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Abstract

Consider communicating a correlated Gaussian source over a Rayleigh fading channel with no knowledge of the
channel signal-to-noise ratio (CSNR) at the transmitter. In this case, a digital system cannot be optimal for a range of
CSNRs. Analog transmission however is optimal at all CSNRs, if the source and channel are memoryless and
bandwidth matched. This paper presents new hybrid digital-analog (HDA) systems for sources with memory and
channels with bandwidth expansion, which outperform both digital-only and analog-only systems over a wide range
of CSNRs. The digital part is either a predictive quantizer or a transform code, used to achieve a coding gain. Analog
part uses linear encoding to transmit the quantization error which improves the performance under CSNR variations.
The hybrid encoder is optimized to achieve the minimum AMMSE (average minimummean square error) over the
CSNR distribution. To this end, analytical expressions are derived for the AMMSE of asymptotically optimal systems. It
is shown that the outage CSNR of the channel code and the analog-digital power allocation must be jointly optimized
to achieve the minimum AMMSE. In the case of HDA predictive quantization, a simple algorithm is presented to solve
the optimization problem. Experimental results are presented for both Gauss-Markov sources and speech signals.
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1 Introduction
In digital communication over a fading channel, the best
performance is achieved when both the transmitter and
the receiver are adapted to the channel state. If the
channel-state information (CSI) is available, the trans-
mitter can adapt coding and modulation to maintain the
optimal performance at all times. However, there are com-
mon situations in which the transmitter adaptation is not
an option. One obvious example is broadcasting where a
single transmitter sends information to multiple receivers.
Since the channels to different receivers may not be the
same, it is not possible to adapt the transmitter to a spe-
cific channel state. Another example is when there is
no possibility of CSI feedback from a mobile receiver to
the transmitter. In either case, the receiver suffers from
the “cliff effect” [1]—when channel signal-to-noise ratio
(CSNR) decreases, at some point, a less than 1 dB drop
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in CSNR can take the decoder from perfect operation to
complete failure (threshold effect), and when the CSNR
increases from this point, the decoder output quality
remains fixed regardless of the CSNR (see for example [2]
(Fig. 5)). One solution to this problem is multi-resolution
coding and modulation [1, 3, 4]. This scheme does not
entirely eliminate the cliff effect but improves it to a
stair-case effect. For analog sources, a better alternative is
hybrid digital-analog (HDA) coding [1, 5, 6] which is the
focus of this paper.
It is known that uncoded or analog transmission

achieves the optimal performance theoretically attain-
able (OPTA) in MMSE sense when both the source and
the channel are Gaussian and memoryless and have the
same bandwidths [7]. Clearly, uncoded transmission can-
not be optimal for sources with memory and when the
source and channel bandwidths are not matched. For
sources with memory, widely used digital source-coding
techniques such as predictive quantization (PQ) trans-
form coding (TC) [8] exploit source memory to achieve
a coding gain and will outperform uncoded transmission
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if both the transmitter and the receiver have CSI. How-
ever, systems based on these techniques still suffer from
the aforementioned cliff effect when the transmitter has
no CSI. On the other hand, implementing good analog
codes for sources with memory is difficult. A promising
approach to benefit from both the robustness of analog
transmission against CSNR variations and the source-
coding gain due to source correlation is HDA coding.
Fundamentally, HDA transmission involves the simulta-
neous transmission of a source in both digital and ana-
log forms. Most previous work on HDA coding have
used a form of layered transmission in which the base
layer is digitally coded, and the quantization error of
the base layer is transmitted as a refinement layer, using
analog pulse amplitude (PAM) modulation [2, 9–12].
While a considerable amount of research has focused
on HDA transmission of memoryless sources, much less
work has been devoted to developing good HDA codes
for sources with memory. In particular, when the source
has memory, the optimal HDA coding involves a very
different design trade-off compared to coding a memo-
ryless source. The main goal of this paper is to design
HDA systems which can simultaneously benefit from high
coding gain of PQ or TC and the CSNR-independent opti-
mality of a parallel analog transmission. PQ is the stan-
dard technique for moderate to high bit-rate (16–40 kbs)
speech coding [13] while TC is a staple in image and
video compression.
We consider the transmission of a correlated Gaus-

sian source over a block-fading Gaussian channel whose
bandwidth is greater than or equal to the source band-
width (channel memory is however not considered). In
the proposed approach, the source is digitally transmit-
ted using either PQ or TC. The quantization error of
the digital encoder is transmitted by linear analog coding
over the same channel bandwidth as the digital transmis-
sion, by using superposition and power sharing. Given
that the transmitter cannot be adapted to the instan-
taneous CSNR at the receiver, we determine the best
analog-digital power allocation by minimizing the aver-
age MMSE (AMMSE) with respect to the receiver-CSNR
distribution. A closer look at this problem reveals an inter-
esting trade-off between digital and analog transmissions
when the source has memory. On the one hand, allo-
cating more power to the digital transmission allows a
higher quantization rate and hence a higher predictive
or transform coding gain. On the other hand, allocating
more power to the analog transmission makes it possi-
ble to achieve a greater reduction in distortion as the
CSNR increases. The not so obvious variable here that also
affects this trade-off is the outage CSNR which is the low-
est CSNR at which a receiver can decode the digital signal.
For the same power allocation, a higher quantization
rate can be chosen at the expense of increased outage

CSNR. Therefore, there exists a non-trivial trade-off
between the power allocation, quantization rate, and the
outage CSNR.
We also address the problem of determining the power

allocation and the outage CSNR (or equivalently the quan-
tization rate) inHDA-PQ andHDA-TC systems to achieve
optimal (in AMMSE sense) trade-off. To this end, we
obtain analytical expressions for the AMMSE of HDA-PQ
and HDA-TC systems by relying on the high-rate model
of entropy constrained scalar quantizers [14]. Our solu-
tions are therefore asymptotically (in rate) optimal. In
general, finding a closed-form solution for the optimal
power allocation and outage CSNR appears intractable.
However, in the case of HDA-PQ, we identify a simple
co-ordinate descent algorithm [15] to determine the opti-
mal solution. This algorithm converges rapidly, typically
in 2–3 iterations. We demonstrate that it is quite possi-
ble to implement good practical finite-rate HDA-PQ and
HDA-TC systems using the asymptotically optimal solu-
tions. Experimental results obtained with Gauss-Markov
processes as well as speech signals modeled as a Gaussian
auto-regressive (AR) process show that both the system
AMMSE and the MMSE of a receiver operating at a given
CSNR of practical designs closely match those given by
the asymptotic expressions, when the quantization rate is
higher than about 1 bit/sample. Our results show that, for
highly correlated sources, the HDA systems can substan-
tially outperform both purely digital and purely analog
transmission over a wide range of receiver CSNRs.

1.1 Main contribution and related previous work
Compared to previous work on HDA coding of Gaussian
sources with memory, the main contribution of this paper
is the joint optimization of power allocation and quantiza-
tion rate of HDA systems based on PQ or TC, with respect
to the AMMSE criterion. This optimization problem does
not arise when the source is memoryless. We also pro-
vide a lower bound to the AMMSE achievable for source
with memory, which can be numerically computed for a
Gauss-Markov source.
Previously, HDA coding of correlated sources have

appeared in [2, 9–12, 16–18]. With the exception of [18],
none of these work uses the AMMSE as a criterion for
power allocation. While [18] uses the AMMSE, their
problem is analog-only transmission of unquantized video
DCT coefficients over a fast fading channel. The objec-
tive of the power allocation in that case is to benefit from
channel-diversity. Therefore, power is allocated among
consecutive analog transmissions. As a result, their for-
mulation leads to a mixed discrete and continuous opti-
mization problem which has been solved by a heuristic
approach unrelated to ours. The other work cited above
does not consider the joint optimization of the power allo-
cation and the quantization rate. Phamdo and Mittal [2]
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present an implementation of an HDA system for low-
bit-rate speech transmission based on the standard FS
1016 CELP codec, by using two independent channels
with identical CSNRs for digital and analog transmissions
(hence identical power allocations). Yu et al. [9] present
similar HDA scheme for video transmission based on
H.264/AVC codec but use channel superposition of ana-
log and digital components the power allocation between
which is determined by assuming a worst-case CSNR.
In [10–12], channel optimized vector quantizers (COVQ)
are used as the digital encoder whose quantization error is
transmitted in analog form. However, no method for opti-
mizing the power allocation is given. An HDA transform
coding scheme is considered in [16], where the analog and
digital components are transmitted by time-division mul-
tiplexing using equal powers. To the authors’ knowledge,
HDA schemes based on linear predictive quantization
have not been reported so far.
The rest of this paper is organized as follows. Section 2

describes the HDA system considered in this paper and
derives an expression for the decoder MSE. Section 3
finds expressions for the MMSE of asymptotically optimal
HDA-PQ and HDA-TC over a Rayleigh fading channel.

Section 4 considers the main optimization problem and
presents a simple algorithm for solving the problem in the
case of HDA-PQ. Section 5 presents some performance
bounds for HDA-PQ and HDA-TC systems. Section 6
presents numerical and experimental results, and con-
cluding remarks are given in Section 7.

2 HDA transmission of correlated Gaussian
sources over fading channels

A block diagram of the HDA transmission system consid-
ered in this paper is shown in Fig. 1. Let the source {xn}
be a discrete-time Gaussian process obtained by Nyquist
sampling of a correlated analog signal with bandwidthWs.
Let E{xn} = 0, E{x2n} = σ 2

X , and the correlation coeffi-
cients rX(i) = E{xnxn−i}/σ 2

X , i = 1, 2, . . .. This source is to
be transmitted over a Rayleigh fading channel with band-
width Wc using an average power of PT . It is assumed
that the channel has slow fading so that the channel gain
does not significantly change during a single codeword.
We are concerned with systems which allow bandwidth
expansion. That is, Wc ≥ Ws, and each source sample
is transmitted in b = Wc

Ws
channel uses, where b is the

bandwidth expansion factor.

Fig. 1 The baseband equivalent of the HDA system considered in this paper



Yahampath EURASIP Journal on Advances in Signal Processing  (2017) 2017:37 Page 4 of 16

In our HDA system, the source {xn} is quantized by
using either a PQ or a TC (���q in Fig. 1) to exploit the
memory. The resulting bitstream is entropy coded (���e)
and transmitted after channel coding and modulation
(���c). In addition, analog quantization error εn = xn − x̂n
(x̂n is the quantized value of xn) is also transmitted over
the same channel bandwidth as the digital modulator out-
put by using superposition. This is achieved as follows.
Since the sequence {εn} has a bandwidth of Ws, band-
width expansion by a factor of b is first applied to {εn}.
The expanded sequence of samples are then converted
to a channel signal by using pulse amplitude modulation
(PAM) which is superimposed on the digital modula-
tor output for transmission. Bandwidth expansion can be
achieved by using an L × M linear transform matrix FFF
such that L

M = b, which maps a vector of M consec-
utive quantization error samples εεε to an L-dimensional
channel sample vector. In this paper, the frame operator
of a uniform tight frame (UTF) [19] is used as FFF . For a
UTF, one has FFFTFFF = bIIIM, where IIIM denotes the M × M
identity matrix. A simple class of UTFs is the harmonic
frames; see [19] for details. The PAM channel input vec-
tor (in discrete-time baseband equivalent form) vvv = αFεFεFε

is superimposed on the L-dimensional digitallymodulated
vector uuu which is the result of applying entropy coding,
channel coding, and modulation to M quantizer outputs
whose errors are in εεε. The amplification factor 0 ≤ α ≤ 1
controls the power output of the analog modulator. Given
a total average transmitter power ofPT , letPa = ρPT and
Pd = (1 − ρ)PT be the fractions of total power allocated
to analog and digital transmissions, respectively, where
0 ≤ ρ < 1,

Pd = 1
L
E{‖uuu‖2}, (1)

Pa = 1
L
E{‖vvv‖2} = α2σ 2

ε , (2)

and σ 2
ε = E{ε2n} is the quantization error variance. There-

fore, the amplification factor α =
√

ρPT
σ 2

ε
.

The channel input is the sum yyy = uuu + vvv (see Fig. 1).
For simplicity, we will assume that the baseband equiva-
lent of the channel input and output are real valued, but
they could equally well be complex valued. The channel
output is given by

yyy′ = guuu + gvvv +www, (3)

wherewww is the L-dimensional Gaussian channel noise vec-
tor with the covariance matrix CCCw = σ 2

c IIIL and g is the
channel gain which is assumed to remain constant for
the duration of an L-dimensional channel symbol yyy. Let
the CSNR at the receiver input be θ = γPT

σ 2
c

, where
γ = g2 is the channel power gain. It is assumed that
θ is known to the decoder (but not to the transmitter).

The total noise component at the input to the digital
channel decoder ���−1

c consists of Gaussian channel noise
www and the interference gvvv from the analog transmission
which in general will not be Gaussian1. The distribution
of the combined noise zzz = gvvv + www is difficult to find.
However, for a given noise variance, the capacity of a
channel is the lowest when zzz is an iid Gaussian vector
([20], Theorem 7.4.3). This capacity lower bound can be
found by evaluating the capacity of an AWGN channel at
the CSNR (1 − ρ)γPT/(σ 2

c + ργPT ), which is given by
Cmin(ρ, θ) = 1

2 log2
(
1 + (1−ρ)θ

1+ρθ

)
bits/channel use [21].

We assume that, for a given ρ, the maximum allowable
transmission rate at a given θ is Cmin(ρ, θ). Suppose the
channel code used for digital transmission is designed for
some channel state θo ≤ θ . It follows that the maxi-
mum allowable bit-rate (in bits/sample) of the quantizer is
given by

R(ρ, θ0) = b
2
log2

(
1 + θo
1 + ρθo

)
. (4)

Therefore, the quantization error variance is a function
both ρ and θo, which we denote by σ 2

ε (ρ, θo).
For estimating the analog quantization error at the

receiver, the digital signal is first canceled out from the
channel output by using a locally generated digital channel
signal. The quantization error is then linearly estimated
from the residual vvv′ = gαFFFεεε +www as

εεε′ = GGGvvv′, (5)

whereGGG is aM× Lmatrix. Finally, the source samples are
reconstructed as x̂′

n = x̂n + ε′
n. From [22] (Theorem 11.1),

it follows that the optimal estimator which minimizes
E‖εεε − εεε′‖2 is given by

GGG∗ = gαCCCεFFFT
(
g2α2FFFCCCεFFFT +CCCw

)−1
, (6)

whereCCCε is the covariance matrix of εεε. Assuming that the
quantization error vector εεε is uncorrelated, we haveCCCε =
σ 2

ε IIIM, and hence,

GGG∗ = 1
gα

FFFT
(
FFFFFFT + 1

ρθ
IIIL

)−1
. (7)

The covariance matrix of the corresponding estimation
error is given by ([22], Eq. 11.35)

CCCerr =
(

1
σ 2

ε

IIIM + g2α2

σ 2
c

FFFTFFF
)−1

. (8)
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The minimum possible end-to-end source reconstruc-
tion MSE at CSNR θ for given ρ and θo is

D(ρ, θo, θ) = 1
M

trace {CCCerr}
= σε2

1 + bg2α2σ 2
ε

σ 2
c

= σ 2
ε (ρ, θo)
1 + bρθ

, θ ≥ θ0. (9)

Notice that the numerator is independent of the receiver
CSNR θ . The denominator is the factor by which the over-
all distortion at the receiver is reduced due to the analog
transmission of the quantization error. Unlike a purely
digital system whose MSE will depend only on θo inde-
pendent of the instantaneous CSNR θ , an HDA system
will have D(ρ, θo, θ) → 0 as θ → ∞. In the following,
we first derive expressions for σ 2

ε (ρ, θo) of asymptotically
optimal PQ and TC. We then consider determining opti-
mal ρ and θo for a Rayleigh fading channel whichminimize
the AMMSE.

3 Asymptotically optimal quantization in HDA
systems

3.1 HDA-PQ
A detailed description of predictive quantization (PQ) can
be found in [8]. In summary, a PQ quantizes the predic-
tion error en = xn − x̃n rather than the input sample xn,
where x̃n = ∑K

i=1 aix̂n−i is the predicted value of xn using
a K-th order linear predictor with coefficients a1, . . . , aK .
As usual, the prediction is carried out using the quantized
values of the past inputs. Let the quantized value of en be
ên and the quantization error be εn = en − ên. The quan-
tized value of xn is given by x̂n = x̃n + ên, and the overall
quantization error is xn − x̂n = εn. The optimal quantizer
and the predictor can be found by minimizing the MSE
σ 2

ε = E
{
ε2n

}
. Owing to its non-linear feedback structure,

the exact analysis of a PQ is a well-known difficult prob-
lem [23, 24]. However, an analytical expression to which
theMSE of the optimal PQ converges as the quantizer rate
R grows can be found noting the fact that, as R → ∞
(that is, as the size of the maximum quantization interval
approaches zero), the closed-loop prediction error for a
Gaussian source is also Gaussian and therefore the quan-
tizer MSE approaches the Gish-Pierce asymptotic [14]. In
this case, the quantization error variance is given by

σ 2
ε = hσ 2

e 2−2R, (10)

where R is the rate and h =
√
3π
2 for fixed-rate scalar quan-

tization and h = πe
6 for entropy constrained scalar quan-

tization [8] (in the latter case, R = H(q) is the entropy of
the quantizer output qn).
At high rate, the optimal closed-loop predictor

approaches the optimal (open-loop) predictor for the

source. It can be shown that the error of the optimal infi-
nite memory linear predictor is an uncorrelated process
(error whitening property) [8]. We assume that K is cho-
sen large enough so that the optimal K-th order predictor
is close to the infinite memory predictor. In this case, the
closed-loop prediction error variance σ 2

e = E
{
e2n

}
can be

given by

σ 2
e = A2σ 2

ε + σ 2
o , (11)

where σ 2
o is the prediction error variance of the optimal

predictor and A2 = ∑K
i=1 a2i is the energy of the predic-

tor impulse response. The coefficients of the optimal K-th
order predictor for {xn} are given by a = R−1

X rX , where
a = (a1, . . . , aK )T , (i, j) element of the K × K Toeplitz
matrix RX is rX(|i − j|), and rX = [rX(1), . . . , rX(K)]T [8].
The variance of the optimal prediction error is given by
σ 2
o = σ 2

X

(
1 − rTXR

−1
X rX

)
. Now, from (10) and (11), it

follows that the MSE of the optimal PQ as R → ∞ is
given by

σ 2
ε = hσ 2

o 2−2R

1 − c02−2R , (12)

where for convenience, we define the constant c0 � hA2.
We refer to a PQ which satisfies (12) as an asymptoti-
cally optimal PQ. The related work on high-rate analysis
of predictive quantizers can be found in [23–25].
The maximum allowable quantization rate of the HDA

system is given by (4). Relying on the asymptotic expres-
sion (12), the minimum possible quantization error
variance for given ρ and θo is therefore given by

σ 2
ε (ρ, θo) = hσ 2

o
φ(ρ, θo)b − c0

, (13)

where φ(ρ, θo) =
(

1+θo
1+ρθo

)
> c1/bo . Clearly, φ is monotonic

increasing with θo and monotonic decreasing with ρ. In
order for the high-rate expression (13) to be accurate, we
need that σ 2

ε /σ 2
o 
 1, and therefore,

φ(ρ, θo) � [
h

(
1 + A2)]1/b . (14)

In other words, sufficient channel bandwidth must be
available to support a high enough quantization rate.With
b and θo fixed, increasing ρ reduces the allowable quanti-
zation rate. Hence, the high-rate model (13) is valid only
for “small” ρ. However, as will be seen in Section 6, HDA-
PQ provides a useful coding gain only in this regime
(typically ρ < 30%) anyway, as higher ρ results in low
quantization rates at which predictive coding does not
yield a considerable gain over pure analog transmission.
Before proceeding, it is worth noting that when predic-

tion is good, the prediction error resembles a white Gaus-
sian process [8]. For the transmission of the latter, analog
transmission will be nearly optimal (exactly optimal if the
source and channel are bandwidth matched). However,
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transmitting the open-loop prediction error itself in ana-
log form is not possible in predictive quantization as it
would result in channel error propagation in a closed-loop
decoder.

3.2 HDA-TC
A detailed description of transform coding (TC) can be
found in [8]. For stationary Gaussian sources, it is known
that both PQ and TC can asymptotically (in rate) achieve
the same MMSE, provided that PQ uses infinite memory
linear prediction and TC uses a Karhunen-Loeve trans-
form (KLT) of infinite dimension [8]. However, at low bit-
rates, the performance of PQ for Gaussian sources drops
below that of TC, due to the degradation of closed-loop
predictions based on quantized samples.
Consider an HDA-TC system which transforms a Gaus-

sian input vector XXX ∈ R
M using a M × M orthonormal

transform TTT . Suppose that the transform coefficients SSS =
TXTXTX are quantized by ECQs with a bit allocation rrr =
(r1, . . . , rM)T , where R = 1

M
∑M

i=1 ri is the bit-rate in
bits/sample. If we assume asymptotically optimal ECQ,
then the quantization error variance of the i-th trans-
form coefficient si is πe

6 σ 2
si2

−2ri where σ 2
si is the variance

of the transform coefficient si. Note that SSS is an uncor-
related Gaussian vector whose covariance matrix is given
by TTTTCCCXTTT where CCCX is the covariance matrix of XXX. Let
the reconstructed value of Xi from the quantized value
of SSS be X̂i and the quantization error be εi = Xi − X̂i.
Since TTT is an orthonormal transform, the error variance
E(Xi − X̂i)2 = σ 2

ε is the same for all i = 1, . . . ,M. In
the HDA-TC system, the quantized values of SSS are trans-
mitted digitally and the analog quantization error vector
εεε = XXX − X̂XX is transmitted over the same bandwidth by
using linear bandwidth expansion, as in the case of HDA-
PQ. Now for given ρ and θo, the maximum allowable rate
can be found by (4) for which the optimal bit allocation r∗i ,
i = 1, . . . ,M can be found by minimizing

σ 2
ε (ρ, θo) = πe

6M

M∑
i=1

σ 2
si2

−2ri , (15)

subject to
∑

ri = R(ρ, θo) and ri > 0. The Lagrangian for-
mulation of this problem leads to the well known reverse
water-filling solution [21]. Without a loss of generality,
assume that σ 2

s1 ≥ σ 2
s2 . . . ≥ σ 2

sM . Let Gm = (∏m
i=1 σ 2

si
)1/m

be the geometric mean of them largest variances. Suppose
we find m ≤ M such that σ 2

si ≥ hGm2−2R/m for i ≤ m
and σ 2

si < hGm2−2R/m otherwise, where h = πe
6 . Then the

optimal bit allocation is given by [8]

ri =
⎧
⎨
⎩

1
MR(ρ, θo) + 1

2 log2
(

σ 2
si

Gm

)
i = 1, . . . ,m

0 i = m + 1, . . . ,M.
(16)

The total MSE of the optimal bit allocation is given by

σ 2
ε (ρ, θo) = hGm2−2R(ρ,θo), (17)

where the integer m ≤ M and hence Gm is a function of
ρ and θo. While this solution is simple to determine for
any given (ρ, θo), unlike (13), it does not seem to have a
closed-form expression in terms of ρ and θo.

4 Robust HDA systems for fading channels
Consider the MSE D(ρ, θo, θ) in (9), where θ is a random
variable (but assumed to remains constant at least for the
duration of a single channel codeword), where σ 2

ε (ρ, θo)
is given by either (13) or (17). This is the MMSE of an
asymptotically optimal HDA-PQ or HDA-TC for a par-
ticular (ρ, θo). The choice of ρ and θo determines how
the MMSE varies with the CSNR θ . If θ is known to the
transmitter, ρ = 0 (purely digital) will achieve the lowest
MMSE for any θ , since in this case ,D(0, θo, θ) = σ 2

ε (0, θo)
can be minimized by choosing θo = θ . In this case, both
PQ and TC achieve the maximum possible coding gain.
If however the receiver CSNR θ is not available to the
transmitter, a purely digital system must be designed for
some θo which will be different to θ , resulting in a sys-
tem that is not robust against CSNR variations. On the
one hand, the receiver MSE of such a system remains
constant even when θ > θo despite the increase in the
available channel capacity. On the other hand, the channel
code and hence the system fail when θ < θo, i.e., sys-
tem goes into outage. We refer to θo as the outage CSNR
of the digital decoder. When the transmitter cannot be
adapted to varying θ , allocating power to the analog trans-
mission (ρ > 0) while keeping θo fixed will increase the
quantizationMSE σ 2

ε (ρ, θo) but will make the overall MSE
D(ρ, θo, θ) to decrease with θ . For fixed ρ, increasing θo
reduces σ 2

ε (ρ, θo) but will increase the outage probability
and hence the AMMSE. In order to obtain a robust sys-
tem which is optimal in some sense over a range of θ , we
design the transmitter for ρ and θo which minimizes the
AMMSE E{D(ρ, θo, θ)} with respect to the distribution of
θ . Such a design is ideal for a system with a single receiver
which experiences slow fading or a broadcast environ-
ment with a large number of receivers whose empirical
CSNR converges to the fading distribution [26].
The AMMSE of HDA-PQ or HDA-TC is given by

D̄(ρ, θo) =
{
E{D(ρ, θo, θ)|θ ≥ θo}(1 − Po) + σ 2

XPo ρ < 1
E{Da(θ)} ρ = 1

(18)

where Da(θ) = σ 2
X

1+bθ is the MMSE of the optimal analog
system and Po = Pr(θ < θo) is the outage probability, and
we assume that in the event of an outage, the decoder out-
put is set to x̂′

n = E{xn}. It is assumed that the distribution
of θ is a priori known to the system designer. Our main



Yahampath EURASIP Journal on Advances in Signal Processing  (2017) 2017:37 Page 7 of 16

focus is the Rayleigh fading channel in which the CSNR θ

is exponentially distributed [27]. The pdf of θ is given by

p(θ) = 1
θ̄
exp

(
−θ

θ̄

)
, (19)

where θ̄ = E{θ} is the mean CSNR. For the case of
Rayleigh fading, from (9), (18), and (19), it follows that

D̄(ρ, θo) = σ 2
ε (ρ, θo)

∫ ∞

θ0

exp
(
− θ

θ̄

)

θ̄ (1 + bθρ)
dθ + σ 2

XPo (20)

= σ 2
ε (ρ, θo)

exp
(

1
bρθ̄

)

bρθ̄
E1

(
1 + bρθo

bρθ̄

)
+ σ 2

XPo,

(21)

where Po =
(
1 − exp

(
− θo

θ̄

))
and E1(x) = ∫ −∞

x
exp(−t)

t dt
is the exponential integral [28]. E1(x) is available as
a standard function in most numerical software [e.g.,
expint(x) in Matlab]. The AMMSE depends on the
choice of the power allocation ρ and the outage probabil-
ity, or equivalently θo. We define the optimal robust HDA
system as the one which achieves the minimum AMMSE.
The optimal values of ρ and θo can be found by solving the
problem

(
ρ∗, θ∗

o
) = argmin

ρ,θo
D̄(ρ, θo) (22)

subject to 0 ≤ ρ < 1
θ0 > 0.

For fixed θo, D̄(ρ, θo) is convex in ρ ∈ (0, 1). This can
be deduced from (20): σ 2

ε (ρ, θo) monotonically increases
with ρ while the term inside the integral monotonically
decreases. This represents the trade-off between the cod-
ing gain of PQ or TC due to source memory and the
robustness against CSNR variations. There must be a

value for ρ ∈ (0, 1), which minimizes the AMMSE. Now
if ρ is fixed, D̄(ρ, θo) is quasi-convex in θ > 0. This is
because, as θo is increased (Po increases), the first term
of the sum in (18) E{D(ρ, θo, θ)|θ ≥ θo} decreases while
the second term σ 2

XPo increases. A minimum for D̄(ρ, θo)
occurs for some θo < ∞. The quasi-convexity follows
from the fact that, as θo → ∞, the system will be always
in outage and hence D̄(ρ, θo) → σ 2

X . Figure 2 shows the
AMMSEs of HDA-PQ andHDA-TC as a function of ρ and
θo for the Gauss-Markov process, which we will refer to as
the GM(a) source,

Xn = aXn−1 + Wn. (23)

Figure 2 illustrates the convexity with respect to ρ and
quasi-convexity with respect to θo. Below we present an
efficient method to determine the optimal solution for
(ρ, θo) in the case of HDA-PQ. Due to the lack of a closed-
form expression for the AMMSE, such a simple procedure
cannot be devised for HDA-TQ.

4.1 Optimal HDA-PQ
In general, it is difficult to find a closed-form solution
to the constrained non-linear minimization problem in
(22). In the following, we present a simple coordinate-
descent (CD)method [15] to solve this problem. In the CD
method, D̄(ρ, θo) is minimized alternately with respect to
ρ (for fixed θo) and θo (for fixed ρo), until the solution
converges. Unlike the joint minimization problem in (22),
these two sub-problems are much easier to solve. Since
the solution to each problem is conditionally optimal, the
CD algorithm is guaranteed to converge to the minimum
of D̄. In actual numerical examples, it was found that this
method only required 2–3 iterations to converge. In the

Fig. 2 AMMSE of HDA-PQ (left) and HDA-TC (right) for a Gauss-Markov source with a = 0.9, as a function of the analog power allocation ρ and the
outage CSNR θo . Mean CSNR of the channel is 15 dB, and the bandwidth expansion factor is b = 4. HDA-PQ prediction order is 1, and HDA-TQ
transform block size is 8
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following, we present the solutions to two sub-problems
solved in each CD iteration.
Before proceeding, it should be noted that in the case

of HDA-PQ, an additional constraint is required to ensure
that (14) is not violated. This can be stated as

f1(ρ, θo) < 0, (24)

where f1(ρ, θo) � c1 − φ(ρ, θo) with c1 = ν[ h(1 + A2)]1/b
and ν > 1 is a sufficiently large constant chosen to
ensure that (14) is not violated at low quantization rates.
In our experiments, we have used ν = 2. If the con-
straint (24) becomes active, the solution is not guaranteed
to be optimal. However, note that, as the quantization rate
decreases, the HDA-PQ performance approaches that of
analog-only transmission. Therefore, when HDA-PQ out-
performs purely analog transmission, (24) is unlikely to be
active. For example, with both Gauss-Markov sources and
speech signals, numerical results presented in Section 6
show that when ρ exceeds about 30%, the difference
between HDA-PQ and analog systems becomes negligi-
ble. It is in this range of ρ that (24) becomes active.

4.1.1 Optimal power allocation for fixed outage CSNR
For a fixed θo, optimal power allocation can be found by
solving

ρ∗ = argmin
ρ

D̄(ρ, θo) (25)

subject to 0 ≤ ρ < ρmax,

where ρmax ∈ (0, 1]. In this case, (24) simplifies to

ρmax < ρ1 �
(1 + θo)c−1

1 − 1
θo

. (26)

and therefore

ρ∗ = min{ρ′, ρ1, 1}, (27)

where ρ′ is the solution to f2(ρ) � ∂D̄/∂ρ = 0. Using
(9) and (13), it can be readily shown that f2(ρ) = 0 is
equivalent to

[
bθo
hσ 2

o

σ 2
ε (ρ, θo)φb(ρ, θo)

1 + ρθo
− (1 + bρθ̄)

bρ2θ̄

]
E1

(
1 + bρθo

bρθ̄

)

+
exp

(
− 1+bρθo

bρθ̄

)

ρ (1 + bρθo)
= 0,

which can be solved in the interval 0 ≤ ρ < ρmax using a
single-variable root-finding method.

4.1.2 Optimumoutage CSNR for fixed power allocation
For fixed ρ, the optimal outage CSNR can be found by
solving

θ∗
o = argmin

θo
D̄(ρ, θo) (28)

subject to θ ≥ θo,min,

where, from (24)

θo,min ≥ θo1 � max
{
0,

c1 − 1
1 − ρc1

}
. (29)

Using (9) and (13), it can be verified that ∂D̄/∂θo = 0 is
equivalent to

σ 2
X
θ̄

− σ 2
ε (ρ, θo)

[
σ 2

ε (ρ, θo)
(1 − ρ)

hσ 2
o

(1 + θo)b−1

(1 + ρθo)b+1

exp
(

(1+bρθo)
bρθ̄

)

ρθ̄
E1

(
1 + bρθo

bρθ̄

)
+ 1

θ̄ (1 + bρθo)

⎤
⎦=0 (30)

for 0 < ρ < 1 and

σ 2
X − σ 2

ε (0, θo)
(
1 + bθ̄

)

1 + θo
= 0 (31)

for ρ = 0. Given ρ, optimal θo can be found by locating
the root of (30) or (31) in the interval θo ∈ [θo,min, θo,max),
where θo,max is a suitable value chosen to truncate the pdf
p(θ).

5 Comparisons and performance limits
5.1 Analog transmission with block decoding
Consider using only the analog part of the HDA system to
transmit the Gaussian AR source. To be useful, any HDA
systemmust perform better than this analog system. Since
the sequence of analog channel samples being transmitted
is now correlated, the optimal (MMSE) decoder is given
by x̂n = E{xn|YYYo, θ} where YYYo is the observed sequence
of channel outputs and θ is the receiver CSNR. As {xn} is
a Gaussian sequence, the optimal decoder is linear. In a
system with bandwidth expansion b = L

M , a vector of M
samples XXX from the source is mapped to L analog chan-
nel symbols YYY = αFFFXXX where FFF is a UTF and α is chosen
such that the variance of the channel symbols is σ 2

Y = PT .
Let CCCX be the covariance matrix of XXX. The covariance
matrix of YYY is CCCY = α2FFFCCCXFFFT . Therefore, it follows that
σ 2
Y = 1

L trace{FFFTFFFCCCX} = α2σ 2
X . Let the corresponding L-

dimensional channel output vector be YYY ′. With a linear
decoder, the decoded source vector is given byXXX′ = GGGaYYY ′,
whereGGGa is aM×Lmatrix. Following along the same lines
as for (6), we find that the optimal linear decoder is

GGG∗
a = 1

gα
CCCXFFFT

(
FFFCCCXFFFT + σ 2

X
θ
IIIL

)−1

, (32)

whose MSE is

Danalog(θ) = 1
M

trace

⎧
⎨
⎩

(
CCC−1
X + θ

σ 2
X
FFFTFFF

)−1
⎫
⎬
⎭ . (33)

We can write CCC−1
X = UUU


UUUT , where UUU is the M × M

matrix whose columns are unit-norm eigenvectors ofCCC−1
X
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and 


 the M × M diagonal matrix whose diagonal ele-
ments are 1

λ1
, . . . , 1

λM
where λi, i = 1, . . . ,M are the

eigenvalues ofCCCX . It can be verified that

Danalog(θ) = σ 2
X
M

M∑
i=1

λ̃i

1 + λ̃ibθ
, (34)

where λ̃i = λi/σ
2
X . For a Rayleigh fading channel with

the average CSNR θ̄ , the AMMSE of the analog system is
given by

D̄analog = σ 2
X
M

M∑
i=1

λ̃i
exp

(
1

λ̃ibθ̄

)

λ̃ibθ̄
E1

(
1

λ̃ibθ̄

)
. (35)

This analog system achieves no coding gain from source
correlation, but it does achieve a gain at the receiver due
to linear block decoding. Therefore, (35) is not necessarily
worse than (21), though it will be so when source cor-
relation is high. However, since sample-by-sample analog
encoding and decoding is a special case of HDA coding,
(35) is an upper bound to (21) when the source correlation
is ignored in (32), that is when λ̃i = 1 in (35).

5.2 HDA vector quantization (HDA-VQ) lower bound
HDA systems considered in this paper can asymptotically
achieve performance (AMMSE) that cannot be achieved
with either purely analog transmission or purely digital
transmission. On an absolute scale, the upper bound to
HDA system performance is the optimum performance
theoretically attainable (OPTA) when CSI is only available
at the receiver. Unfortunately, this bound cannot be deter-
mined in any reasonable way, even for a Gaussian source.
One obvious upper bound that is easily computed for a
Gaussian source is the OPTA when the CSI is available at
both transmitter and receiver. This can be found by evalu-
ating the distortion-rate function of the Gaussian process
[29] at the rate equal to the capacity of an AWGN chan-
nel with the given channel power gain. Amoremeaningful
upper bound for the case when CSI is only available to
the receiver can be obtained by replacing the PQ or TC
in the HDA coding setup by an optimal (rate-distortion
achieving) VQ for the source. The HDA-VQ of a memo-
ryless Gaussian source over a non-fading AWGN channel
has previously been studied in [11, 12]. Below, we derive
an expression for the AMMSE of HDA-VQ for theGM(a)
source and Rayleigh-fading AWGN channel.
Let the distortion-rate function of GM(a1) be DG(R).

The latter function is known in closed-form for rates R ≥
1
2 log2(1 + a1)2σ 2

X and in parametric form otherwise [29].
Suppose we use an optimal VQ as ���q in the HDA sys-
tem in Fig. 1. The maximum possible rate achievable at an

outage CSNR of θo is given by (4). From (9), it follows that
the MMSE of the HDA-VQ system at a CSNR of θ is

DHDA−VQ(ρ, θo, θ) = δG(ρ, θo)
1 + bρθ

, (36)

where δG(ρ, θo) is DG(R) expressed as function of ρ and
θo. The AMMSE of the HDA-VQ over a Rayleigh fading
channel with a mean CSNR of θ̄ is given by

D̄HDA−VQ(ρ, θo) = δG(ρ, θo)
∫ ∞

θo

1
θ̄

exp(−θ/θ̄)

1 + bρθ
dθ + σ 2

XPo

= exp(1/(bρθ̄))

bρθ̄
E1

(
1 + bρθ0

bρθ̄

)
δG(ρ, θo)

+ σ 2
XPo.

(37)

Since neither PQ nor TC can outperform optimal VQ,
the AMMSE in (18) is bounded below by the minimum
value of D̄HDA−VQ(ρ, θo). There is no apparent simple way
to determine this minimum value since a closed-form
expression for δG(ρ, θo) is not available for all ρ and θo.
Numerical values of this bound shown in Section 6 have
been obtained by performing a grid-search over the (ρ, θo)
space where 0 ≤ ρ ≤ 1 and 0 ≤ θo ≤ θo,max (a suitable
upper limit) to determine the minimum of (37).

6 Numerical results and discussion
In this section, we use numerical examples to demon-
strate the theoretical performance achievable with asymp-
totically optimal HDA systems as well as the actual
performance of finite-rate HDA systems designed using
power allocations and quantizer rates obtained through
asymptotic analysis. It is useful to compare the minimum
AMMSE of actual HDA-PQ and HDA-TC designs with
the HDA-VQ bound for the same source-channel pair.
While the latter bound can be difficult to evaluate for a
general Gaussian source, it can be numerically evaluated
for a Gauss-Markov source (Section 5.2). We also com-
pare the HDA systems with the purely analog system in
Section 5.1 and purely digital systems (PQ and TC). We
do so for both GM(a) source and speech signals modeled
by a Gaussian AR source.

6.1 Performance for Gauss-Markov sources
Figure 3 shows the AMMSE as a function of mean CSNR
for HDA-PQ and HDA-TC together with the correspond-
ing HDA-VQ upper bound for the GM(0.9) source. These
figures show both the AMMSEs of the asymptotically
optimal HDA systems (labeled analytical) obtained by
minimizing the expression (18) with respect to ρ and θo,
as well as the experimental AMMSE of actual HDA-PQ
and HDA-TC systems which use these (ρ, θo) values. For
HDA-PQ, a prediction order of 1 has been used while in
HDA-TA, a transform block size of 8 has been used. For
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Fig. 3 A comparison of analytical and experimental AMMSEs of HDA systems designed for the unit variance GM(0.9) source, HDA-PQ (left), and
HDA-TC (right) (b is the bandwidth expansion). ρ and θo values for HDA-PQ and HDA-TC systems shown here are listed in Table 1. HDA-PQ
prediction order is 1, and HDA-TQ transform block size is 8

solving (22) for HDA-PQ, the CD algorithm presented in
Section 4.1 was used. On the other hand, for HDA-TC,
an exhaustive grid search over the solution space of (ρ, θo)
was used to locate the minimum. Table 1 shows the power
allocations (ρ∗) and outage CSNRs (θ∗

o ) in this man-
ner. Practical HDA PQ/TC systems used ECQs designed
(using training set 105 of source samples) for the rates
corresponding to optimal (ρ, θo) values, by combining the
algorithms in [30] and ([8] Table 13.1). These quantizers
were used to simulate the HDA encoders and decoders.
In order to simplify the simulations, the equivalent digi-
tal channel (with channel coding and digital modulation)
was assumed error-free for source-coding rates below the
capacity of the AWGN channel. The channel output was
assumed undecodable at CSNRs below the outage CSNR.

Table 1 The power allocations and outage CSNRs of HDA-PQ
and HDA-TC systems shown in Fig. 3

HDA-PQ HDA-TC

θ̄ (dB) b ρ∗(%) θ∗
o (dB) ρ∗(%) θ∗

o (dB)

15 3 27 –1.9 40 –3.8

20 3 27.5 –1.3 42 –3.0

25 3 27.5 –0.8 43 –2.8

30 3 27.5 –0.4 44 –2.5

15 6 28.5 –4.6 43 –6.5

20 6 28.5 –4.1 45 –6.0

25 6 28.5 –3.8 47 –5.3

30 6 28 –3.4 48 –5.5

The AMMSEs of practical HDA-PQ/TC systems were
estimated by numerical integration of the receiver MSE
D̂(θ) over the pdf of CSNR θ , where D̂(θ) for each θ value
was determined by Monte-Carlo simulation of the HDA
system. As usual, Karhunen-Loeve transform (KLT) [8]
has been used as the transform in HDA-TC. Since trans-
form dimensions larger than 8 provided no significant
improvement in AMMSE of HDA-TC, the performance
shown in Fig. 3 is for K = 8. Notice that the experi-
mental AMMSE values observed for finite-rate HDA-PQ
and HDA-TC systems closely agree with those predicted
by high-rate analysis when the available channel capac-
ity is high. At lower mean CSNRs and small bandwidth
expansion factors, the AMMSEs of the practical designs
are in fact lower than that predicted by high-rate analysis.
This is because, at low rates (below about 2 bits/sample),
high-rate expressions overestimate the MSE of quantiz-
ers. The performance of HDA systems degrades (relative
to HDA-VQ bound) as the quantization rates become low,
i.e., when the bandwidth expansion and mean CSNR are
low. However, at low bit-rates, the gain achieved by cod-
ing of a source with memory diminishes as well, and since
the quantization error is no longer small compared to the
source variance, a large fraction of the transmitter power
gets allocated to the analog transmission. In this regime,
neither HDA-PQ nor HDA-TC is worth the effort since
similar performance can be achieved by the simple purely
analog system described in Section 5.1. This observation
also shows that the use of asymptotic quantizer expres-
sions to determine the optimal power allocation is indeed
reasonable.
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Table 1 lists the ρ and θo values of HDA-PQ and HDA-
TC systems whose AMMSEs are shown in Fig. 3. In
general, the power allocated to the analog component
of both HDA-PQ and HDA-TC increases with average
CSNR θ̄ , but decreases with the increasing bandwidth.
The former effect is due to the fact that, when θ̄ of a
Rayleigh fading channel increases, so does the variance of
the CSNR. The latter effect can be explained as follows.

When more channel bandwidth is made available, the
AMMSE can be reduced by increasing the quantization
rate and hence the prediction gain.
We have used the AMMSE as a design criterion to

achieve a good (asymptotically optimal) trade-off between
the digital coding gain and the analog robustness over a
wide range of CSNRs. This design procedure determines
the best power allocation factor ρ and the outage CSNR

Fig. 4 Experimental RSNR of asymptotically optimal designs as a function of RX-CSNR for GM(0.9) source. HDA-PQ prediction order is 1, and HDA-TQ
transform block size is 8. a θ̄ = 15 dB, left: b = 3, right: b = 5. b θ̄ = 25 dB, left: b = 3, right: b = 5
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θo (or equivalently the quantization rate) to be used over a
given fading channel (θ̄ ). However, given that the channel
has slow fading, an important performance measure from
the point of view of the individual users in the system
is the MSE D(θ) of a receiver with a given instanta-
neous CSNR θ (which we refer to as RX-CSNR in figures).
Consider a receiver operating in an AMMSE-optimized
system, whose CSNR is θ . Figure 4 shows several exam-
ples for receiver reconstruction signal-to-ratio (RSNR)
10 log10

σ 2
X

D(θ)
as a function of the RX-CSNR, where the top

two figures are for a channel with θ̄ = 15 dB and the bot-
tom ones are for a channel with θ̄ = 25 dB. The figures
also show the performance of purely digital systems and
the analog system in Section 5.1 with a decoding block
size of 8. Other than the HDA-VQ bound, these results are
experimentally measured performance of actual systems
designed with asymptotically optimal power allocations
and outage CSNRs. The purely digital systems have been
designed with the same procedure as the HDA systems,
but by setting ρ = 0 and optimizing only with respect
to θo. To have a perspective of CSNR variations, these
figures show the values of CSNR above which each chan-
nel remains 90 and 99% of the time, respectively (CSNR90%
and CSNR99%). The effect of designing HDA systems to
minimize the AMMSE can be clearly seen. Unlike the dig-
ital systems, the performance of HDA systems increases
limitlessly while having lower outage probabilities.
HDA systems outperform the digital-only counterparts

85 − 90% of the time in all cases. Increasing the band-
width expansion on a given channel (hence increasing the
capacity) not only boosts the instantaneous RSNR at all
RX-CSNRs above the outage value but also reduces the
outage CSNR. The gap between the HDA systems and the
analog system is due to the source-coding gain of HDA
systems (of course, for memoryless Gaussian sources and
unit bandwidth expansion, purely analog transmission is
optimal [7]).
In order to highlight the fact that HDA-PQ and HDA-

TC proposed in this paper are useful only with correlated
sources, Fig. 5 presents the dependence of RSNR on the
correlation coefficient a at 20 dB RX-CSNR. Note that
as a, and hence the source-coding gain drops, the per-
formance of both HDA-PQ and HDA-TC approach that
of the analog system. On the other hand, for high a,
the HDA systems substantially improve over the ana-
log system. Tables 2 and 3 present the ρ and θo val-
ues of HDA-PQ and HDA-TC systems shown in Fig. 5.
As the source correlation increases, the optimal solu-
tion allocates more power to the digital transmission to
benefit from the resulting source-coding gain. In inter-
preting these results, note also that that higher θ̄ and
b means higher overall channel capacity. Therefore, the
higher the channel capacity, the higher the gap between
HDA systems and the analog system. Note that the ana-
log power allocation of HDA-TC does not monotoni-
cally decrease with increasing a (see Tables 2 and 3).
This is because, as the source correlation increases, the

Fig. 5 Experimental RSNR of HDA systems for GM(a) source, as a function of the correlation coefficient a at RX-CSNR = 20 dB. Left: θ̄ = 15 dB, right:
θ̄ = 25 dB. Dash-lines: b = 3, solid-lines: b = 5. ρ and θo values for HDA-PQ and HDA-TC systems shown here are listed in Tables 2 and 3. HDA-PQ
prediction order is 1, and HDA-TQ transform block size is 8
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Table 2 The power allocations and outage CSNRs of HDA-PQ
and HDA-TC systems shown in Fig. 5 (left)

HDA-PQ HDA-TC

a b ρ∗(%) θ∗
o (dB) ρ∗(%) θ∗

o (dB)

0.60 3 100 – 61 –3.3

0.80 3 30 –1.2 48.5 –3.4

0.85 3 28 –1.4 44.5 –3.5

0.90 3 27 –1.9 39.5 –3.8

0.95 3 25.5 –2.7 45 –5.1

0.98 3 23.5 –3.7 33 –5.5

0.60 5 100 – 62.5 –5.2

0.80 5 28.5 –3.1 51 –5.4

0.85 5 28.5 –3.4 47 –5.6

0.90 5 28 –3.9 42 –5.8

0.95 5 27.5 –4.8 35.5 –6.3

0.98 5 25.5 –5.9 36 –7.6

The average CSNR is 15 dB

number coefficients with non-zero bit allocations shrink.
Therefore optimal ρ is not a continuous function of
a. Note also that there is a sharp decrease in analog
power allocation in HDA-PQ when the source correla-
tion coefficient a changes from 0.6 to 0.8. For a = 0.6,
the prediction gain achievable is too small for digital cod-
ing to be useful. For a = 0.8, the prediction gain is
significant. It was observed that when ρ exceeds about
30%, the low quantization rates result in poor predic-
tions through the feedback loop, making predictive coding
ineffective. Hence, the sharp increase of analog power
allocation from 28 − 30% to 100% is seen in Table 2.

Table 3 The power allocations and outage CSNRs of HDA-PQ
and HDA-TC systems shown in Fig. 5 (right)

HDA-PQ HDA-TC

a b ρ∗(%) θ∗
o (dB) ρ∗(%) θ∗

o (dB)

0.6 3 29.5 0.7 63 –2.2

0.8 3 28 0.1 53 –2.3

0.85 3 27.5 –0.3 48 –2.5

0.9 3 27.5 –0.8 43 –2.8

0.95 3 27.5 –1.7 36.5 –3.3

0.98 3 26.5 –2.9 38.5 –4.6

0.6 5 25.5 –1.2 55 –3.4

0.8 5 27 –2.0 45.5 –3.8

0.85 5 27.5 –2.4 50.5 –4.7

0.9 5 28 –2.9 45.5 –5.0

0.95 5 28.5 –3.9 39 –5.5

0.98 5 28 –5.1 41 –6.9

The average CSNR is 25 dB

6.2 HDA speech transmission
One of the key applications of predictive coding is
in moderate-to-high bit-rate speech coding [13]. We
designed and simulated HDA-PQ, and for comparison
HDA-TC systems, for 4 kHz speech signals sampled at
8 kHz. It is known that speech can be well modeled by
a 10th-order auto-regressive process [31]. Therefore, a
10th-order linear predictor was used in predictive coding,
while a transform block size of 10 was used for transform
coding. In the latter case, the discrete cosine transform
(DCT) [8], which is a more practical choice than the KLT
for non-Gaussian vectors, was used. The designs were
then carried out using a source covariance matrix esti-
mated from an actual training set of 4 × 105 speech
samples. This training set consisted of short sentences
spoken by a number of male and female English speak-
ers. As in the case of GM(a) source, the quantization rate
(entropy) found by the asymptotic analysis for Gaussian
sources were used to design the actual ECQs for HDA-PQ
and HDA-TC. For experimentally evaluating the perfor-
mance of the practical designs, two different test sets (test
set 1 and test set 2), each of 4×105 samples, were used. The
test set 1 includedmale and female English speakers, while
the test set 2 included male and female French speakers.
Figure 6 compares the experimental AMMSEs for both

test sets and the analytical values which are based on
the source covariance matrix estimated from the train-
ing set (training and test sets have been normalized to
unit-variance). Table 4 lists the power allocations and out-
age CSNRs of HDA-PQ and HDA-TQ designs shown in
Fig. 6. HDA-TCs shown here use a transform block size
of 10 (the same as predictor order in HDA-PQ). In all
cases shown here, the AMMSEs for both test sets are
nearly identical. However, while for HDA-PQ, there is a
close agreement between analytical and experimental val-
ues, this is not so with HDA-TC. The actual HDA-TC
systems perform noticeably better at low bit-rates (low
mean CSNR) than the high-rate analysis predicts. This
is in contrast to the performance of HDA-TC for Gauss-
Markov processes where there is no model mismatch.
In the case of speech signals, the asymptotic analysis
assumes a stationary Gaussian process while the speech
signals are in reality neither Gaussian nor stationary. In
this case, Gaussian high-rate analysis of HDA-TC consid-
erably exaggerates the average quantization distortion at
the lower rates. Nonetheless, both HDA-PQ andHDA-TC
designs perform well, with HDA-TC being slightly better.
The main advantage of HDA-PQ is the simplicity of both
the design and the implementation. Furthermore, it may
be possible to improveHDA-PQ performance at low rates,
since in that case, the quantization errors in an HDA-
PQ system contain some residual correlation. One idea is
to use a linear block decoder in the analog part (it is of
course difficult to assume such a decoder during system
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Fig. 6 A comparison of analytical and experimental AMMSEs of HDA systems designed for unit-variance speech signals, HDA-PQ (left) and HDA-TC
(right). ρ and θo values for HDA-PQ and HDA-TC systems shown here are listed in Table 4. Both HDA-PQ prediction order and HDA-TQ transform
block size are 10

optimization). Another possibility is to use a decoder of
the form [32].
Figure 7 presents the decoder performance as a func-

tion of RX-CSNR in systems with b = 3 (12 kHz channel
bandwidth) and b = 5 (20 kHz channel bandwidth). Both
HDA-TC systems and the decoder in analog-only systems
had their block size set to 10. In this case, the performance
of decoded speech has been evaluated by using the short-
term or segmental SNR (seg-SNR) given by ([33], Eq. 9.7)
which is known to better reflect the perceptual quality
of speech at moderate to high-bit-rates than the RSNR.
In our experiments, we used a segment size of 240 sam-
ples, which corresponds to 30 m. Despite the fact that
speech is non-Gaussian, the results in Fig. 7 are qualita-
tively consistent with those in Fig. 4. For example, HDA
system outperform analog system at all RX-CSNRs and
digital systems 85–90% of the time. We also performed
listening tests which supported the trends in Fig. 7. The

Table 4 The power allocations and outage CSNRs of HDA-PQ
and HDA-TC systems shown in Fig. 6

HDA-PQ HDA-TC

θ̄ (dB) b ρ∗(%) θ∗
o (dB) ρ∗(%) θ∗

o (dB)

15 3 20 –0.7 38 –2.2

20 3 21.5 –0.1 39 –1.7

25 3 22 0.3 40 –1.0

30 3 22 0.7 33 –0.2

15 5 22 –2.9 39 –4.2

20 5 23 –2.4 34 –3.2

25 5 23 –2.0 35 –3.0

30 5 23 –1.7 35 –2.5

decoded speech from the HDA systems sounded the best,
though when the available channel capacity is relatively
low (e.g., when θ̄ = 15 dB and b = 3, see Fig. 7a), HDA-
TC sounded less noisier than HDA-PQ. Both HDA-PQ
and HDA-TC systems produced speech with white back-
ground noise (but free from any quantization noise) that
dropped rapidly as the RX-CSNR is increased. Indeed,
this “graceful” variation of the output quality is the goal
we hoped to achieve with the proposed HDA designs.
In comparison, the analog-only systems produced notice-
ably more background noise. The digital-only systems
produced comparatively poor quality speech, with objec-
tionably harsh quantization noise being clearly audible,
except when the available channel capacity is relatively
high (e.g., when θ̄ = 25 dB and b = 5, see Fig. 7b).

7 Conclusions
This paper presented an approach to designing HDA-PQ
and HDA-TC systems for transmitting correlated Gaus-
sian sources over frequency-flat, block Rayleigh fading
channels, when CSI is not available to the transmitter.
In this case, the encoder is designed to minimize the
AMMSE over the receiver-CSNR distribution, so that the
system operates well over a range of CSNRs. The main
issue addressed in this paper is the joint optimization of
the analog-digital power allocation and the outage CSNR
(or equivalently the quantization rate) to minimize the
AMMSE of HDA-PQ and HDA-TC systems. In particular,
a simple algorithm for solving the optimization problem
in the case of HDA-PQ was presented. While the power
allocations and quantization rates obtained as suggested
in this paper can only be asymptotically (in rate) optimal,
they were found to be effective in actual HDA systems
with finite rates.
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Fig. 7 Experimental seg-SNR of speech test set 2 on channels with different mean CSNRs. Both HDA-PQ prediction order and HDA-TQ transform
block size are 10. a θ̄ = 15, left: b = 3, right: b = 5. b θ̄ = 25, left: b = 3, right: b = 5

Our experimental results showed that, despite the Gaus-
sian assumption, the proposed HDA design approach also
worked well with the speech signals. HDA-PQ in partic-
ular can be a good approach to adaptive speech coding
(e.g., similar to ADPCM [13]) over fading channels and
in broadcasting. HDA-PQ is amenable to adaptive quan-
tization in real time due to the simplicity of the system

optimization algorithm presented in Section 4.1. A sim-
ple approach to adaptive speech coding with HDA-PQ is
to use a finite-state model for the source signal, where the
state is determined by a segment of consecutive speech
samples and each state has a particular set of HDA-
PQ parameters (predictor coefficients, quantizer-rate, and
power allocation). Themethod described in this paper can
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be used to determine optimal parameters for each state.
Since unvoiced speech segments resemble white noise,
experimental results in this paper suggest that purely
analog transmission can likely be as nearly as good as
HDA-PQ for such segments. On the other hand, for highly
correlated voiced speech segments, a significant amount
of total power will get allocated to the digital component.

Endnote
1 Since the elements of vvv are linear combinations of M

quantization errors, they will be approximately Gaussian
ifM is sufficiently large.
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