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Abstract

Intra-pulse modulation recognition under negative signal-to-noise ratio (SNR) environment is a research challenge.
This article presents a robust algorithm for the recognition of 5 types of radar signals with large variation range in
the signal parameters in low SNR using the combination of the Short-time Ramanujan Fourier transform (ST-RFT)
and pseudo-Zernike moments invariant features. The ST-RFT provides the time-frequency distribution features for 5
modulations. The pseudo-Zernike moments provide invariance properties that are able to recognize different
modulation schemes on different parameter variation conditions from the ST-RFT spectrograms. Simulation results
demonstrate that the proposed algorithm achieves the probability of successful recognition (PSR) of over 90%
when SNR is above -5 dB with large variation range in the signal parameters: carrier frequency (CF) for all
considered signals, hop size (HS) for frequency shift keying (FSK) signals, and the time-bandwidth product for Linear
Frequency Modulation (LFM) signals.

Keywords: Intra-pulse modulation recognition, Pseudo-Zernike moments, Short-Time Ramanujan Fourier Transform,
Probability of successful recognition

1 Introduction
Intra-pulse modulation recognition aiming at recogniz-
ing the intentional intra-pulse modulation type of radar
signals plays a critical role in modern intercept receivers,
which could be used to recognize the signal threat level
and choose the optimal algorithm to estimate parame-
ters of the detected signal [1].
In intra-pulse modulation recognition context, more

interest has been focused on the study of the feature based
(FB) algorithms [2–5]. Thereinto, as a significant means to
FB, the time-frequency analysis has been developed
because it allows description of the instantaneous charac-
teristics of a signal in the two-dimensional (2D) time-
frequency space [6–15]. The authors in [9] proposed a
robust method for radar emitter recognition based on the
Wigner–Ville distribution (WVD) and transfer learning,
the average recognition rate (ARR) reaches more than

90% when signal-to-noise ratio (SNR) is 10 dB. In [10],
Gustavo Lopez-Risueno et al. proposed an algorithm
based on Short-time Fourier transform (STFT) to distin-
guish No Modulation, phase shift keying (PSK), frequency
shift keying (FSK) and linear frequency modulation (LFM)
sweeping a narrow band, it performs well when SNR is
around 10 dB. In [11], a morphological operation based
method had been exploited for a recognition of constant
hop size (HS), constant time-frequency product, and car-
rier frequency (CF) ranging from 500 MHz to 1GHz
intra-pulse modulations, the accuracy can reach more
than 95% for SNRs above -4 dB. In [12], Deguo Zeng et al.
proposed an approach based on the ambiguity function to
recognize six types of modulations, and it suitable for a
recognition of LFM signals with bandwidth sweeping from
2 MHz to 15 MHz, pulse-width (PW) equaling 3,5 and 7
μs when SNRs above -1 dB. In [13], the authors utilized
the Rihaczek distribution and the Hough transform (HT)
to discriminate Monopulse (MP) and binary phase shift
keying (BPSK) signals with limited CF, binary frequency
shift keying (2FSK) and 4-ary frequency shift keying
(4FSK) signals with limited HS, and LFM with large time-
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bandwidth product ranging from 17.5 to 65, their simula-
tion results show that the probability of successful recog-
nition (PSR) is greater than 90% when the SNR is above
-4 dB. However, these approaches suffer from low PSR
under negative SNR environment, especially have certain
limitations for recognizing radar signals with large vari-
ation range on CF, HS and time-bandwidth product in the
complicated noise condition. Therefore, it is paramount to
explore new robust algorithms to obtain high PSR under
conditions of low SNR and to recognize signals in a large
variation range of signal parameters.
Recently, the concept of Ramanujan Fourier Trans-

form(RFT) based time-frequency transform, namely
Short-time Ramanujan Fourier transform(ST-RFT) has
been investigated owing to the good immunity to noise
interference of RFT functions [16–18]. Following this,
the time-frequency analysis of signals based on RFT was
considered in a letter by Sugavaneswaran [19]. Their re-
search indicates that in the presence of noise this class
of transforms has lower effect in comparison to Discrete
Fourier Transform (DFT) based time-frequency trans-
forms. Consequently, regarding the noise robustness, the
ST-RFT is more efficient than the traditional DFT based
time-frequency transform, and is a promising solution
for intra-pulse modulation recognition under low SNR.
Nonetheless, how to realize an efficient recognition pro-

cedure for radar signals with large parameter variation
range is still a challenging problem. The pseudo-Zernike
moments have opened a wider set of applications for radar
signal recognition in recent years, because the moments
can provide potentially useful invariance properties such
as translation, scale, and rotational invariance [20, 21]. In
[22], Jarmo Lundén, et al. examined the suitability of
pseudo-Zernike moments as features for radar waveform
recognition, In [23], a new radar classification algorithm
based on STFT and pseudo-Zernike moments features is
proposed. Inspired by the aforesaid background, the
pseudo-Zernike moments are beneficial to realize intra-
pulse modulation recognition in scenarios with large vari-
ation in the signal parameters.
The objective in this article is to develop a novel method

which contains a “ST-RFT spectrogram computation”, a
“moments feature computation” and a “recognition” to
realize a classification of MP, LFM, BPSK, 2FSK and 4FSK
signals with large variation range in the signal parameters:
CF, HS and time-frequency product under negative SNR.
The first part is used to obtain the ST-RFT spectrograms,
which can represent features of intra-pulse modulation
signals even when the SNR is low. In the second part, the
pseudo-Zernike moments features are used to extract in-
formation on spectrograms, which can provide invariance
properties that are able to recognize different modulations
when parameters change. The last part is used to classify
5 modulations in detail. Simulation results have showed

that the recognition algorithm achieves very reliable per-
formance: over 90% PSR when SNR is above -5 dB with
CF ranges from 800 MHz to 1600 MHz, HS ranges from
60 MHz to 1000 MHz, and the time-bandwidth product
ranges from 8 to 500.
The rest of the article is organized as follows. Section

2 proposes an intra-pulse modulation recognition model.
Section 3 defines the mathematical model of the ST-
RFT spectrogram and presents the spectrogram features
for all the modulation schemes under consideration.
Section 4 focuses on the mathematical model of pseudo-
Zernike moments computation and describes the
process of moments feature selection. Section 5 presents
the proposed recognition algorithm. Simulation results
are presented and discussed in Section 6. Finally, conclu-
sions are presented in Section 7.

2 System model
An intra-pulse modulation recognition approach based
on Short-Time Ramanujan Fourier Transform (ST-RFT)
and pseudo-Zernike moments feature is proposed in this
paper. The system model of the proposed approach is
shown in Fig. 1.

Fig. 1 Model of the intra-pulse modulation recognition approach
proposed in this paper
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Three parts are included in this research: ST-RFT spec-
trogram computation, moments feature computation, and
recognition. The ST-RFT analysis is a preprocess of mo-
ments feature computation, which could be used to obtain
the ST-RFT spectrograms so as to represent features of
intra-pulse modulation signals under negative SNR.
In the moments feature computation part, pseudo-

Zernike moments features selected based on the degree
of overlapping between each pair of classes of the signal
data set are extracted from the spectrograms for its good
invariance properties, which consist of ψ3,3 feature and
ψ2,0, ψ5,1 features.
After ψ3,3 feature computation, intra-pulse modulation

signals are described by vectors. These describing vectors
are used for recognition by using threshold decision. Fur-
thermore, after ψ2,0 and ψ5,1 features computation, intra-
pulse modulation signals are described by matrices, which
are used for recognition by using KNN classifier [22].

3 Mathematical model of ST-RFT spectrogram and
ST-RFT spectrogram features
3.1 Ramanujan Fourier transform (RFT)
In the classical DFT, the basis functions ep(n) are defined
as [16]

ep nð Þ ¼ exp 2jπ
p
q
n

� �
; p ¼ 1;…; q: ð1Þ

It is clear from (1), ep(n) are obtained as multiples of a
basis frequency (1/q).
In the RFT, Ramanujan sums(RS) cq(n) are sums defined

as the n-th powers of q-th primitive roots of unity [23]

cq nð Þ ¼
Xq

p¼1; p;qð Þ¼1

exp 2jπ
p
q
n

� �
: ð2Þ

It can be observed that cq(n) are the sums over the
primitive characters ep(n). In other words, the basis
functions are built by summing up components which
are multiples of the same periodicity q, and only compo-
nents satisfying (p, q) = 1 contribute to the sum.
The sums were introduced by Ramanujan to play the

role of base functions over which typical arithmetical
functions s(n) may be projected

s nð Þ ¼
X∞
q¼1

sqcq nð Þ ð3Þ

It is obvious that an arithmetical function s(n) is an in-
finite sequence defined for 1 ≤ n ≤∞ for RFT, rather than
that for DFT which is taken with a finite n shown in [24].
The sq is referred to as the RFT coefficient given by [25]

sq ¼ 1
ϕ qð Þ limN→∞

1
N

XN
n¼1

s nð Þcq nð Þ; ð4Þ

which is what we called the RFT.
Meanwhile, one can write the Wiener-Khintchine formula

according to [26], and the linear property and the frequency
multiplication property of RFTcan be readily obtained.

3.2 ST-RFT spectrogram computation
In this paper, the ST-RFT is used to extract the neces-
sary features of 5 modulations for intra-pulse modula-
tion recognition. The reasons for this choice is that as a
windowed RFT function, the ST-RFT transform allows
simultaneous description of a signal in time and fre-
quency so that the temporal evolution of the signal
spectrum can be analyzed in the time-frequency space.
For an arbitrary discrete-time signal s(n) of length N,

the ST-RFT of the signal is defined as

ST−RFTs k; qð Þ ¼ 1
ϕ qð Þ limN→∞

1
N

XN
n¼1

s nð Þφ� n−kð Þcq nð Þ;

ð5Þ
where φ(k) is the Rectangular window function of length
H, and φ(0) = 1.
Then the ST-RFT spectrogram Ss(k, q) defined as the

squared absolute value of the ST-RFT of s(n) is given by

Ss k; qð Þ ¼ ST−RFTs k; qð Þj j2: ð6Þ
In the present work here, we take MP signal as an ex-

ample to illustrate the deduction of the ST-RFT spectro-
gram expression of 5 modulations: MP signal, LFM
signal, BPSK signal, 2FSKsignal and 4FSK signal.
Considering the following continuous-time MP signal

sMP tð Þ ¼ Aej 2π 1
Ttþφ0ð Þ; ð7Þ

where fc is the carrier frequency(CF), T ¼ 1
f c
is the period

of the continuous-time signal, A and φ0 are the ampli-
tude and the initial phase of MP separately.
For a sampling interval of Ts (the sampling frequency

(SF) is f s ¼ 1
Ts
), the discrete representation of signal (7)

then becomes

sMP nTsð Þ ¼ Aej 2πnTsT þφ0ð Þ: ð8Þ
Let us represent Ts

T as 1
T0
, the expression of (8) can be

given as

sMP nð Þ ¼ Ae
j 2πn 1

T0
þφ0

� �
; ð9Þ

where T0 represents the number of samples in one cycle

can be written as T 0 ¼ f s
f c
:
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Using Eq. (5), the ST-RFT of MP can be expressed as

ST−RFTMP k;T0ð Þ ¼ Ae
j 2π −kþ1ð Þ

T0
þφ0

� �

ϕ T 0ð Þ ; ð10Þ

in the case of q = T0.
Substituting Eq. (10) into Eq. (6), the ST-RFT spectro-

gram of MP becomes

SMP k;T0ð Þ ¼ ST−RFTMP k;T0ð Þj j2 ¼ A2

ϕ T 0ð Þð Þ2 :

ð11Þ

3.3 ST-RFT spectrogram features
3.3.1 Analysis of ST-RFT spectrogram features
In practice, there exists a tradeoff between time and fre-
quency resolution when determining the window length
(the duration of window), that is to say, a long duration
of window will provide a poor frequency resolution and
vice versa. Through a series of simulation experiments, a
Rectangular window of length H ¼ 4000

10 ¼ 400 is
selected, which can provide the best frequency
resolution-time resolution tradeoff for 5 modulations
above-mentioned. Examples of amplitude normalized
ST-RFT spectrograms Ps(k, q) (a normalization with

respect to its maximum value of each ST-RFT spectro-
gram Ss(k, q))of 5 modulations computed from a sample
of length N = 4000 with a Rectangular window of length
H = 400 are shown in Fig. 2a-e. The contours on the plot
represent relative magnitude with the horizontal axis as
q and the vertical axis as k(μs).
Figure 2 shows the amplitude normalized ST-RFT

spectrograms Ps(k, q) reflecting time-frequency distribu-
tion features of 5 types of modulation signals. Fig.2a
shows the PMP(k, q) for MP signal. Ideally, there would
be a straight line centred about T0 in k-q plane as the
Eq. (11) implied. By contrast, Fig. 2a shows the line to
be spread out in q direction at the expense of reduced
frequency resolution, and the peak energy is mainly con-
centrated in the location of T0. The PLFM(k, q) for LFM
signal with chirp rate u = 300 as depicted in Fig.2b.
Based on the observation of the spectrogram, the
spectrum line can be approximated by a piecewise line
starting at T0 and finishing at T0 − i,where i = 1, 2,… T0

− 1, and each segment reflects the change of its fre-
quency and phase. The PBPSK(k, q) for BPSK signal
shown in Fig. 2c illustrates that the amplitude of
spectrum obtains the minimum at instant of time of
phase conversion, and in the duration of intercode, the
PBPSK(k, q) is the same as the PMP(k, q). The P2FSK(k, q)
for 2FSK signal can be seen in Fig. 2d, which has five
vertical line segments centered about T0 and T1 in k-q

Fig. 2 Examples of amplitude normalized ST-RFT spectrograms Ps(k, q) computed from a sample of length N = 4000 with a Rectangular window
of length H = 400 for 5 modulations: (a) PMP(k, q) for MP signal; (b) PLFM(k, q) for LFM signal; (c) PBPSK(k, q) for BPSK signal encoded by Barker codes;
(d) P2FSK(k, q) for 2FSK signal encoded by deterministic codes [1 0 1 1 0]; (e) P4FSK(k, q) for 4FSK signal encoded by deterministic codes [0 3 1 0 2]
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plane embodying the number of frequency points, while
for the P4FSK(k, q) of 4FSK signal has 5 ones centered
about T0,T2,T1,T0,T3 in k-q plane as shown in Fig. 2e.
In summary, the contours on the plot show different

spectrogram features of 5 modulations. Hence, the ST-
RFT spectrograms can serve as a discriminating feature.

3.3.2 Analysis of discriminability
The parameter R giving the similarity degree between
two amplitude normalized spectrogram Ps1(k, q) and
Ps2(k, q) is defined as

R ¼

XN
k¼1

XN
q¼1

Ps1 k; qð Þ � Ps2 k; qð Þð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
k¼1

XN
q¼1

Ps1 k; qð Þð Þ2
vuut

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
k¼1

XN
q¼1

Ps2 k; qð Þð Þ2
vuut

:

ð12Þ

The similarity degree is bounded, 0 ≤ R ≤ 1.
The similarity between any two amplitude normalized

ST-RFT spectrograms computed by Eq. (12) with respect
to different modulations in the absence of noise is
depicted in Table 1. Intuitively, the MP and BPSK signals
are difficult to distinguish from each other due to the
fact that the spectrograms of the two modulations are
similar enough with a similarity degree of 0.9341. In
addition, for MP and LFM signals as well as LFM and
BPSK signals, the corresponding R are 0.4312 and
0.4544 respectively that means this feature is considered
not reliable to provide an effective method of signal
differentiation.
Furthermore, the theoretical analysis in Section 3.2

indicates that the location of the ST-RFT spectral peak
will be shifted induced by the variation of CFs of the
input signals, then alter the feature value Ps(k, q) and will
finally influence the recognition results.
To tackle these problems, we propose a novel signal rec-

ognition method that is based on the combination of the
ST-RFT spectrogram and the pseudo-Zernike moments.

4 Mathematical model of pseudo-Zernike
moments and moments feature selection
4.1 Mathematical model of pseudo-Zernike moments
Moments have been widely used in image processing for
pattern recognition due to its useful invariance properties
such as translation, scale, and rotational invariance [21,
27]. Such features capture global information about the
image and do not require closed boundaries as boundary-
based methods such as Fourier descriptors [27].
The formation of polar coordinates of the pseudo-

Zernike moments for f(x, y) can be obtained by project-
ing f(x, y) onto orthogonal pseudo-Zernike polynomials
Re,m(ρ)e

ieθ, by the integral [28].

ψe;m ¼ eþ 1
π

Z
0

2πZ 1

0
Re;m ρð Þe−imθf ρ cosθ; ρ sinθð Þρdρdθ;

ð13Þ
where ρ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

represents the distance from the
origin to a point in the x − y plane, and θ ¼ arctan y

x is a
counterclockwise angular displacement in radians from
the positive x -axis. Re,m(ρ) are the radial polynomials
expressed as

Re;m ρð Þ ¼
Xe− mj j

l¼0

−1ð Þl 2eþ 1−lð Þ!
l! eþ mj j þ 1−lð Þ! e− mj j−lð Þ!ρ

e−l;

ð14Þ
where e = 0, 1, 2,....,∞ is the degree of the polynomial, m
represents its angular dependence, which takes on posi-
tive and negative integer values subject to e ≥ |m| only.

4.2 The translation invariance of pseudo-Zernike moments
The translation invariance [27] of the pseudo-Zernike
moments is suitable to be applied in illustrating effects
of the variation of CFs and is utilized as time-frequency
spectrogram features in radar signal classification.
For the amplitude normalized spectrogram Ps(k, q) of the

5 modulations, the translation invariance is done by trans-
forming the original time-frequency spectrogram Ps(k, q)
into another one which is Ps k þ k ; q þ q

� �
, where k and q

are the centroid location of Ps(k, q) computed from

k ¼ m10

m00
; q ¼ m01

m00
; ð15Þ

where m00 is the zero order moment defined as m00

¼
X
k

X
q

Ps k; qð Þ , m01 and m10 are first order

moments, given by m10 ¼
X
k

X
q

kPs k; qð Þ and m01 ¼
X
k

X
q

qPs k; qð Þ:

In other words, the origin is moved to centroid before
moment comoutation.

Table 1 Similarity between two Ps(k, q) with respect to different
modulations in the absence of noise

Type MP LFM BPSK 2FSK 4FSK

MP 1 0.4312 0.9341 0.1241 0.1286

LFM 1 0.4544 0.0480 0.0750

BPSK 1 0.1248 0.1291

2FSK 1 0.3258

4FSK 1
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In the present work here, a parameter δ is presented
to illustrate the translation invariance of the pseudo-
Zernike moments is suitable to be applied in signal
recognition when CFs change.

δ ¼ ψei;mi

			 			 CF≠1600MHzj − ψei;mi

			 			 CF¼1600MHzj ; i ¼ 1; 2;

ð16Þ
where ψe1;m1

¼ ψ2;0;ψe2;m2
¼ ψ4;2

As Fig. 3 shows, the maximum variations of δ in |ψ2,0|
for MP and LFM signals are 2.31 × 10− 6 and 2 × 10− 6,
and the maximum variations of δ in |ψ4,2| for MP and
LFM signals are 3.5 × 10− 6 and 3.48 × 10− 6, all the values
are very small. Consequently, the features are nearly in-
variant to CFs changing and are feasible for signal classi-
fication with the variation in the signal CFs.

4.3 Pseudo-Zernike moments feature selection
The overlap measure indicates the degree of overlapping
between two clusters, which can be quantified by com-
puting an inter-cluster overlap [29]. A definition of the
overlap rate(OLR) was proposed in [30], which is utilized
as representative of the degree of overlap between the
given two clusters Ci and Cj. The OLR is determined by
the ratio of the number of the overlap points to that the
number of small cluster’s points.

OLR Ci;Cj
� � ¼

1; if NOver−Region ≥ Nmin;

NOverRegion

Nmin

; others:

8><
>: ð17Þ

where NOver_Region represents the number of the overlap
points, Nmin is the minimum value of Ni and Nj, which
stands for the number of points in each cluster

separately. The OLR(Ci,Cj) varies from 0 to1, the closer
the OLR(Ci,Cj) is to 0, the better the cluster separation
is. Conversely, the closer the OLR(Ci,Cj) is to 1, the two
clusters become more strongly overlapped.
In the following, three pseudo-Zernike moment

features based on the average value of OLR(OLR′)are
proposed for signal recognition. Here the signal data
projected onto the 2-D/4-D feature space is obtained by
testing all features of the pseudo-Zernike moments ran-
ging from order 1 to order 6.
The algorithm of the moments feature selection for

distinguishing LFM with the time-bandwidth between 8
and 500 in the case of SNR varying from -5 dB to 5 dB
from the rest of signals is summarized as follows:

step 4: Combining the advantages of imag(ψ3,3) and
real(ψ3,3) to discriminate LFM signals with large vari-
ation range in the time-bandwidth product from other
modulations.
The ψ3,3 is computed as

ψ3;3 ¼
4
π

Z
0

2πZ 1

0
R3;3 ρð Þe−i3θP~s ρ cosθ; ρ sinθð Þρdρdθ;

ð18Þ

R3;3 ρð Þ ¼ ρ3:

For other signals classification, we tested all combina-
tions of two features ranging from order 1 to order 6

and measured the OLR′ ¼
X

OLR
6 which is defined as

the average value of OLR between different classes taken
in the 4-D feature space and find the minimum. Follow-
ing the foresaid algorithm, the 8th order moments of
index 5 versus index27 for pseudo-Zernike moments

Fig. 3 The values of δ versus different CFs of MP and LFM with u = 80

Algorithm moments feature selection for LFM signal distinction

8≤ uτ2≤ 500
Input: s{ MP, BPSK, LFM, 2FSK, 4FSK}
1. Repeat for L = 1, 2,...50 (update the simulation times)
2. Update P Lð Þ

si ;d;uτ2
k þ k ; qþ q
� �

by using Eq. (6) for each d and uτ2

3. Update ψe;m
Lð Þ Psi ;d;uτ2
� �

by using Eqs. (13) and (14) for each e

4. if uτ2 > = 8 and uτ2 < = 40
5. Update the OLRd;uτ20 Lð Þ imag ψe;m

� �� �
by using Eq. (17) and

OLRd;uτ20 Lð Þ imag ψe;m

� �� � ¼ OLRd;uτ2
Lð Þ imag ψe;mð Þð Þ

4 for each e and d

6. Jointly update the minimum of OLRd;uτ2
0
Lð Þ and the corresponding

imag(L)(ψe,m)
7. else update the OLRd;uτ2

0 Lð Þ real ψe;m

� �� �
by using Eq. (17) and

OLRd;uτ20 Lð Þ real ψe;m

� �� � ¼ OLRd;uτ2
Lð Þ real ψe;mð Þð Þ
4 for each e and d

8. Jointly update the minimum of OLRd;uτ2
0
Lð Þ and the corresponding

real(L)(ψe,m)
9. end if
10. Until s, e, d, uτ2 do not satisfy the variation range given.
11. Output: {imag(ψe,m), real(ψe,m)}
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referring to ψ2,0 and ψ5,1 are experimentally selected as
features, which specifically suitable for signal classifica-
tion with the exception of LFM.
The ψ2,0 and ψ5,1 are given by

ψ2;0 ¼
3
π

Z
0

2πZ 1

0
R2;0 ρð ÞP~s ρcosθ; ρ sinθð Þρdρdθ;

ð19Þ

ψ5;1 ¼
6
π

Z
0

2πZ 1

0
R5;1 ρð Þe−iθP~s ρ cosθ; ρ sinθð Þρdρdθ;

ð20Þ

R2;0 ρð Þ ¼ 10ρ2−12ρþ 2; R5;1 ρð Þ ¼ 330ρ5−840ρ4

þ 756ρ3−280ρ2 þ 35ρ:

5 Recognition algorithm
5.1 Steps of the proposed algorithm
The proposed modulation signal recognition algorithm
is shown in Fig. 4.
The starting point are the modulation signals ~s nð Þ; n

¼ 0; 1;…;N−1 to which Gaussian white noise is added.
And the following steps of classifying various modula-
tion types of signals are shown as follows:
Step 1: ST-RFT spectrogram Computation.
Step 1.1 Computing the amplitude normalized ST-RFT

spectrogram P~s k; qð Þ of 5 modulations mentioned-above.

Step 1.2 Computing the centroid moved amplitude
normalized ST-RFT spectrogram P~s k þ k ; q þ q

� �
.

Step 2: LFM signal classification.
Measuring imag(ψ3,3) and real(ψ3,3) respectively. If

imag(ψ3,3) > thLFM_1 or real(ψ3,3) < thLFM_2, the signal is
regarded as LFM, else go to step 3.
Step 3: Other signals classification.
Step 3.1 Pseudo-Zernike moments ψ2,0 and ψ5,1

computation.
Step 3.2 Constructing the 2-D feature space by using

ψ2,0 and ψ5,1 and determining the optimal distribution
range of the spectrogram features of different modula-
tions from the feature space.
Step 4: Use a K-nearest neighbour(KNN)classifier to

assign each element to a class for the input radar signals,
to perform the classification procedure.

5.2 The thresholds for LFM signals recognition
The thresholds thLFM_1 and thLFM_2 are utilized to
distinguish LFM with the time-bandwidth product
between 8 and 40 and to distinguish LFM with the time-
bandwidth product between 41 and 500 from other
signals. They could be obtained by the iterative thresh-
olding algorithm [20] and lots of simulations.
As in Fig. 5a, the minimum of the average value of

imag(ψ3,3) for LFM signal class is obtained when uτ2 =
40 at SNR = − 5dB which is close to 0.40 × 10− 4 and for
the rest of other signal classes the maximum of the aver-
age value of imag(ψ3,3) obtained at SNR = 5dB is close to

Fig. 4 Block scheme of proposed recognition algorithm
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0.21 × 10− 4 in general as shown in Fig. 5b. Finally, we set

thLFM1 ¼ 0:40�10−4þ0:21�10−4
2 ¼ 0:31� 10−4 as the optimal

threshold for LFM classification. Meanwhile, as in Fig. 5c,
the average value of real(ψ3,3) for LFM signal class ob-
tains the maximum at uτ2 = 41 for SNR = 5 dB and the
maximum is close to − 0.73 × 10− 4, and for other signal
classes, the minimum of the average values of real(ψ3,3)
is close to − 0.50 × 10− 4 obtained at SNR = − 5dB from
Fig. 5d. Thus the threshold thLFM_2 can be set to
−0:73�10−4þ−0:50�10−4

2 ¼ −0:62� 10−4 to guarantee the
correct classification of the LFM signals with the time-
bandwidth product between 41 and 500.

6 Results and discussion
6.1 Choice of the modulation signal parameters for the
Clustering
The parameters used for the clustering are shown in
Table 2. CR, PW and HS stand for code rate, pulse-width
and frequency hop size, respectively. Meanwhile, for
BPSK, we use 5 bit Barker codes, the 2FSK and 4FSK are
encoded by deterministic codes in order to lower the

effect of deficiency of some codes. Codes are defined as [0
1 0 1 0] for 2FSK and [0 1 2 3 0]for 4FSK. And the length
of Rectangular window is set to be 400. In addition, the
SNR values from -5 to 5 dB for most conditions.

6.2 Choice of the modulation signal parameters for test
In order to verify that the proposed method can achieve
better performance than the algorithm based STFT, we
did the following simulations. The code parameters for
BPSK、2FSK and 4FSK are same as the parameters set
in 6.1 for both algorithms. The CFs are 800 MHz,
1000 MHz and 1600 MHz. The HSs are 60 MHz,
100 MHz and 1000 MHz. The chirp rates for LFM are
40 MHz/ μs,80 MHz/ μs,100 MHz/ μs,1200 MHz/
μs.And the length of rectangular window is set to be 400
and the SNR values from -5 to 5 dB.

6.3 Simulation results analysis
To estimate the classifier performance, 50 signals are used
for the clustering, and each simulation was run 100 times,
evaluating the average recognition rate (ARR).

6.3.1 The effects of CFs and HSs variation
Figure 6 is used to get indications how much the CFs
and HSs variation affect the performance at SNR = 5 dB
and SNR = 0 dB respectively. The MP、BPSK and LFM
signals are simulated with CFs ranging from 800 MHz to
1600 MHz, the FSK signals are simulated with HSs ran-
ging from 60 MHz to 1000 MHz. As expected, the vari-
ation in CFs and HSs would not affect the performance

Fig. 5 The thresholds for LFM signals recognition: a the average values of imag(ψ3,3) against different uτ2 ranging from 8 to40 for different SNR
values; b the average values of imag(ψ3,3) versus SNR for different modulations for uτ2 = 40; c the average values of real(ψ3,3) against different uτ2

ranging from 41 to500for different SNR values; d the average values of real(ψ3,3) versus SNR for different kinds of signals for uτ2 = 41

Table 2 Parameters for the clustering

Signal type CF CR PW HS

MP 800 MHz 1 μs

BPSK 800 MHz 10 MHz/ μs 1 μs

2FSK 800 MHz 10 MHz/ μs 1 μs 100 MHz

4FSK 800 MHz 10 MHz/ μs 1 μs 100 MHz
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much. And the property makes the pseudo-Zernike moments
very suitable to spectrogram features recognization with
random variation in the signal parameters: CFs and HSs.

6.3.2 The performance of the proposed algorithm
Figure 7 reports the scatter plots related to ψ2,0 and ψ5,1

for pseudo-Zernike for all the data of the 4 types modula-
tion signals for different SNR. Both the STFT and ST-RFT

based algorithms have been considered. The scatter plots
shown in Fig. 7a and c demonstrate that for SNR = 5 dB,
the extraction of the pseudo-Zernike moments from ST-
RFT give a certain degree of separation within the class.
As shown in Fig. 7b and d, for SNR = -5 dB the 4 classes
could be considered to be classified more accurate by the
proposed algorithms in comparison to the STFT based al-
gorithm. Consequently, in the presence of noise, the

Fig. 6 The effects of CFs and HSs variation: (a) Performance analysis for different CFs for MP、BPSK and LFM signals at SNR = 5dB; (b) Performance
analysis for different HSs for FSK signals at SNR = 0dB

Fig. 7 Scatter plots of 5th vs 27th moments of 4 type modulation signals classes based on ST-RFT and STFT: (a) STFT based algorithm for SNR = 5 dB;
(b) STFT based algorithm for SNR = -5 dB; (c) ST-RFT based algorithm for SNR = 5 dB; (d) ST-RFT based algorithm for SNR = -5 dB
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proposed algorithm performs well especially for MP and
BPSK signals recognition.
These behaviors are also confirmed by the results illus-

trated in Fig. 8, where the ARR is plotted versus different
SNRs ranging from -5 dB to 5 dB both for STFT, ST-
RFT based algorithms and the algorithm presented in
[9]. Thereinto, for STFT and ST-RFT algorithms, the
modulations used to obtain the ARR are MP, LFM,
BPSK, 2FSK and 4FSK signals satisfying the signal
parameters for test discussed in the paper. And for [9],
the modulations used to obtain the ARR are the signals
of their own choosing. It is obvious that, an increment
in the SNR leads to a higher performance. Obviously, in
the case of SNR = -5 dB, the proposed algorithm reaches
a ARR of 90%, while the ARR of STFT algorithm reaches
70%,and the ST-RFT based algorithms assure a higher
level of ARR than the STFT counterpart. Consequently,
as conclusion to these analyses, it can be claimed that
the performance of our algorithm based on the combin-
ation of the ST-RFT and the pseudo-Zernike moments is
preferred to STFT based algorithm. Meanwhile, com-
parison of the work to the techniques presented in [9]
shows that the approach proposed in this paper has
better robustness against SNR variation.

7 Conclusions
In this paper, we have presented a new method for intra-
pulse modulation recognition under low SNR environ-
ment. In this method, the ST-RFT spectrograms for 5
modulation schemes are firstly calculated. Then the
pseudo-Zernike moments are applied to the ST-RFT
spectrogram to uniquely discriminate the spectrogram
features for different modulations when parameters
change. Simulation results demonstrate a robust recog-
nition performance over a wide range of SNRs, CFs,
HSs, and time-bandwidth product. Meanwhile, based on

the simulation results analysis, our method is better
comparison of the work to the STFT based technique
and the technique presented in [9].
However, our work only on few modulation schemes, a

discussion on the technique applied to other modulation
schemes, such as NLFM, PWM, PPM will be developed.
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