequentially processing
with respect to various illuminators; therefore, the target
measurements can be utilized in a more efficient way to
update the target’s track state. The simulation validates the
efficiency of the proposed algorithm and also shows the
superiority performance of SP-JIPDA over the MJIPDA
algorithm.

There have several aspects worthy of further work: the
availability and robustness of the proposed algorithms are
worthwhile to be validated based on the real data obtained
from a realistic setup of multistatic passive radar system
under the DAB/DVB network; the more computation-
ally efficient versions of the proposed multitarget tracking
algorithm are attractive to be developed since the pro-
posed multitarget tracking algorithms employ the opti-
mal Bayesian multitarget joint data association approach
which may suffer from the numerical explosion when
numbers of close targets presented in the surveillance
space; the extension of the proposed algorithms to multi-
ple maneuver targets tracking in cluttered environment is
also valuable.

Nomenclature
A. List of acronyms
DAB/DVB Digital audio/video broadcast
JPDA Joint probabilistic data association
JIPDA Joint integrated probabilistic data
association
Modified joint integrated probabilistic data
association

MJIPDA
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SP-JIPDA

TDOA
EKE
UKF
BPE
APF
TBD
PMHT
FJE
JMTDA
ANCT
RMSE

Sequential processing-joint integrated
probabilistic data association

Time difference of arrival

Extended Kalman filter

Unscented Kalman filter

Bootstrap particle filter

Auxiliary particle filter
Track-before-detect

Probabilistic multi-hypothesis tracker
Feasible joint event

Joint multitarget data association
Average number of confirmed tracks
Root mean square error

B. List of symbols

(BN

xT

®
I3

Xs
Xr

N
Yk

Yk

Zy,

The euclidean norm of vector x

The transpose of vector x

The Kronecker product

The identity matrix of size 3

A illuminator indexed by s

A track or a target followed by certain track
by superscript t

A hypothetical target consisting of a pair of
target t and illuminator s

Event that target 7 exists at time k
Event that target 7 exists at time k for
illuminator s

The trajectory state in 3-D Cartesian
coordinates of target T at time k

The position component of x},

The velocity component of x;
Trajectory state in 3-D Cartesian
coordinates of target t at time k for
illuminator s

The position of illuminator s in 3-D
Cartesian coordinates

The position of the only receiver in 3-D
Cartesian coordinates

The number of entire illuminators
Sensor received bistatic range measurement
at time k

Sensor received bistatic range-rate
measurement at time k

Target trajectory transition matrix
Target trajectory plant noise covariance
matrix

Measurement noise covariance matrix
Target detection probability

Gating probability that the (true)
measurement will fall in the gate
Sensor received set of measurements at
time k

The ith measurement of Z;

Py,
Vr (4
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Set of measurements up to and including
time k

Clutter measurement density of Zy ;

Set of selected measurements at time k with
respect to supertarget T

The cardinality of z,’;

The ith measurement of z,i

The jth feasible joint event

Set of selected measurements at time k with
respect to track t for illuminator s

The cardinality of z (s)

The ith measurement of z; (s)

The set of supertargets allocated no
measurement in &;

The set of supertargets allocated one
measurement in &;

The set of FJEs which allocate measurement
i to supertarget T

Event that the selected measurement i is
the detection of supertarget T at time k
Posterior association probability
measurement i is supertarget T detection
Posterior association probability
measurement i is target T detection for s
The set of supertargets originated from
track t

The probability of target existence at time k
given that it exists at time k — 1

The sampling interval between two
consecutive scans

The probability of false alarm

The sensor resolution cell volume
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