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Abstract

This paper considers multiple-input multiple-output (MIMO) relay communication in multi-cellular (interference)
systems in which MIMO source-destination pairs communicate simultaneously. It is assumed that due to severe
attenuation and/or shadowing effects, communication links can be established only with the aid of a relay node. The
aim is to minimize the maximal mean-square-error (MSE) among all the receiving nodes under constrained source
and relay transmit powers. Both one- and two-way amplify-and-forward (AF) relaying mechanisms are considered.
Since the exactly optimal solution for this practically appealing problem is intractable, we first propose optimizing the
source, relay, and receiver matrices in an alternating fashion. Then we contrive a simplified semidefinite programming
(SDP) solution based on the error covariance matrix decomposition technique, avoiding the high complexity of the
iterative process. Numerical results reveal the effectiveness of the proposed schemes.
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1 Introduction
Due to scarcity of frequency spectrum in practical wire-
less networks, multiple communicating pairs are moti-
vated to share a common time-frequency channel to
ensure efficient use of the available spectrum. Co-channel
interference (CCI) is, however, one of the main dete-
riorating factors in such networks that adversely affect
the system performance. The impact is more obvious in
5G heterogeneous networks where there is oceanic vol-
ume of interference due to hyper-dense frequency reuse
among small-cell and macro cell base stations. Therefore,
it is important to develop schemes to mitigate the CCI,
which has been a major research direction in wireless
communications over the past decades.
In the literature, various schemes have been pro-

posed to control CCI at an acceptable level. A conven-
tional approach in MIMO systems is to exploit spatial
diversity for suppressing CCI [1]. Such spatial diversity
technique has been used to solve many power control
problems in interference systems for different network
setups. In [2], a power control scheme has been designed
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with receive diversity only, whereas joint transmit-receive
beamforming has been considered in [2, 3] for interfer-
ence systems. However, the incorporation of the spatial
diversity at the transmitter side in [3], results in lower total
transmit power compared to that in [2].
On the other hand, there is synergy between multiple

antenna and relaying technologies. The latter is partic-
ularly useful to reestablish communications in case of a
broken channel between source and destination. Hence,
relaying has been considered in interference networks in
order to afford longer source-destination distance [4–7].
Both [4, 5] considered network beamforming forminimiz-
ing total relay transmit power, whereas in [7], an iterative
transceiver optimization scheme has been proposed to
minimize total source and relay transmit power.
While the works in [2–5, 7] all considered minimiz-

ing the total transmit power of interference networks,
another important performance metric, which concerns
more about the quality of communications, is the mean-
square-error (MSE) for signal estimation. In [8–10], the
sum minimum MSE (MMSE) was considered to design
iterative algorithms for MIMO interference relay sys-
tems taking the direct links between the source and des-
tination nodes into consideration, and in [11], similar
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problem has been considered ignoring the direct links
between the communicating parties. Indeed the direct
source-destination links can play a vital role in wireless
communication systems when the link-strength is signifi-
cant. However, multihop communication is motivated by
the fact that such direct links may undergo deep shadow-
ing effects in many practical scenarios. Hence, many exist-
ing works on multihop communications have ignored the
direct links. Nonetheless, the sum MMSE criterion runs
the risk that some of the receivers may suffer from unac-
ceptably high MSEs. Also, the works in [8–10] considered
one-way relaying only.
Due to the increasing demands on multimedia appli-

cations, in particular, the notion of emerging wireless
communications terminologies such as Big data, ultra-
high spectral efficiency is essential in future wireless
networks, including 5G, to provide ADSL-like user expe-
rience aspired by 2020. The abovementioned one-way
relay systems suffer from a substantial performance loss in
terms of spectral efficiency due to the pre-log factor of 1/2
persuaded by the fact that two channel uses are required
for each end-to-end transmission.
Two-way relay systems have hence been proposed to

overcome the loss of spectral efficiency in such one-way
relay methods [12–14]. Utilizing the concept of analog
network coding [14], communication in a two-way relay
channel can be accomplished in two phases: the multiple
access (MAC) phase and the broadcast (BC) phase. Dur-
ing theMACphase, all the users simultaneously send their
messages to an intermediate relay node, whereas in the BC
phase, the relay retransmits the received information to
the users. As each user knows its own transmitted signals,
each user can cancel the self-interference and decode the
intended message. The capacity region of multi-pair two-
way relay networks in the deterministic channel was char-
acterized in [15]. Later in [16], the achievable total degrees
of freedom in a two-way interferenceMIMO relay channel
were also studied. Most recently in [17], the transceivers
in a full-duplex MIMO interference system were opti-
mized based on the weighted sum-rate maximization
criterion.
In this paper, we consider a K-user MIMO interfer-

ence system where each of the pairs can communicate
only with the aid of a relay node thus ignoring the direct
source-destination links. The direct links are understood
to be in deep shadowing and hence negligible. Both one-
and two-way amplify-and-forward (AF) relaying mech-
anisms are considered. All nodes are assumed to be
equipped with multiple antennas so as to afford simul-
taneous transmission of multiple data streams. Our aim
is to develop joint transceiver optimization algorithms
for minimizing the worst-user MSE (min-max MSE)1
subject to the source and relay power constraints. It
can be verified that the problem is strictly non-convex,

and thus it is difficult to find an analytical solution.
To tackle this, we first devise an algorithm to opti-
mize the source, relay, and receiver matrices alternat-
ingly by decomposing the original non-convex problem
into convex subproblems. To avoid the complexity of
the iterative process, we then extend the error covari-
ance matrix decomposition technique applied to point-
to-point MIMO relay systems in [18] to interference
MIMO relay systems in this paper. More specifically,
under practically reasonable high first-hop signal-to-noise
ratio (SNR) assumption, we demonstrate that the prob-
lem can be decomposed into two standard semidefinite
programming (SDP) problems to optimize source and
relay matrices separately. Note that high SNR assump-
tion has also been made in [19] to simplify the joint
codebook design problem in single-user MIMO relay sys-
tems and in [20, 21] for multicasting MIMO relay design.
Hence our work is a generalization to multi-pair com-
munication scheme taking co-channel interference into
account.
The remainder of this paper is lined-up as follows. In

Section 2, the interference MIMO relay system model
is introduced. The joint optimal transmitter, relay, and
receiver beamforming optimization schemes are devel-
oped in Section 3 and Section 4, respectively, for one-
way and two-way relaying. Section 5 provides simulation
results to analyze the performance of the proposed algo-
rithms in various system configurations before concluding
remarks are made in Section 6.

2 Systemmodel
Let us consider a communication scenario, as illustrated
in Fig. 1, where each of the K source nodes communicates
with the corresponding destination node sharing the same
frequency channel via a common relay node. The direct
link between each transmitter-receiver pair is assumed to
be broken due to strong attenuation and/or shadowing
effects. The kth source, the relay, and the kth destination
nodes are assumed to be equipped with Ns,k , Nr, and Nd,k
antennas, respectively.

Fig. 1 The model of the dual-hop interference MIMO relay system
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3 One-way relaying
In this section, we consider that communication takes
place in one direction only. The relay node is assumed
to work in half-duplex mode which implies that the
actual communication between the source and destina-
tion nodes is accomplished in two time slots. In the first
time slot, the source nodes transmit the linearly precoded
signal vectors Bksk , k = 1, · · · ,K , to the relay node.
The received signal vector at the relay node is therefore
given by

yr =
K∑

k=1
HkBksk + nr, (1)

where Hk denotes the Nr × Ns,k Gaussian channel matrix
between the kth source node and the intermediate relay
node, sk is the Nb,k × 1 (1 ≤ Nb,k ≤ Ns,k) transmit symbol
vector with covariance INb,k , Bk is the Ns,k × Nb,k source
precoding matrix, and nr is the Nr × 1 additive white
Gaussian noise (AWGN) vector introduced at the relay
node. Let us denote Nb = ∑K

k=1Nb,k as the total num-
ber of data streams transmitted by all the source nodes.
In order to successfully transmit Nb independent data
streams simultaneously through the relay, the relay node
must be equipped with Nr ≥ Nb antennas.
After receiving yr, the relay node simply multiplies the

signal vector by an Nr ×Nr precoding matrix F and trans-
mits the amplified version of yr in the second time slot.
Thus the relay’sNr×1 transmit signal vector xr is given by

xr = Fyr. (2)

Accordingly, the signal received at the kth destination
node can be expressed as

yd,k = Gkxr + nd,k

= GkFHkBksk︸ ︷︷ ︸
desired signal

+GkF
K∑

j=1
j �=k

HjBjsj

︸ ︷︷ ︸
interference signal

+GkFnr + nd,k︸ ︷︷ ︸
noise

, (3)

= H̄ksk + n̄d,k , for k = 1, . . . ,K , (4)

where Gk denotes the Nd,k × Nr complex channel matrix
between the relay node and the kth destination node,
nd,k is the Nd,k × 1 AWGN vector introduced at the
kth destination node, H̄k � GkFHkBk is the equiv-
alent source-destination channel matrix, and n̄d,k �
GkF(

∑K
j=1
j �=k

HjBjsj+nr)+nd,k is the equivalent noise vector.

All noises are assumed to be independent and identically
distributed (i.i.d.) complex Gaussian random variables

withmean zero and variance σ 2
n , where n ∈ {r, d} indicates

the noise introduced at the relay or at the destination.

Remark Note that the interference term in (3) does not
appear in the received signal of the single-userMIMO relay
system considered in [19] or in the multicasting MIMO
relay system considered in [20, 21]. Hence the subsequent
analyses remain considerably simpler in [19–21], whereas
we need to deal with this troublesome interference term in
this paper.

Considering the input-output relationship at the relay
node given in (2), the average transmit power consumed
by the MIMO relay node is defined as

tr
(
E{xrxHr }) = tr

(
F�FH

)
, (5)

where tr(·) denotes trace of amatrix, E{·} indicates statisti-
cal expectation, and � � E{yryHr } = ∑K

k=1HkBkBH
k H

H
k +

σ 2
r INr represents the covariancematrix of the signal vector

received at the relay node.
For signal detection, linear receivers are used at the des-

tination nodes for simplicity reasons. DenotingWk as the
Nd,k × Nb,k receiver matrix used by the kth destination
node, the corresponding estimated signal vector ŝk can be
written as

ŝk = WH
k yd,k , for k = 1, . . . ,K , (6)

where (·)H indicates the conjugate transpose (Hermitian)
of a matrix (vector). Thus the MSE of signal estimation at
the kth receiver can be expressed as

Ek = tr
(
Ek � E

[(
ŝk − sk

) (
ŝk − sk

)H]) ,

= tr

⎛

⎜⎝
INb,k − WH

k GkFHkBk − BH
k H

H
k F

HGH
k Wk

+∑K
j=1 WH

k GkFHjBjBH
j HH

j FHGH
k Wk

+σ 2
r WH

k GkFFHGH
k Wk + σ 2

dW
H
k Wk

⎞

⎟⎠ ,

= tr
((
WH

k H̄k − INb,k

)(
WH

k H̄k − INb,k

)H + WH
k C̄kWk

)
,

for k = 1, . . . ,K , (7)

where Ek denotes the error covariance matrix at the kth
receiver, and

C̄k �
K∑

j=1
j �=k

GkFHjBjBH
j HH

j FHGH
k + σ 2

r GkFFHGH
k + σ 2

d INd .

(8)

is the combined interference and noise covariance matrix.
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In the following subsections, we develop optimization
approaches that minimize the worst-user MSE among
all the receivers subject to source and relay power
constraints.

3.1 Problem formulation
In this section, we formulate the joint source and relay
precoding optimization problem for MIMO interference
systems. Our aim is to minimize the maximal MSE among
all the source-destination pairs yet satisfying the trans-
mit power constraints at the source as well as the relay
nodes. To fulfill this aim, the following joint optimization
problem is formulated:

min{Bk},F,{Wk}
max
k

Ek (9a)

s.t. tr
(
F�FH

) ≤ Pr (9b)
tr
(
BkBH

k
) ≤ Ps,k , for k = 1, . . . ,K (9c)

where (9b) and (9c), respectively, constrains the transmit
power at the relay node and the kth transmitter to Pr > 0,
Ps,k > 0. Our next endeavor is to develop optimal solu-
tions for this problem. Note that the problem is strictly
non-convex with matrix variables appearing in quadratic
form, and hence any closed-form solution is intractable.
Therefore, we first resort to developing an iterative algo-
rithm for the problem and then propose a sub-optimal
solution which has lower computational complexity.

3.2 Iterative joint transceiver optimization
In this subsection, we investigate the non-convex source,
relay, and destination filter design problem in an alternat-
ing fashion. We tend to optimize one group of variables
while fixing the others. Given source and relay matrices
{Bk}, F, the optimal receiver matrices {Wk} are obtained
through solving the unconstrained optimization problem
of minWk Ek , since Ek does not depend on Wj, for j �= k,
andWk does not appear in constraints (9b) and (9c). Using

the matrix derivative formulas, the gradient ∇WH
k

(tr (Ek))

can be written as

∇WH
k

(tr (Ek)) = −GkFHkBk + ∑K
j=1 GkFHjBjBH

j HH
j FHGH

k Wk

+ σ 2
r GkFFHGH

k Wk + σ 2
dWk , for k = 1, . . . ,K . (10)

Equating ∇WH
k

(tr (Ek)) = 0 yields the linear MMSE
receive filter given by

Wk =
(

K∑
j=1

GkFHjBjBH
j HH

j FHGH
k +σ 2

r GkFFHGH
k +σ 2

d INd,k

)−1

×GkFHkBk (11)

where (·)−1 indicates the inversion operation of a matrix.
Then for given source and receiver matrices {Bk} and

{Wk}, the relay precoding matrix F optimization problem
can be formulated as

min
F

max
k

Ek (12a)

s.t. tr
(
F�FH

) ≤ Pr. (12b)

Note that (12) is non-convex with amatrix variable since
F appears in quadratic form in the objective function as
well as in the constraint. However, we can reformulate
this problem as an SDP using Schur complement [22] as
follows. By introducing a matrix �k we conclude from
the second equation in (7) that the k-th link MSE will be
upper-bounded if

− WH
k GkFHkBk − BH

k H
H
k F

HGH
k Wk

+ WH
k GkF�FHGH

k Wk � �k .
(13)

In the above inequality, A � B indicates that the matrix
B−A is positive semidefinite (PSD). Now, by introducing
a matrix � such that F�FH � �, and a scaler variable τr,
the relay optimization problem (12) can be transformed to

min
τr,F,{�k},�

τr (14a)

s.t. tr (�k) + tr
(
WH

k Wk
) + Nb,k ≤ τr, for k = 1, . . . ,K , (14b)

[
�k + WH

k GkFHkBk + BH
k H

H
k F

HGH
k Wk WH

k GkF
FHGH

k Wk �−1

]
� 0, for k = 1, . . . ,K , (14c)

[
� F
FH �−1

]
� 0 (14d)

tr (�) ≤ Pr (14e)
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where we have used the Schur complement to obtain (14c)
and (14d). Note that the problem (14) is an SDP prob-
lem which is convex and can, as a result, be efficiently
solved using interior-point based solvers [23] at a maxi-
mal complexity order ofO

(
(K +2N2

r +∑K
k=1N2

b,k +2)3.5
)

[24]. However, the actual complexity is usually much less
in many practical cases. Interested readers are referred
to [24] for a detailed analysis of the computational
complexity based on interior-point methods.
Finally, we optimize the source matrices {Bk} using the

relay matrix F and the receiver matrices {Wk} known
from the previous steps. Let us define H̃k,j � WH

k GkFHj.
Applying the matrix identity vec(ABC) = (CT ⊗ A)

vec(B), we can rewrite Ek in (7) as

Ek =
K∑

j=1
bHj

(
INb,j ⊗

(
H̃H

k,jH̃k,j
))

bj −
(
vec

(
H̃k,j

))T
bk

−bHk vec
(
H̃H

k,j

)
+ θk , (15)

where the vector bk � vec(Bk) is created by stacking
all the columns of the matrix Bk on top of each other,
θk � tr(σ 2

r WH
k GkFFHGH

k Wk + σ 2
dW

H
k Wk) + Nb,k , and ⊗

indicates matrix Kronecker product. Let us now denote
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

G̃k � bd
(
INb,1 ⊗

(
H̃H

k,1H̃k,1
)
, . . . , INb,K ⊗

(
H̃H

k,K H̃k,K
))

,

ck �
[(

vec
(
C̃k,1

))T
, . . . ,

(
vec

(
C̃k,K

))T]T
,

b �
[
bT1 , . . . ,bTK

]T ,

(16)

where bd(·) constructs a block-diagonal matrix taking the
parameter matrices as the diagonal blocks, C̃k,k = H̃k,k
and C̃k,j = 0Nb,k×Ns,j , if j �= k. The MSE in (15) can be
rewritten as

Ek = bHG̃kb − cHk b − bHck + θk . (17)

By introducing Mk � FHk , the power constraints in (9b)
can be rewritten as

bHMb ≤ P̄r, for k = 1, . . . ,K , (18)

where M � bd
(
INb,1 ⊗ (MH

1 M1), . . . , INb,K ⊗ (MH
KMK )

)
,

and P̄r = Pr−σ 2
r tr(FFH). Using (17) and (18), problem (9)

can be written as

min
b

max
k

bHG̃kb − cHk b − bHck + θk (19a)

s.t. bHMb ≤ P̄r (19b)
bHIkb ≤ Ps,k , for k = 1, . . . ,K , (19c)

where I � bd(Ik1, . . . ,Ikk , . . . ,IkK ) with Ikk =
INs,kNb,k and Ikj = 0, if j �= k. Problem (19) is
a standard quadratically-constrained quadratic program

(QCQP) which can be solved using off-the-shelf convex
optimization toolboxes [23]. In the following, we also
provide an SDP formulation of problem (19):

min
ts,b

τs (20a)

s.t.
(

τs − θk + cHk b + bHck bH
b G̃−1

k

)
� 0,

for k = 1, . . . ,K , (20b)
(
P̄r bH
b M−1

)
� 0, (20c)

⎛

⎝ Ps,k bHI
1
2
k

I
1
2
k b Ip

⎞

⎠ � 0, for k = 1, . . . ,K , (20d)

where τs is a slack variable and p �
∑K

k=1Ns,kNb,k . The
problem (20) can be solved at a maximal complexity order
ofO

(
(
∑K

k=1N2
b,k+1)3.5

)
[24]. The proposed iterative opti-

mization technique for solving the original problem (9) is
summarized in Table 1.
Since in each step of the iterative algorithm we solve a

convex subproblem to update one set of variables, the con-
ditional update of each set will either decrease or main-
tain the objective function (9a). From this observation, a
monotonic convergence of the iterative algorithm follows.
However, the overall computational complexity of the iter-
ative algorithm increases as the multiple of the number
of iterations required until convergence. Thus the com-
plexity of the iterative algorithms is often reasonably high.
Note that the sum-MSE based iterative algorithms pro-
posed in [8–10] have similar complexity orders. Hence in
the following subsection, we contrive an algorithm for the
joint optimization problem such that the computational
overhead is substantially reduced.

3.3 Simplified joint optimization algorithm
In the previous subsection, we optimized the source, relay,
and receiver matrices in an alternating fashion. Here,
we propose a simplified approach to solve problem (9)
using the error covariance matrix decomposition tech-
nique. The following theorem paves the foundation of the
simplified algorithm.

Table 1 Iterative solution of problem (9)

1 Randomly initialize F and {Bk} such that the constraints (9b)
and (9c) are satisfied.

2 Repeat

(a) Obtain {Wk} as defined in (11) using known {Bk} and F.

(b) Solve the subproblem (14) to update F using fixed {Wk} and
{Bk}.
(c) Update {Bk} through solving the subproblem (20) using F
and {Wk} known from the previous steps.

3 Until convergence.
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Theorem 1 For given {Bk} and {Wk}, the optimum
relaying matrix F for minimizing the worst-user MSE has
the form:

F =
K∑

k=1
TkDH

k = TDH , (21)

where T � [T1, . . . ,TK ] and D � [D1, . . . ,DK ] with Tk
and Dk, respectively, defined as

Tk � λe,k

( K∑

i=1
λe,iGH

i WiWH
i Gi + λrINr

)−1

GH
k Wk (22)

and

Dk �

⎛

⎝
K∑

j=1
HjBjBH

j HH
j + σ 2

r INr

⎞

⎠
−1

HkBk , (23)

λr and λe,k , ∀k, are the corresponding Lagrange multipliers
as defined in Appendix 1.

Proof See Appendix 1.

Note that Dk =
(
HkBkBH

k H
H
k + ∑K

j=1
j �=k

HjBjBH
j HH

j +

σ 2
r INr

)−1
HkBk can be regarded as the MMSE receive

filter of the first-hop MIMO channel for the kth transmit-
ter’s signal received at the relay node given by (1).
The implication of the structure of the relay amplifying

matrix in the proposed simplified design can be observed
while applying the following theorem.

Theorem 2 The MSE term appearing in (9a) can be
equivalently decomposed into

Ek = tr
(
INb,k + BH

k H
H
k �−1

k̄ HkBk
)−1

(24)

+tr
((
BH
k H

H
k �−1HkBk

)−1 + T̃HGH
k GkT̃

)−1
,

where� k̄ � �−HkBkBH
k H

H
k = ∑K

j=1
j �=k

HjBjBH
j HH

j +σ 2
n INr

and T̃ is defined in Appendix 2.

Proof See Appendix 2.

Even given the structure, an analytical optimal solution
to the joint optimization problem is still difficult to obtain
due to the cross-link interference from the relay node to
the destination nodes. Therefore, we resort to develop
an efficient suboptimal solution. The following proposi-
tion provides the foundation of the proposed simplified
suboptimal solution.

Proposition 1 In the practically reasonably high SNR
regime, the term BH

k H
H
k ×�−1HkBk in (24) can be approx-

imated as BH
k H

H
k �−1HkBk ≈ INb,k .

Proof See Appendix 3.

The result in Proposition 1 is guided by the observa-
tion that the eigenvalues of BH

k H
H
k �−1HkBk approach

unity with increasing first-hop SNR. It will be demon-
strated in Section 5 through numerical simulations that
such an approximation results in negligible performance
loss while reducing the computational complexity signifi-
cantly. Applying Proposition 1, the transmit power of the
relay node defined in (5) can be expressed as tr

(
F�FH

) =
tr(T̃BH

k H
H
k �−1HkBkT̃H) = tr(T̃T̃H). Therefore, problem

(9) can be approximated as

min
{Bk},{Wk},T̃

max
k

tr
(
INb,k + BH

k H
H
k �−1

k̄ HkBk
)−1

+ tr
(
INb,k + T̃HGH

k GkT̃
)−1

(25a)

s.t. tr
(
BkBH

k
) ≤ Ps,k , for k = 1, . . . ,K , (25b)

tr
(
T̃T̃H

)
≤ Pr. (25c)

Note that the optimal receiver matrices {Wk} can be
obtained as in (11). Interestingly, the source and relay opti-
mization variables {Bk} and T̃ are separable both in the
objective function as well as in the constraints in prob-
lem (25). Therefore, applying the results from Theorem 2
and Proposition 1, we can decompose the problem (25)
into the following source precodingmatrices optimization
problem:

min{Bk}
max
k

tr
(
INb,k + BH

k H
H
k �−1

k̄ HkBk
)−1

(26a)

s.t. tr(BkBH
k ) ≤ Ps,k , for k = 1, . . . ,K , (26b)

and the relay amplifying matrix optimization problem:

min
T̃

max
k

tr
([

INb,k + T̃HGH
k GkT̃

]−1
)

(27a)

s.t. tr
(
T̃T̃H

)
≤ Pr. (27b)

Note that the objective function in (26a) can be inter-
preted as the MSE of the kth transmitter’s signal vector
sk . In particular, the equivalent received signal for the kth
transmitter’s signal in the first hop received at the relay
node is given by y(k)

r = HkBksk + ∑K
j �=k HjBjsj + nr,

treating other users’ signals as noise. As such, the cor-
responding MMSE receiver is given by Dk in (23). Thus
the MSE expression in (26a) actually represents the equiv-
alent first-hop MSE of the kth transmitter’s signal sk .
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Given the corresponding MMSE receiverDk , (26a) can be
rewritten as

Es,k � tr
(
DH

k
(
� + σ 2

r INr

)
Dk − DH

k HkBk − BH
k H

H
k Dk + INb,k

)

= tr
((
DH

k HϒkB − �k
) (
DH

k HϒkB − �k
)H + σ 2

r DH
k Dk

)

= ∥∥vec
(
DH

k HϒkB − �k
)∥∥2

2 + σ 2
r tr

(
DH

k Dk
)

=
∥∥∥∥∥

[
ωk(

INr ⊗ DH
k Hϒk

)
vec (B) − vec (�k)

]∥∥∥∥∥

2

2
,

(28)

where ωk � σr

√
tr(DH

k Dk) and ϒk � [ϒk1, . . . ,ϒkk , . . . ,
ϒkK ] with ϒkk = INr and ϒkj = 0, if j �= k. Introducing
an auxiliary variable ts, problem (26) can be rewritten as
the following second-order cone program (SOCP):

min{Bk},ts
ts (29a)

s.t.
∥∥∥∥

[
ωk(

INr ⊗ DH
k Hϒk

)
vec (B) − vec (�k)

]∥∥∥∥
2

≤ ts,

for k = 1, . . . ,K , (29b)
‖vec (Bk)‖2 ≤ √

Ps,k , for k = 1, . . . ,K , (29c)

which can be efficiently solved by standard optimization
packages at a complexity order of O

(
(
∑K

k=1N2
b,k + 1)3

)

[24]. Thus, we can update {Dk} and {Bk} in an alternating
fashion.
Regarding the relay amplifying matrix optimization, by

introducing T̃H T̃ � Q, the relay matrix optimization
problem (27) can be equivalently transformed to

min
Q�0

max
k

tr
([
INd,k + GkQGH

k
]−1) +Nb,k − Nd,k (30a)

s.t. tr(Q) ≤ Pr. (30b)

Let us now introduce a matrix variable Yk �(
INd,k + GkQGH

k
)−1, and a scalar variable tr. Using these

variables, the relay optimization problem (30) can be
equivalently rewritten as the following SDP:

min
tr,Q,{Yk}

tr (31a)

s.t. tr(Yk) ≤ tr, for k = 1, . . . ,K , (31b)
tr(Q) ≤ Pr, (31c)(

Yk INd,k ,
INd,k INd,k + GkQGH

k

)
� 0,

for k = 1, . . . ,K , (31d)
tr ≥ 0, (31e)
Q � 0. (31f)

Problem (31) is convex and the globally optimal solution
can be easily obtained [23]. The complexity order of solv-
ing problem (31) is at mostO

(
(
∑K

k=1N2
b,k +∑K

k=1N2
d,k +

K + 2)3.5
)
[24]. Note that in the simplified algorithm, only

the source matrices are obtained in an alternating fashion.

The overall joint optimization procedure is summarized
in Table 2.

4 Two-way relaying
Two-way relaying is being considered as a promising tech-
nique for future generation wireless systems since two-
way relaying can significantly improve spectral efficiency.
Hence, in this section, we consider two-way relaying in
an interference MIMO relay system where each pair of
users transmit signals to each other through the assist-
ing relay node. The information exchange in the two-way
relay channel is accomplished in two time slots: MAC
phase and the BC phase. During the MAC phase, all
the users simultaneously send their messages to the relay
node. Thus the signal vector received at the relay node
during the MAC phase can be expressed as

yr =
2K∑

k=1
HkBksk + nr, (32)

where HK+k � GT
k for k = 1, . . . ,K and nr is the Nr × 1

AWGN vector received at the relay node.
Upon receiving yr, the relay node linearly precodes the

signal vector by anNr×Nr amplifying matrix F and trans-
mits the Nr × 1 precoded signal vector xr in the MAC
phase:

xr = Fyr. (33)

The received signal at the kth user in the BC phase is
given by

yk = HT
k xr + nd,k (34)

= HT
k FHk̄Bk̄sk̄ + HT

k F

⎛

⎜⎜⎝
2K∑

j=1
j �=k̄

HjBjsj + nr

⎞

⎟⎟⎠ + nd,k ,

for k = 1, . . . , 2K ,

where we have defined k̄ as the index of user k’s part-
ner (e.g., 1̄ = K + 1,K + 1 = 1), nd,k is the Nd,k × 1
AWGN vector at the kth destination node. As in the case
of the one-way relaying system, all noises are assumed to
be i.i.d. complex Gaussian random variables with mean
zero and variance σ 2

n .

Table 2 Proposed simplified algorithm for solving problem (9)

1 Initialize Bk , ∀k, satisfying the constraints (29c).

2 Repeat

(a) Update Dk , ∀k, as in (23).

(b) Update Bk , ∀k, through solving the subproblem (29).

3 Until convergence.

4 Solve the subproblem (31) to obtain Q.
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Since the transmitting node k knows its own signal
vector sk and the full CSI of the corresponding source-
destination link HT

k FHkBk , each transmitter can com-
pletely cancel the self-interference component in (34).
Thus, the effective received signal vector at the kth receiv-
ing node is given by

yk = HT
k FHk̄Bk̄sk̄ + HT

k F

⎛

⎝
2K∑

j �=k,k̄

HjBjsj + nr

⎞

⎠ + nd,k , (35)

= H̄ksk̄ + n̄d,k , for k = 1, . . . , 2K . (36)

Using (33), the transmission power required at the relay
node can be defined as

tr
(
E
{
xrxHr

}) = tr
(
F�FH

)
, (37)

where � � E{yryHr } = ∑2K
k=1HkBkBH

k H
H
k + σ 2

r INr is the
covariance matrix of the signal received at the relay node
from all the transmitters. Furthermore, the MSE of the
estimated signal using anNd×Nb linear weight matrixWk
at the kth receiving node can be expressed as

Ek = tr

⎛

⎜⎜⎝

INs,k − WH
k H

T
k FHk̄Bk̄ − BH

k̄ H
H
k̄ F

HH∗
kWk

+∑2K
j=1
j �=k

WH
k H

T
k FHjBjBH

j HH
j FHH∗

kWk

+σ 2
r WH

k H
T
k FF

HH∗
kWk + σ 2

dW
H
k Wk

⎞

⎟⎟⎠ ,

for k = 1, . . . , 2K . (38)

Similar to the case of one-way relaying, the problem of
optimizing the transmit, relay, and receive matrices for the
two-way scenario can be formulated as

min{Bk},F,{Wk}
max
k

Ek (39a)

s.t. tr
(
F�FH

) ≤ Pr (39b)
tr(BkBH

k ) ≤ Ps,k , for k = 1, . . . , 2K , (39c)

where (39b) and (39c) indicates the corresponding trans-
mit power constraints.

4.1 Iterative joint transceiver optimization
Similar to the one-way relaying scenario, it can be shown
that the transmitter, relay, and receiver matrices can be
optimized in an alternating fashion through solving con-
vex sub-problems. In each iteration of the algorithm, the
receiver weight matrices are updated as follows:

Wk =
⎛

⎜⎝
2K∑
j=1
j �=k

GkFHjBjBH
j HH

j FHGH
k + σ 2

r GkFFHGH
k + σ 2

d INd

⎞

⎟⎠

−1

× GkFHkBk , for k = 1, . . . , 2K . (40)

The relay beamforming matrix F is optimized through
solving the following SDP problem:

min
τr ,F,{�k },�

τr (41a)

s.t. tr (�k) + tr
(
FHk Wk

) ≤ τr, (41b)
[

�k + WH
k H

T
k FHk̄Bk̄ + BH

k̄ H
H
k̄ F

HH∗
kWk WH

k H
T
k F

FHH∗
kWk �−1

k̄

]
� 0,

for k = 1, . . . , 2K , (41c)
[

� F
FH �−1

]
� 0, (41d)

tr (�) ≤ Pr, (41e)

where we have defined
{

F�FH � �,

−WH
k H

T
k FHk̄Bk̄ − BH

k̄ H
H
k̄ F

HH∗
kWk + WH

k H
T
k F� k̄F

HH∗
kWk � �k .

(42)

Finally, the optimal source precoding matrices are
obtained by solving

min
ts,b

τs (43a)

s.t.
(

τs − θk + cHk b + bHck bH
b G̃−1

k

)
� 0,

for k = 1, . . . , 2K , (43b)
(
P̄r bH
b M−1

)
� 0, (43c)

⎛

⎝ Ps,k bHI
1
2
k

I
1
2
k b Ip

⎞

⎠ � 0, for k = 1, . . . , 2K , (43d)

where

θk � tr
(
σ 2
r WH

k GkFFHGH
k Wk + σ 2

dW
H
k Wk

)

+ Nb,k , for k = 1, . . . , 2K , (44a)

G̃k � bd
(
INb,1 ⊗

(
H̃H

k,1H̃k,1
)
, · · · , INb,2K

⊗
(
H̃H

k,2K H̃k,2K
))

, fork = 1, . . . , 2K , (44b)

ck �
[(

vec
(
C̃k,1

))T
, . . . ,

(
vec

(
C̃k,2K

))T]T
, (44c)

C̃k,k = H̃k,k , (44d)

C̃k,j = 0Nb,k×Ns,j , for j �= k, (44e)

b �
[
bT1 , . . . ,b

T
2K

]T
, (44f)

M � bd
(
INb,1 ⊗ (

MH
1 M1

)
, . . . , INb,K ⊗ (

MH
2KM2K

))
,
(44g)

p �
2K∑

k=1
Ns,kNb,k . (44h)
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4.2 Simplified non-iterative approach
Assuming moderate SNR in the MAC phase, it can be
shown, similar to the one-way relaying case, that the
generic structure of the relay matrix F is defined as F =
TDH . Using this particular structure of F, the MSE at
the kth receiver can be equivalently decomposed into two
parts as shown below:

Ek = tr
(
INb,k + BH

k H
H
k �−1

k̄ HkBk
)−1

+tr
((
BH
k H

H
k �−1

k̄ HkBk
)−1+ T̃HH∗̄

kH
T
k̄ T̃

)−1
. (45)

Accordingly, the joint precoding design problem (25)
can be decomposed into two sub-problems, namely, the
source precoding matrices optimization problem:

min{Bk}
max
k

tr
(
INb,k + BH

k H
H
k �−1

k̄ HkBk
)−1

(46a)

s.t. tr
(
BkBH

k
) ≤ Ps,k , for k = 1, . . . ,K , (46b)

and the relay beamforming matrix optimization problem:

min
T̃

max
k

tr
([

INb,k + T̃HH∗̄
kH

T
k̄ T̃

]−1
)

(47a)

s.t. tr
(
T̃T̃H

)
≤ Pr, (47b)

which can be solved following the similar approach as for
the one-way relaying scenario.

5 Numerical simulations
In this section, we analyze the performance of the pro-
posed one- and two-way MIMO relay interference system
optimization algorithms through numerical examples. For
simplicity, we assume that the source and the destination
nodes are equippedwithNs andNd antennas each, respec-
tively, and Ps,k = Ps, ∀k. We simulated a flat Rayleigh
fading environment such that the channel matrices have
zero-mean entries with variances 1/Ns for Hk , ∀k, and
1/Nr for Gk , ∀k. All the simulation results were obtained
by averaging over 500 independent channel realizations.
The performance of the proposed min-max MSE algo-

rithms have been compared with that of the naive AF
(NAF) algorithm in terms of both MSE and bit error rate
(BER). The NAF algorithm is a simple baseline scheme
that forwards the signals at the transmitters and the relay
node assigning equal power to each data stream. In par-
ticular, the source and the relay matrices, in their simplest
forms, in the NAF scheme are defined as

{
Bk = √

Ps/Ns INs , for k = 1, . . . ,K ,

F = √
Pr/tr(�) INr .

(48)

In the first example, we compare the performance of the
proposed min-max MSE-based one-way algorithms with

that of the sum-MSE minimization algorithm in [8] as
well as the NAF approach in terms of the MSE normal-
ized by the number of data streams (NMSE) with K = 3,
Ns = 3,Nr = 9, and Nd = 3. Figure 2 shows the NMSE
performance of the algorithms versus transmit power Ps
with fixed Pr = 20 dB. Note that for the proposed simpli-
fied non-iterative algorithm, we plot the NMSE of the user
with the worst channel (Worst) as well as the average per-
stream MSE of all the users (Avg.). On the other hand, for
the rest of the algorithms, the worst-user NMSE has been
plotted. The results clearly indicate that the proposed joint
optimization algorithms consistently yield better perfor-
mance compared to the existing schemes. It can also be
revealed that the proposed iterative algorithm has the best
MSE performance compared to the other approaches over
the entire Ps range. It is no surprise that the NAF algo-
rithm yields much higher MSE compared to the other
schemes since the NAF algorithm performs no optimiza-
tion operation. Most importantly, the iterative sum-MSE
minimization algorithm in [8] always penalizes the user
with the worst channel condition.
Since the NAF algorithm does not allocate the trans-

mit power optimally and equally divides the power among
multiple data streams instead, the inter-stream interfer-
ence and the inter-user interference increase significantly
at higher transmit power. Hence, the MSE of the NAF
algorithm does not improve notably at higher transmit
power.
Further analysis of the results in Fig. 2 reveals that the

proposed simplified algorithm yields the worst-user MSE
performance which is comparable to that of the itera-
tive algorithm, even at low Ps region. This observation
illustrates that the approximation made in the simplified
algorithm encounters negligible performance loss com-
pared to the iterative optimal design. On the other hand,
the computational complexity of the proposed simplified
optimization is less than that of even one iteration of the
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P
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 (dB)

N
M

SE

 

 

NAF Algorithm
Algorithm in [7] (Worst)
Simplified Algorithm (Worst)
Simplified Algorithm (Avg.)
Iterative Algorithm (Worst)

Fig. 2 Example 1: normalized MSE versus Ps. K = 3, Ns = 3,Nr = 9,
Nd = 3, Pr = 20 dB
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Table 3 Iterations required till convergence in the proposed
algorithm

Ps (dB) 0 5 10 15 20 25

Iterations 3 3 3 4 5 5

iterative design, making it much more attractive for prac-
tical interference MIMO relay systems. The number of
iterations required for convergence up to 10−3 in terms
of MSE in a random channel realization for the iterative
algorithm are listed in Table 3.
In the next example, we focus on the proposed simpli-

fied optimization scheme and compare its performance
with that of the proposed iterative approach and the NAF
algorithm in terms of BER. Quadrature phase-shift keying
(QPSK) signal constellations were assumed to modulate
the transmitted signals and maximum-likelihood detec-
tion is applied at the receivers.We setK = 3,Ns = 2,Nr =
6, Nd = 3, and transmit 1000Ns randomly generated
bits from each transmitter in each channel realization.
The BER performance of the algorithms are shown in
Fig. 3 versus Ps with Pr = 20 dB. As we can see, the
proposed simplified algorithm yields a much lower BER
compared to the conventional NAF scheme. Compared
with the iterative approach the simplified algorithm has
much lower computational task at the cost of marginal
performance loss.
In the last couple of examples, we analyze the per-

formance of the two-way MIMO relaying scheme. The
NMSE performance of the two-way relaying algorithms
is shown for different number of communication links
K in Fig. 4. This time we set Ns = 2,Nr = KNs, and
Nd = 6 to plot the NMSE of the proposed algorithms
versus Ps with Pr = 20 dB. It can be clearly seen from
Fig. 4 that as the number of links increases, the worst-user

0 5 10 15 20 25
10

−3

10
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10
−1

10
0

P
s
 (dB)

B
E

R

NAF Algorithm
Simplified Algorithm (Worst)
Simplified Algorithm (Avg.)
Iterative Algorithm (Worst)

Fig. 3 Example 2: BER versus Ps. K = 3, Ns = 2,Nr = 6, Nd = 3,
Pr = 20 dB
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K = 2 (Simplified)
K = 4 (Simplified)
K = 6 (Simplified)
K = 2 (Iterative)

Fig. 4 Example 3: MSE versus Ps in two-way relaying. Varying number
of links, Ns = 2,Nr = KNs, Nd = 6, Pr = 20 dB

MSE keeps increasing. This is due to the additional cross-
link interferences generated by the increased number of
active users.
In Fig. 5, the BER performance of the proposed two-

way relaying algorithms has been compared with the
sum-MSE-based algorithms originally proposed for one-
way relaying in [8–10]. QPSK signal constellations were
assumed tomodulate the transmitted signals.We setNs =
2,K = 3,Nr = KNs, Nd = 6, Pr = 20 dB, and transmit
1000Ns randomly generated bits from each transmitter
in each channel realization. Most importantly, the itera-
tive sum-MSE minimization algorithms in [8–10] always
penalize the user with the worst channel condition in the
two-way relaying system.

6 Conclusions
We considered a two-hop interference MIMO relay sys-
tem and developed schemes to minimize the worst-user
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10
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10
0

P
s
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R

 

 

Iterative Algorithm
Simplified Algorithm
Sum−MSE Algorithm

Fig. 5 Example 4: BER versus Ps in two-way relaying for different
algorithms, Ns = 2, K = 3,Nr = KNs, Nd = 6, Pr = 20 dB
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MSE of signal estimation for both one- and two-way relay-
ing schemes. At first, we proposed an iterative solution
for both relaying schemes by solving several convex sub-
problems alternatingly and in an iterative fashion. Then
to reduce the computational overhead of the optimiza-
tion approach, we develop a simplified non-iterative algo-
rithm using the error covariance matrix decomposition
technique based on the high SNR assumption. Simula-
tion results have illustrated that the proposed simpli-
fied approach performs nearly as well as the iterative
approach, while offering significant reduction in compu-
tational complexity.

Endnote
1 The min-max MSE criterion is considered by many

to be more desirable than the min-sum MSE criterion in
[8–10] because fairness is imposed and weaker users are
not being sacrificed for the minimization of the sum.

Appendix 1: Proof of Theorem 1
For given {Bk} and {Wk}, problem (9) reduces to

min
F

τ (49a)

s.t. Ek ≤ τ , for k = 1, . . . ,K , (49b)
tr
(
F�FH

) ≤ Pr. (49c)

The Lagrangian function of problem (49) can be
written as

L
(
F, {λs,k}, λr

)

= τ +
K∑

k=1
λe,ktr

⎛

⎜⎝
INs,k − 2Re

(
BH
k H

H
k F

HGH
k Wk

)

+∑K
j=1 WH

k GkFHjBjBH
j HH

j FHGH
k Wk

+σ 2
r WH

k GkFFHGH
k Wk + σ 2

dW
H
k Wk − τ

⎞

⎟⎠

+ λr

(
tr
(
F
( K∑

k=1
HkBkBH

k H
H
k + σ 2

r INr

)
FH

)
− Pr

)
. (50)

The derivative of the Lagrangian function over FH is
given by

∂L
∂FH

=
K∑

k=1
λe,k

⎛

⎝−GH
k WkBH

k H
H
k +

K∑

j=1
GH
k WkWH

k GkFHjBjBH
j HH

j

+σ 2
r GH

k WkWH
k GkF

)
+λrF

( K∑

k=1
HkBkBH

k H
H
k + σ 2

r INr

)
. (51)

Rearranging the terms in (51), ∂L
∂FH can be expressed as

∂L
∂FH

=
K∑

k=1
−λe,kGH

k WkBH
k H

H
k

+
( K∑

i=1
λe,iGH

i WiWH
i Gi + λrINr

)
F

×
⎛

⎝
K∑

j=1
HjBjBH

j HH
j + σ 2

r INr

⎞

⎠ . (52)

Equating ∂L
∂F∗ = 0, we have the optimal relay filter

given by

F =
K∑

k=1
TkDH

k (53)

with
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Tk � λe,k

(
K∑
i=1

λe,iGH
i WiWH

i Gi + λrINr

)−1

GH
k Wk ,

Dk �
(

K∑
j=1

HjBjBH
j HH

j + σ 2
r INr

)−1

HkBk .
(54)

Denoting T � [T1 · · ·TK ] and D � [D1 · · ·DK ], F can
be expressed as F = TDH . �

Appendix 2: Proof of Theorem 2
The MSE in (9a) can be rewritten as

Ek =
[
INs,k + BH

k H
H
k F

HGH
k C̄

−1
k GkFHkBk

]−1
(55)

= tr
(
INs,k − BH

k H
H
k F

HGH
k
(
GkFHkBkBH

k H
H
k F

HGH
k

+C̄k
)−1GkFHkBk

)
(56)

= tr
(
INs,k − BH

k H
H
k F

HGH
k
(
GkF�FHGH

k

+σ 2
d INd,k

)−1GkFHkBk
)

(57)

= tr
(
INs,k − BH

k H
H
k
[
�−1 − (

�FHGH
k GkF�

+�)−1]HkBk
)

(58)

= tr
(
INs,k + BH

k H
H
k �−1

k̄ HkBk
)−1

+ tr
(
BH
k H

H
k
(
�FHGH

k GkF� + �
)−1 × HkBk

)
,

(59)

where we used matrix inversion lemma (A + BCD)−1 =
A−1 − A−1B

(
DA−1B +C−1)−1DA−1 to obtain (56)

and the first term in (59) whereas the matrix identity
BH(BCBH + I)−1B = C−1 − (CBHBC + C)−1 is used to
obtain (58) in the above derivation. Note that the first term
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in (59) is irrelevant to F. Hence for given source matrices,
the problem of optimizing F can be simplified as

min
F

tr
(
BH
k H

H
k
(
�FHGH

k GkF� + �
)−1HkBk

)
(60a)

s.t. tr
(
F�FH

) ≤ Pr. (60b)

By introducing F̃ = F�
1
2 , problem (60) can be rewritten

as

min
F̃

tr
(
BH
k H

H
k �− 1

2
(
F̃HGH

k GkF̃ + INr

)−1
�− 1

2HkBk

)

(61a)

s.t. tr
(
F̃F̃H

)
≤ Pr. (61b)

Let us write the eigenvalue decomposition (EVD)
GH
k Gk = Vg�gVH

g and the singular value decomposi-
tion (SVD) �− 1

2HkBk = Uψ�ψVH
ψ . The following lemma

defines the optimal F̃.

Lemma 1 ([25] Lemma 2) For matrices A, T̄,H of
dimensions m × n, l × m, and k × l, respectively, with
k, l,m ≥ n, r � rank(H) ≥ n and rank(T̄) = n, the
solution to the optimization problem

min
T̄

tr
(
AH (

T̄HHHHT̄ + Im
)−1A

)
(62a)

s.t. tr
(
T̄T̄H) ≤ p, (62b)

is given by T̄ = Ṽh�TUH
a in terms of the SVD of T̄. Here

H = Uh�hVH
h and A = Ua�aVH

a are the SVDs of H and
A, respectively, with the diagonal elements of �h and �a
sorted in a decreasing order, and Ṽh contains the leftmost
n columns of Vh.

According to Lemma 1, the optimal F̃ in (61) has the
SVD F̃ = Ṽg�fUH

ψ where Ṽg contains the left-most
columns of Vg corresponding to the non-zero eigenval-
ues. Then after some simple manipulations, F̃ can be
rewritten as F̃ = Ṽg�f�

−1
ψ VH

ψVψ�ψUH
ψ = T̃BH

k H
H
k �− 1

2

where T̃ � Ṽg�f�
−1
ψ VH

ψ . Hence F can be expressed as
F = T̃BH

k H
H
k �−1. Interestingly, F = T̃BH

k H
H
k �−1 can be

expressed as F = T̃D̃H , which is structurally identical to
the one defined in Theorem 1.

Applying this structure of the relay matrix, the second
term in (59) can be written as

tr
(
BH
k H

H
k
(
�FHGH

k GkF� + �
)−1 HkBk

)

= tr
(
BH
k H

H
k

(
��−1HkBkT̃HGH

k GkT̃BH
k H

H
k �−1� +�

)−1
HkBk

)

= tr
(
BH
k H

H
k

(
�−1 − �−1HkBk

(
BH
k H

H
k �−1HkBk

+
(
T̃HGH

k GkT̃
)−1

)−1
BH
k H

H
k �−1

)
HkBk

)

= tr
(
BH
k H

H
k �−1HkBk − BH

k H
H
k �−1HkBk

(
BH
k H

H
k �−1HkBk

+
(
T̃HGH

k GkT̃
)−1

)−1
BH
k H

H
k �−1HkBk

)

= tr
((
BH
k H

H
k �−1HkBk

)−1 + T̃HGH
k GkT̃

)−1
. (63)

Thus theMSE in (9a) can be expressed as the sum of two
MSEs given by

Ek = tr
(
INs,k + BH

k H
H
k �−1

k̄ HkBk
)−1

(64)

+tr
((
BH
k H

H
k �−1HkBk

)−1 + T̃HGH
k GkT̃

)−1
.

�

Appendix 3: Proof of Proposition 1
Assuming that the first-hop SNR is reasonably high, it
emerges that

∑K
j=1HjBjBH

j HH
j � σ 2

r INr where A � B
effectively means that the eigenvalues of A − B are much
greater than zero. Hence,

BH
k H

H
k �−1HkBk = BH

k H
H
k

⎛

⎝
K∑

j=1
HjBjBH

j HH
j + σ 2

r INr

⎞

⎠
−1

HkBk

≈ BH
k H

H
k

⎛

⎝
K∑

j=1
HjBjBH

j HH
j

⎞

⎠
−1

HkBk . (65)

Let Uk�kUH
k be the EVD of HkBkBH

k H
H
k . Without loss

of generality, we express Uk =
[
U(0̄)
k U(0)

k

]
and �k =

[
�

(0̄)
k 0
0 0

]
, where U(0̄)

k and U(0)
k contain the eigenvec-

tors corresponding to the non-zero and zero eigenvalues,
respectively, in Uk while �

(0̄)
k is an Nb,k × Nb,k diagonal

matrix containing the non-zero eigenvalues as the main
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diagonal. Thus HkBk = Uk�̄
(0̄)
k where �̄

(0̄)
k =

[
�

(0̄) 12
k
0

]
.

Similarly, we obtain the following EVD
K∑

j=1
k �=k

HjBjBH
j HH

j = Uk̄�k̄U
H
k̄

=
[
U(0̄)
k̄ U(0)

k̄

] [
�

(0̄)
k̄ 0
0 0

] [
U(0̄)
k̄ U(0)

k̄

]H
(66)

=
[
U(0)
k̄ U(0̄)

k̄

] [ 0 0
0 �

(0̄)
k̄

] [
U(0)
k̄ U(0̄)

k̄

]H
. (67)

Substituting HkBk in (65) with HkBk = Uk�̄
(0̄)
k , we

obtain

BH
k H

H
k

⎛

⎝
K∑

j=1
HjBjBH

j HH
j

⎞

⎠
−1

HkBk

= �̄
(0̄)H
k

(
�k + UH

k Uk̄�k̄U
H
k̄ Uk

)−1
�̄

(0̄)
k . (68)

Now we rewrite UH
k Uk̄ as

UH
k Uk̄ =

[
U(0̄)
k U(0)

k

]H [
U(0)
k̄ U(0̄)

k̄

]
=
[
Ū(0)
k 0
0 Ū(0̄)

k

]
,

(69)

where Ū(0)
k and Ū(0̄)

k are Nb,k × Nb,k and
(
Nr − Nb,k

) ×(
Nr − Nb,k

)
unitary matrices, respectively. As a conse-

quence, we obtain

UH
k Uk̄�k̄U

H
k̄ Uk = UH

k

[
U(0)
k̄ U(0̄)

k̄

] [ 0 0
0 �

(0̄)
k̄

] [
U(0)
k̄ U(0̄)

k̄

]H
Uk

=
[
0 0
0 Ū(0̄)

k �
(0̄)
k̄ Ū(0̄)H

k

]
. (70)

Using the identity U−1 = UH for a unitary matrix U, we
obtain

(
�k + UH

k Uk̄�k̄U
H
k̄ Uk

)−1=
[

�
(0̄)−1

k 0
0 Ū(0̄)

k �
(0̄)−1

k̄ Ū(0̄)H
k

]
.

(71)

Substituting (71) into (68), we obtain

BH
k H

H
k

⎛

⎝
K∑

j=1
HjBjBH

j HH
j

⎞

⎠
−1

HkBk

=
[

�
(0̄) 12H
k 0

] [�
(0̄)−1

k 0
0 Ū(0̄)

k �
(0̄)−1

k̄ Ū(0̄)H
k

][
�

(0̄) 12
k
0

]

= �
(0̄) 12H
k �

(0̄)−1

k �
(0̄) 12
k = INb,k . (72)

Thus for high first-hop SNR, BH
k H

H
k �−1HkBk can be

approximated as INb,k . �
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