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Focusing high-squint and large-baseline
one-stationary bistatic SAR data using
keystone transform and enhanced
nonlinear chirp scaling based on an
ellipse model
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Abstract

This paper deals with the imaging problem for one-stationary bistatic synthetic aperture radar (BiSAR) with high-
squint, large-baseline configuration. In this bistatic configuration, accurate focusing of BiSAR data is a difficult issue
due to the relatively large range cell migration (RCM), severe range-azimuth coupling, and inherent azimuth-
geometric variance. To circumvent these issues, an enhanced azimuth nonlinear chirp scaling (NLCS) algorithm
based on an ellipse model is investigated in this paper. In the range processing, a method combining deramp
operation and keystone transform (KT) is adopted to remove linear RCM completely and mitigate range-azimuth
cross-coupling. In the azimuth focusing, an ellipse model is established to analyze and depict the characteristic of
azimuth-variant Doppler phase. Based on the new model, an enhanced azimuth NLCS algorithm is derived to focus
one-stationary BiSAR data. Simulating results exhibited at the end of this paper validate the effectiveness of the
proposed algorithm.

Keywords: Bistatic synthetic aperture radar (BiSAR), One-stationary, Azimuth-variant, Keystone-transform (KT), Ellipse
model, Nonlinear chirp scaling (NLCS)

1 Introduction
Bistatic synthetic aperture radar (BiSAR) system is oper-
ated with separated transmitter and receiver platforms
which offers particular advantages like flexible configur-
ation, reduced cost, strong hiding performance, and
forward-looking imaging ability when it is compared
with traditional monostatic SAR [1–5]. Owing to these
benefits, BiSAR has raised increasing concerns in SAR
research community in the last decade.
One-stationary BiSAR, where the transmitter or the

receiver is stationary, is a special configuration of
general BiSAR that is relatively easy to be constructed
and deployed. This kind of BiSAR is of great value to
remote sensing applications, as it allows small and light-
weighted unmanned aerial vehicles or in-orbit SAR

satellite to produce bistatic images [6, 7]. The one-
stationary BiSAR could be used to image the target area
and exploit multi-dimensional information, such as
region monitoring, resolution enhancement, and ground
moving target detection and imaging, which makes
broad application prospects in both civilian and military
fields [8, 9].
Currently, many imaging algorithms have been pro-

posed for one-stationary BiSAR. In [10, 11], nonlinear
chirp scaling (NLCS) algorithm has been applied to
focus one-stationary BiSAR data, where a curve fitting
method is used to generate a perturbation function to
equalize the azimuth-variant frequency modulation (FM)
rate. In [12–14], NLCS algorithm is combined with
keystone transform (KT) to handle one-stationary BiSAR
data. In these methods, KT is used to eliminate the
linear range-azimuth coupling that increases with the
squint angle, and then, numerical integral is utilized in
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the azimuth focusing to generate the perturbation func-
tion. Inverse scaled Fourier transform (ISFT) can also
handle one-stationary BiSAR data [15, 16]. This kind of
algorithm uses chirp multiplications and FFTs in the
frequency domain to achieve the 2-D spatial variance
correction which avoids the use of interpolation.
Furthermore, omega-k algorithm is also applied to the
image formation of one-stationary BiSAR [17, 18]. In
this algorithm, 2-D Stolt transformation is used to deal
with the spatial variance, but the Stolt interpolation
makes the method quite time-consuming.
In summary, NLCS is an excellent algorithm proposed

in recent years for image formation of one-stationary
BiSAR, which was originally adopted for monostatic
SAR to equalize the azimuth-variant Doppler FM rate
[19]. In [20], this algorithm has been applied to focus
BiSAR data. However, the inherent geometric variance
of BiSAR has not been taken into account, and thus, the
scene size of the final image is restricted. In [21], the
NLCS has been extended for BiSAR with a model of
range offset to improve the azimuth equalization. With
the increase of baseline, however, the range offset model
is becoming inaccurate, which leads to deterioration of
the imaging performance. To overcome this issue, nu-
merical methods for NLCS are utilized in [10–14] to
generate the perturbation function, but these methods
need a large amount of computation, and also, their
applicability is limited.
In this paper, an ellipse model is established to reveal

the azimuth-variant characteristic of slant ranges for
BiSAR, and then, an enhanced NLCS algorithm based
on the new model is proposed to focus one-stationary
BiSAR data with high-squint, large-baseline configur-
ation. In this algorithm, deramp operation is used first
to remove the range walk and the Doppler ambiguity of
the echo, and then, KT is utilized to eliminate the re-
sidual linear RCM. After that, bulk range cell migration
correction (RCMC) and second range compression
(SRC) are carried out to compensate the high-order
RCM and range compression terms. Following that, an
azimuth ellipse model is constructed to reveal the
azimuth-variant characteristic of BiSAR. Based on the
new model, an enhanced azimuth NLCS is derived to
focus one-stationary BiSAR data at last.
The rest of this paper is organized as follows.

Section 2 gives the geometric signal model of BiSAR
with stationary transmitter. Section 3 presents the
range processing by deramp operation, KT, and bulk
RCMC. In Section 4, the azimuth-variant characteris-
tic of BiSAR is analyzed based on a new azimuth
model, and then, the enhanced azimuth NLCS is
derived. Simulation results of the proposed algorithm
are given in Section 5. Finally, conclusions are pro-
vided in Section 6.

2 Geometry and signal model
The geometry configuration of strip-map BiSAR with
stationary transmitter is shown in Fig. 1. P0(x0, y0) is
chosen as the scene center, and P(x, y) is an arbitrary
target in the imaging area. The receiver is flying along
the y-axis with a constant velocity of v, and its original
coordinate is (xR, yR, hR). The coordinate of the station-
ary transmitter is (xT, yT, hT).
The slant range history of the receiver with respect to

the target P(x, y) is

RR t; rRc; tcð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rRc
2 þ v2 t−tcð Þ2−2rRcv t−tcð Þsin θRð Þ

q
rRc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x−xRð Þ2 þ y−yRð Þ2 þ h2R

q
ð1Þ

where t is the azimuth slow time and rRc and θR repre-
sent the slant range and squint angle of the receiver at
the beam center crossing time t = tc, respectively. Differ-
ently, the range history of the stationary transmitter to
target P(x, y) is a constant one,

RT ¼ rTc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x−xTð Þ2 þ y−yTð Þ2 þ h2T

q
: ð2Þ

Then, the bistatic range history is the sum of RR(t; rRc,
tc) and RT, which can be expanded into a Taylor series of
t at t = tc for further analysis [14]

Rtotal t; rc; tcð Þ ¼ RR t; rRc; tcð Þ þ RT

≈Z0 þ A0 t−tcð Þ þ B0

2
t−tcð Þ2 þ C0

6
t−tcð Þ3 ð3Þ

where Z0 = rc = rRc + rTc denotes the bistatic slant range
at t = tc. A0, B0, and C0 are the expanding coefficients
and given by

Fig. 1 The imaging geometry model of strip-map BiSAR with
stationary transmitter
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A0 ¼ −v sin θRð Þ; B0 ¼ v2 cos2 θRð Þ
rRc

; C0 ¼ 3v3 cos2 θRð Þsin θRð Þ
rRc

2

:

ð4Þ

For the subsequent description, (3) can be rewritten as

Rtotal t; rc; tcð Þ ¼ Z1 rc; tcð Þ þ A1 rc; tcð Þt þ B1 rc; tcð Þ
2

t2 þ C0

6
t3 ð5Þ

where

Z1 rc; tcð Þ ¼ Z0−A0tc þ B0

2
t2c−

C0

6
t3c

A1 rc; tcð Þ ¼ A0−B0tc þ C0

2
t2c ; B1 rc; tcð Þ ¼ B0−C0tc

ð6Þ

The linear term in (5) represents the linear RCM, and
the high-order terms represent the high-order RCMs,
respectively.
Supposing the transmitted signal is a linear frequency

modulated (LFM) signal, the received echo from P(x, y)
after being demodulated to baseband is

s τ; t; rc; tcð Þ ¼ wr τ−
Rtotal t; rc; tcð Þ

c

� �
wa

t−tc
T a

� �

�exp −j2πf c
Rtotal t; rc; tcð Þ

c

� �
exp jπKr τ−Rtotal t; rc; tcð Þ

c

� �2( )

ð7Þ

where τ is the range fast time and wr(·) and wa(·) imply
the range and azimuth envelopes, respectively. Ta is the
synthetic aperture time, fc is the carrier frequency, Kr is
the range FM rate, and c represents the speed of light.

3 Range processing
In this section, we first quantitatively analyze the ratio of
linear RCM component to high-order RCM components
with varying squint angles to confirm that the linear RCM
component dominates the total RCM in high-squint
BiSAR. Then, based on that point, we used a method
combining deramp operation and keystone transform to
remove the linear RCM completely. In this method,
deramp operation is utilized to eliminate the range walk
and the Doppler ambiguity of the echo, and then, KT is
used to remove the residual linear RCM left by deramp
operation. After that, bulk RCMC and SRC are performed
to compensate the high-order RCM and range compres-
sion terms. At last, analyses are conducted to validate the
effectiveness of the range processing.

3.1 RCM proportion analysis
Taking the bistatic range history of the scene center as
an example, the linear RCM and the high-order one in
(5) can be expressed as

RW t; θRð Þ ¼ A0 θRð Þt
RC t; θRð Þ ¼ Rtotal t; θRð Þ−A0 θRð Þt−rcref ð8Þ

where Rtotal(t;θR) denotes the bistatic range history of the
scene center. Figure 2 gives the shape of RC(t;θR) with
varying squint angles from 0° to 70° based on BiSAR
parameters in Table 1. It can be seen that the high-order
RCM is becoming smaller as the squint angle is getting
larger. To quantitatively analyze the ratio of the linear
RCM to high-order one, we define

WCR θRð Þ ¼ QW θRð Þ=QC θRð Þ; ð9Þ
where QW(θR) and QC(θR) imply the cumulative sums of
the linear RCM and high-order one within a synthetic
aperture time, respectively, and given by

QW θRð Þ ¼
XTa=2

−Ta=2

RW t; θRð Þ; QC θRð Þ ¼
XTa=2

−Ta=2

RC t; θRð Þ: ð10Þ

Figure 3 shows the simulated result of WCR(θR) based
on the same BiSAR parameters used in Fig. 2. It is
obvious that the ratio is rapidly getting large with the
increase of the squint angle, and it is even beyond 500
times when the squint angle is reaching 60°.

3.2 Algorithm derivation
Based on the discussion aforementioned, we can affirm
that in high-squint BiSAR, the linear RCM component
takes the dominant part of the total RCM, while the
high-order RCM is extremely small. When the squint
angle is approaching 70°, for instance, the high-order
RCM at the edge in azimuth is only about 3.0 m, while
the ratio of linear RCM to high-order one is over 1500
times. Accordingly, the linear RCMC operation is par-
ticularly significant in the entire RCMC for high-squint
BiSAR. Once the linear RCM is removed, only a small
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Fig. 2 High-order RCM with varying squint angles
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amount of high-order RCM will remain, and it is
much easier to be corrected. Therefore, we apply the
combination of deramp operation and KT to remove
the linear RCM and then a bulk RCMC to correct
the high-order RCM.
In summary, the RCMC operations in this paper con-

tain three steps: deramp operation, keystone transform,
and bulk RCMC. The processing results of these three
steps on the echo are shown in Fig. 4, and the detailed
algorithm will be discussed in the following.
Deramp operation is applied first, which is a common

processing method in the range-frequency and azimuth-
time domain. Before deramp operation, the echo (7)
should be transformed into the range-frequency and
azimuth-time domain by using the principle of stationary
phase (PSP), and the signal is (the constant term ignored)

S f r; t; rc; tcð Þ ¼ exp −jπ
f 2r
Kr

� �
expf−j2π f r þ f c

c
½Z1 rc; tcð Þ

þA1 rc; tcð Þt þ B1 rc; tcð Þ
2

t2 þ C0

6
t3�g

ð11Þ

where fr is the range frequency. Then, deramp operation
is performed by constructing a filtering function at the
azimuth center,

HDeramp f r ; tð Þ ¼ exp j2π
f r þ f c

c
A0t

� �
: ð12Þ

Multiplying (12) with (11), we obtain

S1 f r; t; rc; tcð Þ ¼ exp −jπ
f 2r
Kr

� �
expf−j2π f r þ f c

c
½Z1 rc; tcð Þ

þ −B0tc þ C0

2
t2c

� �
t þ B1

2
t2 þ C0

6
t3�g

ð13Þ

where B1 is B1(rc, tc) for short. The bistatic range history
after deramp operation becomes

RDeramp t; rc; tcð Þ ¼ Z1 rc; tcð Þ þ −B0tc þ C0

2
t2c

� �
t þ B1

2
t2 þ C0

6
t3:

ð14Þ
In (14), the second term denotes the residual linear

RCM and it is azimuth-variant. Thus, after deramp
operation, only the linear RCMs of the central targets in
azimuth have been fully removed, while the residual lin-
ear RCMs of the noncentral targets in azimuth still exist
and cannot be ignored in high-squint BiSAR which will
be discussed in Section 3.3.
Then, KT is performed to remove the residual linear

RCMs of the noncentral targets in azimuth, which is essen-
tially a resampling process along azimuth slow time [14]

t ¼ f c
f r þ f c

tm ð15Þ

where tm is the new azimuth slow time after KT.
Substituting (15) into (13) and expanding the result

into a Taylor series of fr at fr = 0, we have

S2 f r; tm; rc; tcð Þ ¼ expfjφ f r; tm; rc; tcð Þg
¼ expfj½φ0 tm; rc; tcð Þ þ φ1 tm; rc; tcð Þf r
þφ2 tm; rc; tcð Þf 2r þ

X∞
n¼3

φn tm; rc; tcð Þf nr �g

ð16Þ
where

φ0 tm; rc; tcð Þ ¼ −
2πf c
c

Z1 rc; tcð Þ þ −B0tc þ C0

2
t2c

� �
tm þ B1

2
t2m þ C0

6
t3m

� �

φ1 tm; rc; tcð Þ ¼ −
2π
c

Z1 rc; tcð Þ−B1

2
t2m−

C0

3
t3m

� �

φ2 tm; rc; tcð Þ ¼ −π
1
Kr

þ B1

cf c
t2m þ C0

cf c
t3m

� �

φn tm; rc; tcð Þ ¼ 1
n!
∂nφ tm; f r ; rc; tcð Þ

∂ f nr

8>>>>>>>>>><
>>>>>>>>>>:

ð17Þ
In (16), φ0 is the azimuth modulation term, φ1 is the

range position term, and φ2 and φn denote the SRC and
high-order range-azimuth coupling terms, respectively.

Table 1 Stationary parameters of BiSAR

Simulation parameters Transmitter Receiver

Velocity 220 m/s

Beam center slant range 37.52 km 12.48 km

Squint angle 62°

Altitude 4.8 km 2.67 km

Pulse repetition frequency 208Hz

Carrier frequency 10.0GHz

Range bandwidth 75.0 MHz

Synthetic aperture time 2.07 s

Bistatic bsaeline range 32 km
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Fig. 3 WCR(θR) with varying squint angles
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Inspecting φ1, the linear term of tm that is the linear
RCM component has been fully removed after KT,
which also greatly decreases the range-azimuth coupling.
Therefore, the bistatic range history after KT becomes

RKT tm; rc; tcð Þ ¼ Z1 rc; tcð Þ−B1

2
t2m−

C0

3
t3m; ð18Þ

where the second and third terms imply the new high-
order RCM after KT. To eliminate this new high-order
RCM, we construct the bulk RCMC filtering function at
the scene center as follows

HBRCMC f r; tm; rcref ; 0
	 


¼ exp −j
2π
c

B1 rcref ; 0
	 

2

t2m þ C0 rcref
	 

3

t3m

� �
f r

� �
:

ð19Þ

Multiplying (19) with (16), the bistatic range history
after bulk RCMC becomes

RBRCMC tm; rc; tcð Þ ¼ Z1 rc; tcð Þ þ ΔZ1; ð20Þ

where ΔZ1 denotes the migration error caused by bulk
RCMC. In high-squint BiSAR, this error is extremely
small and can be neglected; the detailed analysis is given
in Section 3.3.
If ΔZ1 is ignored, the bistatic range history after bulk

RCMC can be rewritten as

RBRCMC tm; rc; tcð Þ≈Z1 rc; tcð Þ
¼ Z0−A0tc þ B0

2
t2c−

C0

6
t3c

¼ Rtotal 0; rc; tcð Þ
ð21Þ

Comparing (21) with (5), the bistatic range history of
target P(x, y) has been shifted from original Rtotal(t; rc, tc)
into the range cell at Rtotal(0; rc, tc) after RCMC. This
effect can be expressed as follows

Rtotal t; rc; tcð Þ →
RCMC

Rtotal 0; rc; tcð Þ: ð22Þ
Thus, we draw a conclusion that the bistatic range

histories of echoes with the same Rtotal(0;rc,tc) in the
coordinate plane have been shifted into a same range
cell after RCMC.
Furthermore, the SRC and high-order coupling terms

in (16) can also be compensated by constructing filtering
functions at the scene center,

HSRC f r; tm; rcref ; 0
	 
 ¼ exp jπ

1
Kr

þ B1 rcref ; 0
	 

cf c

t2m þ C0 rcref
	 

cf c

t3m

� �
f 2r

� �

ð23Þ

HHI f r; tm; rcref ; 0
	 
 ¼ exp jφ3 tm; rcref ; 0

	 

f 3r

� �
ð24Þ

where the high-order filter is usually kept up to third-
order term.

(a) (b)

(c) (d)
Fig. 4 Steps of RCMC (suppose the range compression has been performed). a Data space. P0, P1, P2, P3, and P4 have the same bistatic slant ranges
when azimuth time t = 0. P0, P5, and P6 are in the same azimuth cell. b Data space after deramp operation. The ramps have been removed, but only
the linear RCM of P0 has been completely removed. c Data space after KT. Linear RCMs of all targets are removed. d Data space after bulk RCMC. RCMs
of all targets are removed, and also, their range histories have been shifted into the same range cell
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After bulk RCMC and SRC, only the azimuth modula-
tion term φ0 in (16) remains. Then, transforming the sig-
nal into azimuth frequency domain using PSP, we obtain

S3 f a; rc; tcð Þ ¼ exp jφ0 f a; rc; tcð Þf g; ð25Þ
where fa is the azimuth frequency. Expanding the phase
term in (25) into a Taylor series of fa at fa = 0, we have

φ0 f a; rc; tcð Þ ¼ φ0 rc; tcð Þ þ φ1 rc; tcð Þf a
þφ2 rc; tcð Þf 2a þ φ3 rc; tcð Þf 3a þ⋯

ð26Þ

where

ϕ0 rc; tcð Þ ¼ −
2πf c Z0−A0tcð Þ

c
; ϕ1 tcð Þ ¼ −2πtc

ϕ2 tcð Þ ¼ πc
B0f c

¼ −
π

Ka
; ϕ3 tcð Þ ¼ πC0c2

3B3
0f

2
c

8>><
>>:

ð27Þ
In (26), ϕ0 and ϕ1 are the constant and azimuth

position terms, respectively; ϕ2 reflects the azimuth
modulation, which is essential for azimuth focusing, and
ϕ3 denotes the high-order term. The Doppler FM rate
Ka can be expressed as

Ka ¼ −
B0f c
c

¼ −
v2 cos2 θRð Þ

λrRc
: ð28Þ

Inspecting (28), the Doppler FM rate is determined by
the slant range at the beam center crossing time, rRc. Ac-
cording to (22), however, the slant ranges of echoes in a
same range cell after RCMC are different, and so are the
Doppler FM rates, which must be equalized before azi-
muth compression. The detailed derivation of equalization
will be discussed in Section 4.

3.3 Algorithm validation
To validate the effectiveness of the range processing
mentioned above, analyses on the bistatic range histories

of the echoes after deramp operation, KT, and bulk
RCMC are performed based on BiSAR parameters in
Table 1, respectively. We assume five targets placed at
the iso-range line of Rtotal(0; rc, tc) in the coordinate
plane, and the azimuth interval between them is 550 m.
Based on (5) and (14), Fig. 5 gives the bistatic range

histories of the echoes before and after deramp oper-
ation, respectively. Due to the fact that the linear RCM
component takes the dominant part of the total RCM,
ramped bistatic range histories of the original echoes
appear in Fig. 5a. While deramp operation has been per-
formed, the ramps are removed, but large residual RCMs
still exist as can be seen in Fig. 5b. For instance, the re-
sidual RCM at the edge in azimuth is about 4.0 m which
cannot be neglected. In addition, the differences among
the range curves of the five targets are still very large, so
large migration errors will occur if a bulk RCMC oper-
ation is directly applied.
According to (14), the residual RCM contains residual

linear and high-order components, where the residual
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Fig. 5 Bistatic range histories of the echoes. a Before deramp operation. b After deramp operation (Z1 = Rtotal(0; rc, tc) = 50 km)
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linear RCMs of the echoes are shown in Fig. 6. From the
result, it is easy to find that the residual linear RCM of
the target at azimuthal edge is over 3.0 m, which is lar-
ger than one range cell and should be removed.
Based on (18), the bistatic range histories of the echoes

after KT are presented in Fig. 7a. Obviously, after fully re-
moving the linear RCM, the remained new high-order
RCM of the edge target in azimuth is about 4.0 m, but the
differences among the range curves of the five targets are

extremely small, which implies that it is suitable to apply a
bulk RCMC. The bistatic range histories of the echoes
after bulk RCMC are given in Fig. 7b. Comparing Fig. 7b
with Fig. 5b, the result after bulk RCMC is much better
than that after deramp operation. For instance, the migra-
tion error of the edge target in azimuth is only about
0.4 m, which is much smaller than one range cell and fully
meets the requirement of high-squint one-stationary
BiSAR configuration.
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Fig. 7 Bistatic range histories of the echoes. a After KT. b After bulk RCMC
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Fig. 8 a Circle space. A and B lie on the circle when they share the same Rtotal(0; rc, tc). b Data space before RCMC. c Data space after RCMC.
Range histories of A and B have been shifted into a same range cell
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4 Enhanced azimuth NLCS algorithm
According to (28), the effectiveness of azimuth NLCS
for BiSAR data is determined by the azimuth model of
slant ranges at the beam center crossing time. However,
the azimuth model of monostatic SAR is directly applied
to focus BiSAR data in [20], which makes the imaging
algorithm suffer limitations of applicability, especially
when the baseline between the transmitter and the re-
ceiver is large.
In this section, we first analyze the azimuth depend-

ency of slant ranges for monostatic SAR by a circle
model. Then, an ellipse model is established to reveal
the azimuth-variant characteristic of slant ranges for
BiSAR. Based on the new model, coefficients of en-
hanced azimuth NLCS are derived to focus one-
stationary BiSAR data. At last, the processing errors
and limitations of scene size in azimuth of the new
algorithm are both analyzed.

4.1 Circle model for monostatic SAR
In the monostatic SAR, targets with a same Rtotal(0; rc,
tc) in the coordinate plane can be seen that they lie on a
circle with the center at the location of platform at t = 0.
To simplify the analysis and derivation procedure, we as-
sume that the space plane determined by the transmitter,
the receiver, and the point target is mapped onto a new
ground x′-y′ plane. As seen in Fig. 8a, A and B denote

two point targets with the same Rtotal(0; rc, tc), where A
is located at the azimuth center and it is chosen as the
reference target and rcA and rcB are the slant ranges at
their own beam center crossing time, respectively.
In the data space, the slant ranges of A and B are dif-

ferent and so are their Doppler FM rates according to
(28), as seen in Fig. 8b. After RCMC, their range histor-
ies have been shifted into a same range cell, but their
Doppler FM rates are still dependent on rcA and rcB,
respectively, as seen in Fig. 8c. Therefore, we have to
figure out the relationship between rcA and rcB, which is
the key to azimuth NLCS processing.
Based on the circle model shown in Fig. 8a and after a

series of geometry derivation, we obtain

rcB ¼ rDC þ rCB≈rcA−v sin θSð Þ tc ¼ rcA þ A0tc; ð29Þ

when target B lies close to the reference target A.

It is obvious that the derived result in (29) is exactly
the same as the original derivation result for monostatic
SAR in [19], which validates the accuracy of our estab-
lished circle model.

4.2 Ellipse model for one-stationary BiSAR
In BiSAR configuration, owing to the separation of the trans-
mitter and the receiver, the circle model aforementioned

(a)

(b) (c)
Fig. 9 a Ellipse space. A and B lie on the ellipse when they share the same Rtotal(0; rc, tc). b Data space before RCMC. c Data space after RCMC.
Range histories of A and B have been shifted into a same range cell
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does not hold anymore. Thus, to reveal the azimuth-variant
characteristic of Doppler FM rate for BiSAR, a new azimuth
geometric model should be established.
Due to a two-different-way slant range in BiSAR, tar-

gets with the same Rtotal(0; rc, tc) can be seen that they
lie on an ellipse with the locations of platforms at t = 0
as the two foci (assuming that the stationary transmitter
lies right above the x′-axis), as given in Fig. 9a. Targets
A and B on the ellipse after RCMC have the relationship
as follow

Rtotal 0; rc; tcð Þ ¼ rTcB þ rOB ¼ rTcA þ rRcA: ð30Þ

where rOB is distance from coordinate origin O to the
target B, which implies the slant range of target B after
RCMC operations.
At the same time, due to different lengths of rRcA and

rRcB, the Doppler FM rates of targets A and B are differ-
ent as seen in Fig. 9c. Therefore, the key step is to build
the relationship between rRcB and rRcA for BiSAR case.
Based on the established geometry in Fig. 9a, an equa-
tion of the ellipse can be expressed as

x′ þ cð Þ2
a2

þ y′
2

a2−c2
¼ 1; ð31Þ

where a denotes semi-major axis of the ellipse and c
implies half of the bistatic baseline range LOC, and
given by

a ¼ rRcA þ rTcA
2

; c ¼ LOC
2

: ð32Þ

Combining (30) with (31), the relationship between
rRcB and rRcA can be resolved,

rRcB≈rRcA þ rRcA
A0

a 1−e2ð Þ tc ð33Þ

where e = c/a is the eccentricity of the ellipse. It is obvi-
ous that (29) is a special case of (33) when the eccentri-
city e is set to zero and a equals to rRcA, which means
that the ellipse model degrades to a circle model.
Notice that the derived result in [20] for BiSAR is

exactly the same as in (29) for monostatic SAR, which
means that the monostatic model is directly applied to
BiSAR case in [20]. This will result in severe azimuth
processing error, especially when focusing large-baseline
BiSAR data.

4.3 Azimuth equalization and compression operation
In this subsection, we derive an enhanced azimuth
NLCS to focus one-stationary BiSAR data based on the
result of the ellipse model established in Section 4.2.
According to (28) and (33), the Doppler FM rate of

target B can be expressed as

KaB ¼ −
v2 cos2 θRð Þ

λrRcB

¼ −
v2 cos2 θRð Þ

λ rRcA þ rRcA
A0

a 1−e2ð Þ tc

 � ð34Þ

Expanding (34) into a Taylor series of tc at tc = 0, we have

−5 −4 −3 −2 −1 0 1 2 3 4 5
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0.5

1
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Azimuth time (s)
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ra
d)

QPE in [20]
QPE in [21]
QPE in this paper
Threshold value pi/4

Fig. 11 QPEs with the methods in [20, 21] and this paper

Fig. 10 The flowchart of the proposed algorithm
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KaB≈
−v2 cos2 θRð Þ

λrRcA
þ A0v2 cos2 θRð Þ

λrRcAa 1−e2ð Þ ⋅tc
¼ KaA þ Kstc; ð35Þ

where KaA is the Doppler FM rate of the reference target
A, and Ks is the coefficient of azimuth-variant compo-
nent of the Doppler FM rate.
Inspecting (26), due to the minor impact of the high-

order term ϕ3 in high-squint BiSAR, it can be simply
compensated by multiplying its conjugate. Then, trans-
forming the signal of target B back to azimuth time
domain using PSP, we obtain

sB tm; tcð Þ ¼ exp jϕB tm; tcð Þf g; ð36Þ

where

ϕB tm; tcð Þ ¼ πKaB tm−tcð Þ2: ð37Þ
To equalize the Doppler FM rates of targets A and B,

a perturbation function of cubic form is defined by

hpert tmð Þ ¼ exp jπpt3m
� �

; ð38Þ
where the parameter p is the coefficient of the perturb-
ation function.
Setting tp = tm – tc and multiplying (38) with (36), the

phase term of the azimuth signal of target B is

ϕBpert tp
	 
 ¼ πpt3c þ 3πpt2c tp

þ 3πptc−
πv2 cos2 θRð Þ

λrRcA
þ πA0v2 cos2 θRð Þ

λrRcAa 1−e2ð Þ tc

� �
t2p þ πpt3p

ð39Þ
To find the coefficient p, the sum of the quadratic

terms of tp that involve the target azimuth position
parameter tc is set to zero, and then, we have

p ¼ −
A0v2 cos2 θRð Þ
3a 1−e2ð ÞλrRcA ¼ −

Ks

3
: ð40Þ

Then, substituting (40) into (39), the phase term of
azimuth signal of target B becomes

ϕBpert
0
tp
	 
 ¼ πv2 cos2 θRð Þ

3a −1þ e2ð ÞλrRcA A0t
3
c þ 3A0t

2
c tp þ 3a 1−e2

	 

t2p þ A0t

3
p

n o
:

ð41Þ
Ignoring the constant term of (41) and performing a

Fourier transform using PSP and then the azimuth
frequency is related to the azimuth time by

2πf a ¼ k1tp þ k2t
2
p; ð42Þ

where
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Fig. 13 Results by the traditional algorithm in [20] in case I. a Focused image of T2. b Focused image of T1. c Focused image of T0. d Azimuth
profile of T2. e Azimuth profile of T1. f Azimuth profile of T0
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Fig. 12 Entire focused images by the proposed algorithm in case I
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k1 ¼ 2πKaA; k2 ¼ −πKs ð43Þ
Using the method of series reversion (MSR) [22], we

can obtain

tp f að Þ ¼ K1f a þ K 2f
2
a; ð44Þ

where

K1 ¼ 1
k1

; K2 ¼ −
k2
k31

: ð45Þ

Substituting (44) into (42), we have

ϕ f að Þ≈S0 þ S1f a þ S2f
2
a þ S3f

3
a; ð46Þ

where

S0 ¼ −
πKst3c
3

; S1 ¼ −2πtc

S2 ¼ −
π

KaA
; S3 ¼ −

πKs

3K 3
aA

8>><
>>: ð47Þ

Thus, the azimuth compression filtering function can
be constructed as

HAC f að Þ ¼ exp −j S2f
2
a þ S3f

3
a

	 
� �
: ð48Þ

Figure 10 shows the flowchart of the proposed algo-
rithm in this paper.

4.4 QPE and scene size analysis
Inspecting (34), the first-order expansion is adopted to
approximate the Doppler FM rate, and this will cause an
inevitable error along azimuth direction which is called
the quadratic phase error (QPE). In this subsection, the
QPEs along azimuth direction based on the expressions
of Doppler FM rate in (34), [20, 21] are analyzed,
respectively.
The QPE caused by the first-order approximation of

the Doppler FM rate in (34) can be expressed as

QPE ¼ π KaB− KaA þ Kstcð Þj j Ta

2

� �2

; ð49Þ

which should not exceed the threshold value π/4 for
the validity of azimuth NLCS.

Table 2 Performance parameters in azimuth for case I

Performance parameters T2 T1 T0

Traditional algorithm in [20] PSLR(dB) 6.52 9.69 13.27

ISLR(dB) 5.32 6.62 9.99

Proposed algorithm in this paper PSLR(dB) 13.13 13.26 13.29

ISLR(dB) 9.95 9.98 9.99

Table 3 Stationary parameters of BiSAR for case II

Simulation parameters Transmitter Receiver

Velocity 50 m/s

Beam center slant range 6.88 km 3.12 km

Squint angle 30°

Altitude 0.5 km 1.0 km

Pulse repetition frequency 120 Hz

Carrier frequency 10.0 GHz

Range bandwidth 214.3 MHz

Synthetic aperture time 3.56 s

Bistatic bsaeline range 4 km
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Fig. 14 Results by the proposed algorithm in case I. a Focused image of T2. b Focused image of T1. c Focused image of T0. d Azimuth profile of
T2. e Azimuth profile of T1. f Azimuth profile of T0
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Based on simulation parameters in Table 1, Fig. 11
gives the QPEs along azimuth direction using (49) and
that of the methods in [20, 21], respectively. It is easy to
find that the QPE in (49) is kept under π/4 within the
entire azimuth scene, while the QPEs with the methods
in [20, 21] are both much larger than π/4 at the edge in
azimuth. This means that a much larger azimuth scene
can be processed by the enhanced azimuth NLCS pro-
posed in this paper than the methods in [20, 21].

5 Simulation results
To demonstrate the effectiveness of the enhanced azimuth
NLCS algorithm proposed by this paper, two experiments
with simulated data are carried out in this section. Both
the two simulations involve airborne configurations. The
first simulation is carried out with a typical airplane self-

navigation configuration, which processes a relatively large
imaging scene. The second one is operated with an
airplane self-landing configuration, which involves high
resolutions in both range and azimuth.
Case I: the imaging scene is set to be 2.0 km in range and

2.2 km in azimuth, and this simulation chooses an array of
5 × 5 point targets with an interval of 500.0 m in range and
550.0 m in azimuth. The theoretical range resolution is
2.0 m, and the azimuth resolution is 1.7 m. The simulation
parameters for this experiment are listed in Table 1.
The focused images processed by the enhanced NLCS

algorithm are shown in Fig. 12. From the results, it can be
seen that all the targets in the imaging scene are focused
well, where T0 is the scene center and T2 represents the
edge target in azimuth in the imaging scene. In order to
evaluate the focusing performance, the sub-contour im-
ages of these three targets, which are processed by the
method in [20], and the enhanced NLCS algorithm in this
paper, respectively, are shown in Figs. 13 and 14, and their
corresponding deskewed azimuth profiles give a more de-
tailed comparison of the focused results. With the method
in [20], the imaging quality deteriorates as the distance in-
creases in azimuth from target to scene center. This is due
to that the QPEs by the traditional NLCS of [20] become
large for the whole scene. With the enhanced NLCS
algorithm proposed by this paper, however, even the target
located at azimuth edge is focused well. In addition, the
performance parameters of the point targets of the two al-
gorithms are given in Table 2, which further verifies the
effectiveness of the algorithm proposed by this paper.
Case II: the theoretical resolutions in both range and

azimuth are 0.7 m. The imaging scene is set to be
800.0 m in range and 600.0 m in azimuth, and this simu-
lation uses an array of nine targets, which are laid out
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Fig. 16 Azimuth profiles of the three targets by different algorithms in case II. a P2, b P1, and c P0 by traditional algorithm in [20]. d P2, e P1, and
f P0 by the proposed algorithm in this paper
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on a rectangular grid with an interval of 200.0 m in
range and 150.0 m in azimuth. The simulation parame-
ters for this experiment are listed in Table 3.
Figure 15 shows the entire focused images processed by

the enhanced NLCS algorithm in this paper. Observing
the results, all the targets are focused well, where P0 is the
scene center and P2 represents the edge target in azimuth
in the imaging scene. In addition, the deskewed azimuth
profiles of targets P0, P1, and P2 processed by the method
in [20] and the enhanced NLCS algorithm in this paper
are displayed in Fig. 16, and their corresponding perform-
ance parameters are listed in Table 4. The results of this
simulation further verify the effectiveness of the algorithm
proposed by this paper.

6 Conclusions
This paper proposes an enhanced azimuth NLCS algorithm
based on an ellipse model to focus one-stationary BiSAR
data with high-squint, large-baseline configuration. In the
range processing, a method combining deramp operation
and KT is adopted to remove linear RCM completely and
mitigate range-azimuth cross-coupling. After that, an el-
lipse model is proposed to analyze the azimuth-variant
characteristic of Doppler phase of one-stationary BiSAR
data. Based on the new model, an enhanced azimuth NLCS
is derived to handle one-stationary BiSAR data. Compared
with the traditional algorithm, better imaging performance
can be achieved by the proposed algorithm in this paper.
Additionally, the ellipse model and the enhanced NLCS
algorithm proposed by this paper also show potential for
other bistatic cases like BiSAR with nonparallel tracks,
forward-looking BiSAR, and even general BiSAR.
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