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Abstract

high-resolution SAR images.

Synthetic aperture radar (SAR) image classification plays a key role in SAR interpretation. Due to the cost and difficulty
of truth labeling for SAR images, the newly labeled samples available for image classification are very limited. This
paper focuses on defining a new sample labeling method to solve the problem of truth acquisition for training data in
SAR image classification. An efficient classification framework for high-resolution SAR images is presented in this
paper, which is built on learning from uncertain labels. We use grid labeling for rapid training data acquisition by
assigning a label to a group of neighboring pixels at a time. A novel SVM-based learning model is proposed to
optimize the uncertain training data within the constraints of label proportions in each group and then predict the
label of each sample for the test data based on the optimized training set. This work intends to explore a rapid
labeling method called grid labeling for efficient training set definition and apply it to large-scale SAR image
classification. The model demonstrates good performance in both accuracy and efficiency for scene interpretation of
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1 Introduction

Synthetic aperture radar (SAR) image classification or
land use/land cover (LULC) mapping plays an important
role in many and diverse SAR applications [1]. Super-
vised learning is one of the most popular methods for
SAR image classification. Supervised classification meth-
ods usually take a number of labeled samples to train
the classifiers, and the classification accuracy depends
on the selected training samples [2]. The acquisition of
the ground truth for training data is expensive and time
consuming. This is especially true for massive, high-
resolution (HR) SAR data, such as TerraSAR-X, COSMO-
SkyMed, etc. Due to the SAR imaging mechanism, the
complex backscattering effects of objects and scenes in
such HR SAR images will lead to local noises, double
reflection, and even object deformation and part missing,
making sample labeling highly difficult. So, researchers
need to label the training samples more precisely and
more carefully and even need the support of professional
interpreters, field surveys, or other relevant information,
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such as ancillary multispectral, geographic information
system (GIS), or elevation data [3, 4]. The cost and diffi-
culty of sample labeling have highly restricted the appli-
cations of large amounts of available HR SAR data, even
though the data contains rich details of objects and scenes.

Related works on efficient training set definition for
remote sensing image classification are mainly based on
semisupervised learning with limited or small training
sets, including transfer learning (TL) and active learn-
ing (AL). TL-based classification methods are designed to
achieve high classification accuracy with relatively small
number of labeled samples from the new image (target
domain) by efficient reuse of the training data from the
previous different but relative images (source domain)
[5-7]. And AL-based classification methods focus on
reducing the number of samples to be labeled by a human
expert through iteratively choosing the most informa-
tive (i.e., uncertain and diverse) samples from the target
domain [6-8]. A common practice is to combine TL and
AL in the same learning framework [6, 7]. The abovemen-
tioned approaches mainly focus on effective and efficient
sample selection from the same and/or different sources
of images to reduce the labeling cost. The quality of pre-
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viously labeled sample will affect the classification result.
And labeling for new samples is still difficult and ineffi-
cient as it is performed both in pixel-level labeling and in
an iterative way. This paper tends to solve the problem of
sample truth acquisition for SAR classification by explor-
ing a new sample labeling method and the corresponding
learning method.

The issue of learning from label proportions is rais-
ing attentions in the machine learning area [9-12]. For
learning from label proportions, the training samples are
divided into groups and label proportions of samples in
each group are given as sample truth, instead of giving
the label of each sample in the training set [11]. Learning
from label proportion makes it possible to predict the label
of each sample by labeling the training samples group by
group, which shows potential for efficient classification of
HR SAR images.

However, current classification methods based on label
proportions [10, 11] usually come from the machine learn-
ing area, which are not suitable for SAR image classifica-
tion because (1) these methods are based on detailed label
proportions, that is, requiring proportions for each label
in a group, which is still inefficient for sample labeling; and
(2) these methods cannot perform multiclass classifica-
tion directly. Although they can be extended to multiclass
classification [11, 13], this also means extra computing.

The aim of this paper is to provide a unified framework
with efficient sample labeling and model learning for SAR
images. Inspired by the idea of learning from label propor-
tions, we firstly introduce grid labeling to get the truth of
training data more efficiently by giving the proportions of
the labels in each group. Then, we present a novel support
vector machine (SVM)-based learning model to eliminate
the negative effects of label uncertainty from grid label-
ing with the support of label proportions. Moreover, an
efficient inference method is proposed to approximately
optimize the learning model.

The main contributions of our work are (1) intro-
ducing grid labeling for SAR image classification, to
acquire the truth of the training data rapidly and at
low cost; (2) building an SVM-based learning model by
taking in consideration the constraints of label propor-
tions; and (3) proposing an efficient inference method
to reweight samples according to sample reliability and
label proportions. Incorporation of label proportions
and reweighting strategy helps to enhance the robust-
ness of the SVM classifier with the existing uncer-
tain (partially mislabeled) samples from grid labeling.
To evaluate our method, we consider HR TerraSAR-X
images of Tianjin and Rosenheim with four LULC classes
[1]: urban area (UA), woodland (WL), open area (OA,
such as farmland, grassland, bare soil, etc.), and water
body (WB). We also have developed a software tool to
implement grid labeling. First, our method outperforms
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the state-of-the-art approach, ie., «SVM in [11].
Besides, it demonstrates closely comparable accuracy
with traditional supervised classification methods work-
ing with accurate pixel labeling but greatly reduces the
labeling cost of training data, making large-scale SAR
image classification more realizable.

This paper is organized as follows. Section 2 presents
the SAR image classification framework based on grid
labeling. Section 3 introduces grid labeling concept for
efficient training set definition. Section 4 describes the
proposed learning model with label proportions, includ-
ing an efficient approximate inference algorithm based
on alternating optimization strategy. Section 5 reports
experimental results on the TerraSAR-X datasets and a
simulated dataset. Our work is concluded in Section 6.

2 The classification framework

The proposed SAR image classification framework by
learning from grid labeling is illustrated in Fig. 1. It com-
bines boosting-based SVM and label proportions for effi-
cient learning from uncertain labels. At the stage of grid
labeling for training data, we slice the original SAR image
into grid regions of 200x200 pixels, similar as in [14].
Such a grid region is called a “cell” in this paper. We select
a subset (part) of all the cells as the training set 7 and
assign a single label to each cell C in 7, which is shared
by all the pixels in the cell. So grid labeling outputs label
proportions of each cell in the training data. Then at the
stage of training, the SVM classifier [15, 16] with boost-
ing strategy [17] is adopted to optimize the training data
by reweighting the training samples within the constraints
of label proportions. Finally, the SVM classifier predicts
the label for each sample in the test data based on the
optimized model parameters.

3 Grid labeling for rapid training set definition

3.1 Grid labeling concept

Grid labeling (GL) is introduced in this paper to acquire
training data with high efficiency and at low cost. Instead
of assigning one label to each pixel in the training set as in
pixel labeling (PL), we assign a single label to each cell by
grid labeling. All pixels in the cell will share the same label.
Assume a proportion of the cells obtained by slicing the
original SAR images are selected randomly and the train-
ing set is made up of pixels in these cells. The label for a
cell C is determined by the major class with the maximum

— " SVM training
Training Grlfi L Labe.l . with label
data labeling proportions proportions —I
v Optimized model
SVM

parameters
Test data L. Result
prediction

Fig. 1 Classification framework by learning from grid labeling
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number of pixels in C. We call it “naive grid labeling” as it
does not provide any other information than the label of
the major class in a cell.

Comparison of grid labeling and pixel labeling is
illustrated in Fig. 2. For pixel labeling in Fig. 2c,
the human expert carefully assigns a label for each pixel
in the image, while for grid labeling, he or she just needs
to estimate the major class in a cell and assigns the cor-
responding label to all the pixels in the cell, as in Fig. 2b.
Obviously, grid labeling will introduce label uncertainty
into the training set, for the pixels with other classes than
the major one are still assigned the major label force-
fully, e.g., on the boundary of WL and WB in Fig. 2b.
But the potential of grid labeling in practical large-
scale SAR image understanding makes it valuable to
explore classification methods based on learning from
grid labeling.

Although we usually accomplish pixel labeling by draw-
ing a polygon on the image to annotate a region com-
posed of pixels with the same class and fill it with a
certain color, several factors will still make pixel label-
ing a hard and laborious task, such as various scales
and shapes of the polygons, the unclear criterion how
small a region can be ignored, and some regions with
uncertain labels. Compared to traditional pixel label-
ing, the main advantage of grid labeling is its efficiency
and operability, which includes the following: (1) Low
cost and high efficiency. Grid labeling means greatly
reduced cost and high efficiency, making large-scale
SAR image classification more realizable; (2) Significant
reduction of the difficulty in labeling HR SAR images.
The backscattering effects of objects and scenes in HR
SAR images are complex, making it difficult to precisely
assign a label for each pixel. For grid labeling, the per-
son in charge of labeling needs no special training and
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avoids expensive field surveys in the labeling work; (3)
Grid labeling also emphasizes more context clues than
pixel labeling, which means it is more suitable for scene
understanding.

3.2 Proportional grid labeling

As mentioned above, naive grid labeling performs on the
groups (grid cells) from directly slicing the images in spa-
tial domain, which is an efficient and convenient way for
sample labeling. But naive grid labeling provide too lit-
tle information (only the label of the major class in a
cell) on sample classes, which will inevitably introduce
label uncertainty and eventually reduce the classification
accuracy. According to the idea of learning with label
proportions [9-11], we can learn a model to predict
labels of the individual samples by grouping the train-
ing samples and providing proportions of the labels in
each group. However, the current definition of label pro-
portion [11] ignores spatial sources of samples in each
group, which means samples in a group are not necessar-
ily from the same local region, making it not convenient
for sample labeling of remote sensing images. Thus, we
introduce proportional grid labeling (proportional GL) by
combining grid labeling with label proportions to imple-
ment rapid training set definition for SAR images. By
estimating the proportions of each label in cell C, propor-
tional GL not only can implement convenient and efficient
sample labeling for SAR images as naive grid labeling but
also can provide more information on sample classes.

Let £ = {li}f\i | be the label set, where M is the number
of labels in £. Assume the training set 7' = {xi}g\i 1 con-
tains N training samples x;. Then, T can be divided into K
disjoint cells Cg(k=1,...,K) where UI,le Cy=1{1,...,N},
and {x;|i € Cy} is the set of samples in C. Label propor-
tion is defined as the proportion of samples with a certain

(a)

Fig. 2 Grid labeling vs. pixel labeling. a Original SAR image region. b Labeling the SAR image region in grid of 5x5 cells. € Labeling the SAR image
region in pixel. In b and ¢, we use red for UA, green for WL, and blue for WB, as an overlay on the SAR image region
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label in a grid cell. The label proportion for /; € £ in cell
Cy is

pely) = ﬁ > [yr=4) (1)

jeCr

where y7 is the real pixel-level ground truth of xj, |Cy|
denotes the total number of samples in cell Ci. Then, pro-
portional GL can be presented in three forms by giving
label proportions for each class or the major class in a cell
during the sample labeling process,

1) Multiclass GL: The task of multiclass GL is to estimate
the proportion py(l;) for each [; € L(i=1,...,M) in a grid
cell Cx by a human expert.

2) Majorclass GL: Based on the definition of multiclass
GL, assume [® = arg rlnax pr(ly) is the label which has
€L

the largest (or major) proportion in C; and pr(®) is its
proportion. Then, [ is called the major class of cell Cy.
Using py to denote pk(l(k)) for short, we get,

v (19) = i @

pe(£) =1 ps, 3)

where £V© = {lj e L]l # l(k)} is the set of all labels
except [©), So the task of majorclass GL is just to give py
for major class /X in a grid cell C; by a human expert.

3) Naive GL: Based on the definition of majorclass GL,
we can predefine py = 1 for simplicity, which also means

Pk (E\l(k)> = 0. Then, the human expert only needs to

indicate the majorclass label /) in a grid cell Cy, without
estimating the proportion of any label. In this way, major-
class GL is indeed degraded to the naive grid labeling
(naive GL) described in Section 3.1.

4 Learning from grid labeling

In this section, we focus on exploring SAR image clas-
sification method by learning from majorclass GL. The
main reason we choose majorclass GL for sample labeling
relies on its good balance between efficiency on sample
labeling and integration with label priors. Majorclass GL
is integrated with label proportions of the major class in
a cell, which is the most important one among all labels.
Although multiclass GL provides more information than
majorclass GL, it is much more difficult to estimate the
proportion for each class than the major class in sample
labeling. Besides, the optimization algorithm has to sat-
isfy the proportion of each label in the label set for each
cell in order to solve a learning problem under the con-
straint of multiclass proportions. However, it only needs
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to satisfy the proportion of the majorclass label for each
cell to solve a learning problem based on majorclass pro-
portions. So it is much more difficult to solve a learning
problem under the constraint of multiclass proportions
than the majorclass proportions.

4.1 The learning model with label proportions
We build a learning model with label proportions based
on the SVM classifier [16] with boosting strategy [17]. The
SVM classifier takes the simple but efficient features (i.e.,
backscattering intensity, texture, and supertexture) pro-
posed in [1] as its inputs and outputs the land cover types
of the SAR images. Optimization of the training set from
grid labeling is implemented by reweighting strategy of
the boosting algorithm [17, 18], which has been improved
by us through introducing a new penalty term for label
proportions.

We formulate the SVM-based model under the large-
margin framework as below [7, 11],

N K
1 -
min-w! w41 wiL(yi,ngo(x,')—Fb) +rp E Lp(p/g(a)),pk)
w,b,w2 :
i=1 k=1
s.t. w; €[0,1],i=1,...,N (4)

where w; is the weight for training sample x; o =
[w1,...,0n] T is the weight vector; y; is the true label of
x; from grid labeling; L(-) > 0 is the loss function for the
traditional SVM model; another loss function L,(-) > 0
is designed to penalize the dissimilarity between the true
label proportion pj and the predicted label proportion py

based on w; we define pi(w) = ﬁ > [w; > 0] because
iECk
a nonzero value will be assigned to w; if the majorclass

label I® is reliable to be the true label of x; (i € Cp), ie,
yi = 1%; (x;) maps x; into a higher-dimensional space;
A and A, are the regularization parameters. Our task is to
simultaneously optimize the weight w and the SVM model
parameters w and b to ensure py estimated using w is close
enough to py.

Based on pixel-level training and label proportion con-
straints from grid labeling, this model not only can imple-
ment pixel-level classification for SAR images but also can
improve the efficiency of sample labeling and reduce the
corresponding cost. We build this model based on SVM
because the training set can be optimized by reweighting
the importance of each sample used for training in SVM
model. This strategy has been adopted in transfer learn-
ing methods [7, 17]. And we can easily extend the number
of classes for classification by defining a training set with
rich classes for SVM classifier.
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4.2 Model inference using LpcSVM algorithm

The unknown sample weight @ can be seen as a link
between supervised learning loss L(-) and label pro-
portion loss L,(-) in Eq. (4). So optimization for Eq. (4)
can be solved by alternating optimization strategy
[11, 19], i.e., optimizing (w, ) and w one at a time by fixing
the others. For fixed sample weights o =[wy,...,on] T,
the optimization of Eq. (4) w..t w and b becomes a
classic SVM problem. When w and b are fixed, @ can
be updated according to label agreement and label
proportion constraints. The baseline strategy of weight
distribution update is to assign lower weights for mis-
classified or unreliable samples in the training set [20].
Assume the majority of samples in the train-
ing set are correctly labeled by grid labeling.
So correctly classified (reliable) training samples are
associated to strong weights and misclassified samples
are assigned with weak weights in the reweighting pro-
cess. An updated w means an updated classifier, which
is expected to be more trustworthy than previous ones,
since it is trained with more reliable samples.

The alternating optimization procedure of Eq. (4)
is summarized in Algorithm 1, which is called label-
proportion-constrained SVM (LpcSVM) algorithm. By
initializing w; = 1@ = 1,...,N), we obtain w and b
through the traditional SVM training,

N
1
rvralgl inw + A Z ;L (yi, wlo@x) + b) (5)

i=1

Algorithm 1 LpcSVM: label-proportion-constrained

SVM
Initialize the sample weight w; = 1(i=1,...,N), sample
label y; = I® (i e Cp) and the maximum number of
iterations nT.
fort=1,...,nT do

1) Fix w; to solve w and b using the traditional SVM
training in Eq. (5).
2) Fix w and b to solve w; using cell-wise optimization
in Eq. (7).
Prepare the posterior distribution P(/|x;) for the
training data using LIBSVM based on w and b.
fork=1,...,Kdo
1) Calculate R (l(k) |x,-) to measure sample reliabil-
ity using Eq. (8).
2) Sort x;(i € Cy) in ascending order by R (l(k) |xi).
3) Update sample weight w;(i € Cy) using Eq. (9).
end for
end for
SVM prediction for the test data using the optimized
model parameters.
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In Eq. (5), we set y; = 1® for x; (i € Cy) as the major
class is used for labeling all the samples in Cy during the
training process. When w and b are obtained, the problem
of Eq. (4) becomes

N K

A -

min 3w (W () +b) + 3 1, (pr(). i)
i=1 k=1

st.w; €[0,1],i=1,...,N (6)

The problem of Eq. (6) can be solved by optimizing
w;(i € Cx) on each cell separately as the influence of each
cell Cx on the objective function in Eq. (6) is indepen-
dent. This means Eq. (6) can be converted into a cell-wise
optimization form,

min
{wilieCy} !
ic

A
a)iL<yirWT§0(xi) + b) + TPL” (Pr(@), pic)
Cr

st.w; €[0,1],i € Cy (7)

where the absolute loss L, (px(®),pr) = |pr(w) — pil
is used in this paper. We adopt an approximate cell-wise
optimization method for estimating weight w; in Eq. (7).

First, we calculate potential R(l(k) |xi), a measure for
sample reliability or label agreement, that is, how likely
x; will be classified as y; = 1® by the classifier. It is
defined as

R(IPp) = E(101%) = min (Edx),  ©)
lec\®

where E(l|x;) = —log(P(l|x;)). The class posterior dis-
tribution P(/|x;) is estimated by LIBSVM [16]. LIBSVM
uses the method in [21] to estimate class probability for
classification problem. The basic idea of the method is
to estimate pairwise (i.e., one-against-one) class probabil-
ity from decision values (or cost values) and then solve
an optimization problem to get multi-class probability.
Compared to the simple potential form E (l(k) Ixi), the def-
inition in Eq. (8) is expected to better depict the potential
of x; to be classified as /®¥), by measuring the distance
between the potential of label /®) and the minimal value
among all the other labels (i.e., the label most likely to
replace [®). Smaller value of R(/®|x;) means I® is more
reliable to reflect the true label of x;.

Then, we sort x;(i € Ci) in ascending order by R (l(k) |xi)
and note the sorted sample sequence as x5, where §; is the
index value (or position) of x; in the sorted sequence.

Next, update sample weight for x;(i € Ci) using the
following reweighting formula,

1,6; < Ny
v = exp (— G2l N, < 5 < N )
0, (Si > Ns

where Ny = int (pr|Ck|) is the sample number of major

class Iy in Cy; N, = %I is the number of samples to
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be assigned with weight 1; and 6 is a parameter to con-
trol the degree of weight weakening for N,,, < §; < N;.
Typically, & = 0.5 will work well in most cases. Accord-
ing to the formula, we assign strong weight (w; > 0) for
the first Ny samples with smallest R (l(k) |xi) (where i sat-
isfies §; < Nj) and zero weight for the others. To further
enhance the robustness of our method to the estimation
error of label proportion py, the sample weight is designed
to introduce a penalty term for N, < §; < N, instead of
simply assigning w; = 1 for all §; < N, as illustrated in
Fig. 3.

In Eq. (9), N is used to control the difference between
the predicted and true label proportions by setting the
number of the predicted majorclass samples to that of
the true majorclass samples in Cy explicitly. According to
Pr(w) defined before, we have

Pr(w) = |C|Z[,

ieCy

|C i (10)

Define the operator “int” for rounding a float to a smaller
integer. By setting Ny = int (pi|Ck|), we get pr(w) =~ pi.
Then L, = |px(w) — pk|l ~ 0, which means the loss
function in Eq. (7) is minimized to its first term, i.e., the
weighted sum of the loss values of the chosen N; samples.
So we have

min w;L (x + pi(w),
(oot 2 L (1) Ly (Pr(@)i)
ieCy
= min w;L (x;) (11)
{wilieCy} !
ieCy

where we use L(x;) to denote L (y,-, ngo(x,-) + b) for short.

Let o'; be the updated version of sample weights w;
using the reweighting strategy in Eq. (9). Then, &/; is
decreasing (non-increasing) with §; (see Fig. 3). Recall that
{%s,;} is the sample sequence after sorting {x;} in ascending
order of the potential R (l(k),xgi), which means R (1%, x5,
is increasing (non-decreasing) with §;. For a sample xs,,
a smaller value of the potential R (I, x5,) indicates a
greater probability of /¥ to be the true label of x5, which

1 .
0.8 \
= |
oo 1
‘v 0.6 l
3 !
(V] I
E 1
50.2 ;
0 ! L |
123 N, N, |Gl
index value
Fig. 3 Sample weight w; as a function of index value §;
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also means a smaller value of sample cost L(xs,) in Eq. (7).
So L(xs;) is also increasing (non-decreasing) with §;.
According to the principle of rearrangement inequality
[22], Y w;L(x;) will be minimized when the sequences
ieCy
{w;} and {L(x;)} are in opposite orders. Since {«’;} is in
descending order by §; and {L(xs,)} is in ascending order by

8, we have min Y w;L(x;)) = Y 'iL(xs,). Finally,
(wilieCr} jec, ieCy
Eq. (7) is minimized as
min L (x L
{wzllECk} Z ik (41 + (Pk(a)) Pk)

(12)

ZZCOLL x,sl.

ieCy

which means the cost function in Eq. (7) is minimized by
setting higher weight ’; to lower sample cost L(xs,) using
our LpcSVM algorithm.

Besides, we choose N, = %‘l in Eq. (7) for the fol-
lowing reason. As there are M labels for classification,
the infimum of py is inf(pr) = % We get inf(N;) =
inf(pg) x |Ck| = M . Despite possible noises in py, at least

N, = l%' samples in each cell should be made full use of
by assigning weight 1 to them. A larger value of §; means a
less reliable sample. In our reweighting strategy, weakened
weights are assigned to less reliable ones (i.e., N;,;, < §; <
N;) among the N; samples chosen for the next iteration
(see Fig. 3). Then, small fluctuation of Ny will not cause
considerable changes in the weight distribution, making
the method of better robustness to possible estimation
errors in label proportions. Experimental performance of
the robustness of our method to the estimation error in
label proportions will be described in Section 5.4.

By combining label agreement [17] and label propor-
tion similarity between the predicted and true labels, our
reweighting strategy will not only weaken the role of unre-
liable samples in the training set 7' but also keep the
important role of a certain number of reliable samples
within the constraints of label proportions for the major
class in each cell.

The updated w is used to retrain the SVM classi-
fier. After a number of iterations, strong weights will be
assigned to the reliable samples and weak weights to the
others, producing an optimized pixel-level training set (in
form of optimized sample weights). Finally, the classifier
will predict the label for each sample in the test data using
the optimized model parameters.

Although partially inspired by the idea of xSVM [11],
our model is essentially different with «SVM in the fol-
lowing respects: (1) xSVM performs on multiclass label
proportions, while our model performs on majorclass
label proportion, which makes sample labeling more effi-
cient; (2) «SVM only deals with binary classification,
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while our model deals directly with multi-class classifica-
tion; (3) Besides, our model is optimized based on sample
reweighting, which is totally different with «SVM and
also makes multiclass classification realizable.

5 Experiments

5.1 Dataset description and experiment setting

We use two full-scene HR TerraSAR-X images of Tianjin
and Rosenheim areas (described in Table 1) to evaluate the
performance of our method. For classification, we con-
sider four classes for Tianjin and Rosenheim areas as in
[1], i.e., UA, WL, OA, and WB. We use about 10% of all
the cells coming from slicing the original SAR images for
training the SVM model by random selection strategy and
the whole images for classification using SVM, which is
a common practice in remote sensing image classifica-
tion [1, 23]. The number of training samples for each label
is proportional to the label distributions in the image to
avoid class imbalance. All the reported results represent
average over ten random realizations of the training set for
each image.

The SVM classifier is configured with radial basis func-
tion (RBF) kernel and probability estimation [16]. In our
experiment, the parameter A in Eq. (7) is tuned from
{0.1, 1.0, 10} and we found A=1.0 works better for our
test. The parameter A, in Eq. (7) is tuned from {1, 104,
1004, 1000A}. A larger value of A, means introducing more
penalty from label proportions. Theoretically, the param-
eter 6 in Eq. (9) controls the penalty on the less reliable
training samples with N,,, < §; < N;i. A larger 6 means
assigning larger weights to the corresponding samples. In
our test, we tune 6 from {0.3, 0.4, 0.5, 0.6, 0.7} and found
0=0.5 works better for our experiment. We use efficient
low-level features such as backscattering intensity, tex-
ture, and supertexture [1] for the SVM classifier to take as
input. The features are defined as follows.

The intensity feature fl.I is the backscattering intensity
value at pixel i. Suppose we define a patch i centered at
pixel i, which is actually a local region at pixel i for tex-
ture measuring. Both texture and supertexture features
are extracted on patches. The texture feature f/** rep-
resents the coefficient of variation in a patch, that is,
S = o} | ule*, where 111" gives the mean backscattering
intensity value and o/¢* represents the standard deviation
of the backscattering intensity for all the pixels in patch
i. In our test, we adopt a patch of 11x11 pixels, which

Table 1 Datasets used to test the methods

Site Imaging mode Pixel posting Size
Tianjin Stripmap 20m 8911x8787
Rosenheim Spotlight 1.25m 9504 %8330
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will cover a block with homogeneous texture (e.g., a res-
idential building) under the resolution of our test images
(around 1.5 m). The supertexture feature fisup measures
the similarity of textures between neighboring patches,
thus providing clues for texture context of neighboring
patches. For patch i, supertexture is defined as

Sup __ Gisup _ 1 tex sup 21 tex
5= = =2 =) s D )

! JEN() JEN ()

sup . tex sup .
where p;™" is the average of ]; and o; " is the stan-

dard deviation of ﬁe" in the neighborhood N (i) of patch
i, n is the number of patches in N(i). A 5x5 rectangular
neighborhood is exploited in our work for an appropriate
measurement of scene homogeneity and texture context
(such as a piece of residential area or green field). Then,

the feature vector f; = [fil S, fisup ]T for each pixel x; is
taken as input for the SVM classifier.

We have designed four groups of experiments to test
our method from different aspects. The first is to show
overall experiment results by comparing our method to
the baseline methods. The second is to analyze the clas-
sification performance of our method with cell size and
iteration varying. The third is to explore the robustness
of our method to p; estimated in majorclass GL. The last
is to further apply our method to classification of a sim-
ulated dataset. Besides, we also discuss the efficiency and
cost advantages of our method over traditional methods
at the end of this section.

5.2 Overall experimental results
We compared our method (label-proportion-constrained
SVM with grid labeling, GL+LpcSVM) with the tra-
ditional SVM classifier with pixel labeling (PL+SVM),
the traditional SVM classifier with naive grid labeling
(GL+SVM), and «SVM, which is also based on learn-
ing from label proportions. For the implementation of
«SVM, we choose alter-«SVM as our baseline method
instead of conv-xSVM for the former performs better
than the latter in most situations [11]. The original xSVM
is for binary classification. We adopt the method similar
to [13] to extend xSVM for multiclass classification. The
main idea of the method is to use pairwise label switch-
ing between classes to improve the objective function
for multi-class classification. The classification accuracies
along with Kappa coefficient for Tianjin and Rosenheim
based on these methods are listed in Table 2. The overall
accuracy is calculated as the ratio of the number of cor-
rectly classified samples to the total number of samples in
the image.

As can be seen from Table 2, GL+SVM does not per-
form so well due to the uncertain labels introduced by
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Table 2 Overall classification accuracy for the SAR images (%)
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Tianjin Rosenheim
Method Overall accuracy Kappa coefficient Overall accuracy Kappa coefficient
PL+SVM 8741 4+ 043 0.7762 £ 0.0132 68.17 £ 0.59 0.5880 £ 0.0091
GL+SVM 83.13 £ 047 0.6698 £+ 0.0104 64.52 £ 061 04623 £+ 0.0324
«SVM 84.86 £ 0.53 0.7144 £ 0.0121 65.92 £ 0.95 04847 £ 0.0083
GL+LpcSYM with ng = 0 86.38 £0.68 0.7278 £0.0131 67.34 £ 0.55 0.5728 £ 0.0079
GL+LpcSYM with ng ~ N(O, 0.05%) 86.33 £0.74 0.7226 £ 0.0143 67.14 £0.53 0.5719 £ 0.0077

grid labeling. But «SVM performs better than GL+SVM
through learning from label proportions. And our method
(GL+LpcSVM with and without noise n; in pg) outper-
forms «SVM in classification accuracy with about 1.5%.
Moreover, «SVM cannot deal with multiclass classifi-
cation directly, which means extra computing will be
needed for xSVM to deal with multiclass classification.
And «SVM is based on detailed label proportions, which
also means more cost than LpcSVM (based on majorclass
GL) in sample labeling. Although it is unfair to compare
our method with PL+SVM for the latter is based on the
accuracy training set from pixel labeling, we still take
PL+SVM as a baseline method. GL+LpcSVM (with and
without noise n; in pg) demonstrates comparable clas-
sification accuracy and Kappa coefficient with PL+SVM,
while reducing labeling cost significantly by adopting grid
labeling.

The classification results of Tianjin and Rosenheim
areas using our method and the baseline methods are pre-
sented in Fig. 4. The ground truth maps are labeled man-
ually by referring to the corresponding optical images,
with undefined areas in black color. For all methods, no
postprocessing steps are added after classification using
SVM. In the experiment, we adopt a cell size of 200x200
and perform four iterations for LpcSVM. The criteria for
selecting cell size and iteration number will be explained
in Section 5.3.

5.3 Classification performance with cell size and iteration
varying
The proportion of all mislabeled samples (i.e., pmis =

K
% > (1 — pp)) in the training set as a function of the cell
k=1
size of grid labeling is illustrated in Fig. 5. As can be seen

from the figure, a larger cell size in grid labeling basically
means a larger proportion of incorrectly labeled (misla-
beled) samples in the training set. Thus, the cell size can
be used as a direct measure of the total proportion of
mislabeled samples, which will influence the classification
accuracy of the proposed LpcSVM classifier. Larger cell
size means lower cost for sample labeling as the number
of cells to be labeled is smaller, but it also means lower

classification accuracy as the training set contains more
unreliable samples (i.e., higher mislabeled proportion). So
a balance between labeling cost and classification accu-
racy should be found in the application of grid labeling.
The balance can be reached by choosing the right cell size.

Classification accuracy using GL+LpcSVM for the two
SAR images as a function of the iteration number of
LpcSVM under different cell sizes is shown in Fig. 6. We
can conclude that, for a certain cell size, the classifica-
tion accuracy on the two SAR images increases with the
iteration numbers of LpcSVM, remaining stable after four
iterations. More than four iterations will not improve the
classification accuracy obviously, even though not reduc-
ing the accuracy in our test. So about four iterations of
LpcSVM is applied in our experiments. When the cell size
changes from 1x1 to 200x 200, the curve of classification
accuracy falls gradually, but it drops dramatically from
the cell size of 300x300. Consequently, we adopt a cell of
about 200x200 pixels in the application of grid labeling
to reach a balance between labeling cost and classification
accuracy (as the results in Table 2 and Fig. 4).

5.4 Robustness to py estimated in majorclass GL

Since label proportions estimated by human in grid label-
ing may differ from the true label proportions, there
possibly exist errors in label proportion pg. As we have
introduced a penalty of weights at the end of the sequence
of N samples chosen for the next training in the reweight-
ing formula of Eq. (9), small errors in p; will not degrade
the performance of our method. Influence of label pro-
portion errors on classification accuracy for the two SAR
images is presented in Fig. 7. The test is performed with a
cell size of 200x200 and four iterations. We simulate the
errors in label proportion by adding noise 7 of a normal
distribution with mean =0 and standard deviation o =
0.05 ~0.20 to the existing label proportion pi. Then, the
noisy label proportion is p=py +ny, where n; ~ N (u, o%).
According to the three-sigma rule, the value of n; will
basically fall in [ — 30, ¢ + 30], e.g., [-0.15, 0.15] for
0=0.05. As can be seen from the figure, our method still
maintains a relative high level of classification accuracy
under the influence of errors in label proportions.
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0 (9]
Fig. 4 Classification results for Tianjin and Rosenheim. a TerraSAR-X image of Tianjin. g TerraSAR-X image of Rosenheim. b, h Ground truth maps

from pixel labeling (for accuracy calculation). ¢, i PL+SVM. d, j GL+SVM. e, k «SVM. f, | GL+LpcSVM with ng = 0. Note that the result image of
GL+LpcSYM with ng ~ N(0,0.052) is not listed here for it looks very similar to that of GL+LpcSVM with ng = 0

EmUA ESWL OA EEWB

M

In order to estimate the standard deviation value of
actual label proportion errors, grid labeling is performed
on nearly 4000 cell regions from the two full-scene
TerraSAR-X images used in the experiment. Five persons
participate in the grid labeling stage, and each person
labels each image twice. The order of cell regions in each
image is randomly generated for each labeling by each
person. So we obtain ten groups of different labelings

for the cell regions in each image. Based on our grid
labeling activities, we found the standard deviation value
of label proportion errors in grid labeling is basically
around ¢=0.05, which means the value of label proportion
errors falls in the confidence interval [-0.15, 0.15] with
the probability of 99.7%, based on the three-sigma rule
mentioned above. However, our method can still provide
desirable classification results (85.92% for Tianjin and
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Fig. 5 Mislabeled proportion of training data varies with cell size. The
mislabeled proportion of training data for Tianjin and Rosenheim is
approximately proportional to the cell size of grid labeling. For cell
size of 1x1, grid labeling is actually degraded to pixel labeling
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6 Classification accuracy using GL+LpcSVM for the SAR images of

Tianjin (@) and Rosenheim (b) as a function of the iteration number of
LpcSVM under different cell sizes. Cell size ranges 1x1,100x 100, ...,
500x500. Note that cell size of 1x 1 means the traditional SVM with
pixel labeling (PL+SVM), making a horizontal reference line through
different iterations. For Rosenheim, the maximum cell size is 300x 300
as larger cell sizes will cause the land cover of water body (WB)
disappear in the training set. Iterations of four will produce a stable
value of classification accuracy
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Fig. 7 Influence of label proportion errors on classification accuracy
using GL+LpcSVM for SAR images of Tianjin and Rosenheim areas.
Noise standard deviation o ranges 0.05, 0.10, 0.15, and 0.20. Note that
o = 0indicates ny = 0, meaning no noises added in px. The special
case that no label proportions are provided in the training data
(degraded to naive GL) is also considered, denoted by o = max

67.06% for Rosenheim) even under a noise with ¢ = 0.10
(see Fig. 7).

Besides, if no label proportions are provided (i.e., py =
1, k=1,...,K as defined in Naive GL), our method can still
work relatively well, outperforming GL+SVM about 1% in
classification accuracy (see the case of o= max in Fig. 7). In
this condition, all the samples in cell Cy are selected for the
next iteration (i.e., Ny = |Cg|), but they are reweighted dif-
ferently according to the reliability of their labels, without
the support of label proportions.

5.5 Classification with the simulated dataset

The dataset of a simulated SAR image is also used to fur-
ther test our method. In order to simulate a SAR image
of a large scene for classification, we adopt a widely used
speckle-statistics-based simulation method as in Section
4.1.2 of [24]. Four types of homogeneous areas are consid-
ered to represent four land cover types in the simulated
SAR image, and the pixels in each type of homogeneous
areas follow a Rayleigh distribution. We implement each
type of homogeneous area by setting the real and imag-
inary components of each pixel in the area to follow an
independent and identical Gaussian (normal) distribution
with zero mean and a variance o2. Then, the ampli-
tude A of the pixels follows a Rayleigh probability density
pA) = % exp (—é%) ,A > 0 with its mean o\/g and

the variance 4_7”02.

We s et 0=50, 110, 130, 150 respectively to generate the
four types of homogeneous areas (from dark to bright).
The truth map of the TerraSAR-X image of Rosenheim is
used for spatial configuration (such as locations, sizes, and
shapes) of different homogeneous areas in the simulated
image. Finally, we obtain a simulated image with size of
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9504:x 8330, which contains four types of homogeneous
areas to represent four different land cover types.

The experiment setting for the simulated image is the
same with the two TerraSAR-X images, as mentioned
in Section 5.1. The classification accuracies along with
Kappa coefficient for the simulated image based on our
method, and the baseline methods are shown in Table 3.
We can see that our method (GL+LpcSVM) outperforms
the baseline methods (GL+SVM and «SVM) in clas-
sification accuracy and Kappa coefficient. Our method
also keeps a comparable performance with the traditional
PL+SVM method.

5.6 Efficiency and cost advantages

As mentioned above, the classification accuracy of our
method (GL+LpcSVM) is slightly lower than PL+SVM as
the latter is based on the accuracy training set from pixel
labeling. But we emphasize the efficiency and cost advan-
tages of our method over PL+SVM. For efficiency mea-
suring, we consider the total classification time ¢ as the
sum of training set definition time #; and time consuming
ty of the SVM classifier. Even using polygon annotation,
the efficiency of pixel labeling will still be very low due
to various scales and shapes of the polygons, the unclear
criterion how small a region can be ignored, and some
regions with uncertain labels. It will be shown that the
efficiency of classification can be improved significantly
through the great reduction of training set definition time
t1 based on our method.

We have developed a software tool for proportional
grid labeling to define the training set of classification,
as shown in Fig. 8. The average time consuming for
classification on the TerraSAR-X images of Tianjin and
Rosenheim areas using the baseline PL+SVM, and our
GL+LpcSVM is provided in Table 4. The test was con-
ducted on an Intel i5-2520M dual core processor clocked
at 2.50 GHz. For PL+SVM, ¢ is the time of pixel label-
ing, and for GL+LpcSVM, it is the time of grid labeling
using the developed labeling tool. From the table, we
can see that ¢; is much larger than £, for both methods.
Our method makes the total classification time ¢ reduced
greatly by decreasing the training set definition time #;
greatly and keeping the LpcSVM inference algorithm
reaching stable within just three or four iterations (see
Fig. 6), which means a slightly increased ¢,.

Table 3 Overall classification accuracy for the simulated image (%)

Method Overall accuracy  Kappa coefficient
PL+SVM 8932+ 034 0.8385 £ 0.0102
GL+SYM 86.83 £ 042 0.8011 £0.0154
o SYM 87.03 £0.36 0.8056 £ 0.0107
GL+LpcSYM with ng = 0 89.08 £ 0.44 0.8346 £ 0.0125
GL+LpcSVM with ng ~ N(0,0.05%) 8897 £0.52 0.8331 £ 0.0121
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Initialize
Grid size: 200
Labeling type: kh{ajorclass GL d

Generate grid cells

Grid labeling

Label list Label proportions

.OA v 70 %

{-= Previous cell Next cell ->

Statistics

Used time: 2min, l4sec

Fig. 8 User interface for proportional grid labeling

In addition, the cost of land cover classification has
been reduced significantly with the reduction of train-
ing set definition time. More importantly, expensive field
surveys can be avoided for sample labeling, making
our method suitable for practical large-scale SAR image
understanding.

6 Conclusions

This paper presents an efficient SAR image classification
method through learning from label proportions. Grid
labeling is introduced to obtain the truth of training data
more efficiently. In order to eliminate label uncertainty
coming from grid labeling, we present an SVM-based

Table 4 Average time used for classification of Tianjin and
Rosenheim areas (min)

Method Training set Classifier Total i
etho definitiontime t;  consuming time t otaltime t

PL+SVM 514 22 536

GL+LpcSYM 128 37 165
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model for learning from label proportions. A proxi-
mate inference algorithm is proposed through defining
a reweighting strategy which has considered label agree-
ment and label proportions. Our method not only out-
performs «SVM, a state-of-the-art approach on learning
from label proportions, but also demonstrates comparable
accuracy with traditional classification methods working
with pixel labeling, while bringing great reduction of label-
ing cost for training data. Future work includes developing
an automatic estimation method for label proportions
to further reduce human labor in sample labeling and
extending our method to more application scenarios, such
as SAR urban LULC mapping [3, 14] and multispectral
image classification.
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